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THE SURFACE DIFFUSION FLOW FOR
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Abstract. We show existence and uniqueness of classical solutions for the motion of immersed
hypersurfaces driven by surface diffusion. If the initial surface is embedded and close to a sphere, we
prove that the solution exists globally and converges exponentially fast to a sphere. Furthermore,
we provide numerical simulations showing the creation of singularities for immersed curves.
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1. Introduction. In this paper we study the motion of a family of immersed
hypersurfaces whose normal velocity is equal to its surface diffusion. More precisely,
let Γ0 be a compact closed immersed orientable hypersurface in Rn of class C2+β . We
are looking for a family Γ = {Γ(t); t ≥ 0} of smooth immersed orientable hypersurfaces
satisfying the following evolution equation

V (t) = ∆Γ(t)HΓ(t) , Γ(0) = Γ0 .(1.1)

Here V (t) denotes the velocity in the normal direction of Γ at time t, while ∆Γ(t)

and HΓ(t) stand for the Laplace–Beltrami operator and the mean curvature of Γ(t),
respectively. Both the normal velocity and the curvature depend on the local choice
of the orientation, however, (1.1) does not, and so we are free to choose whichever one
we like. In particular, if Γ(t) is embedded and encloses a region Ω(t) we always choose
the outer normal, so that V is positive if Ω(t) grows, and so that HΓ(t) is positive if
Γ(t) is convex with respect to Ω(t). Due to the local nature of the evolution we may
assume the hypersurface Γ0 to be connected.

In order to give precise results, let us introduce the following notation. Given an
open set U ⊂ Rn, let hs(U) denote the little Hölder spaces of order s > 0, that is,
the closure of BUC∞(U) in BUCs(U), the latter space being the Banach space of all
bounded and uniformly Hölder continuous functions of order s. If Σ is a (sufficiently)
smooth submanifold of Rn then the spaces hs(Σ) are defined by means of a smooth
atlas for Σ.

Theorem 1.1. Assume that 0 < β < 1, and let Γ0 be a compact closed immersed
orientable hypersurface in Rn belonging to the class h2+β.

(a) The surface diffusion flow (1.1) has a unique local classical solution Γ =
{Γ(t); t ∈ [0, T )} for some T > 0. Each hypersurface Γ(t) is of class C∞ for t ∈ (0, T ).
Moreover, the mapping [t 7→ Γ(t)] is continuous on [0, T ) with respect to the h2+β-
topology and smooth on (0, T ) with respect to the C∞-topology.
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(b) Suppose that the initial hypersurface Γ0 is a h2+β-graph in normal direction
over some smooth immersed hypersurface Σ. Then the mapping ϕ := [(t,Γ0) 7→ Γ(t)]
induces a smooth local semiflow on a open subset of h2+β(Σ).

Remark. The assumption that the initial surface be orientable is not necessary
for Theorem 1(a) to hold true.

This follows by evolving the double cover in case the initial hypersurface is not
orientable. The double cover remains a double cover by uniqueness of smooth so-
lutions, and (1.1) is invariant with respect to the local orientation, as noted before.
Hence one can go back to the quotient space which therefore also evolves according
to the surface diffusion flow.

The motion given by (1.1) has some interesting geometrical features. Assume
that Γ is a smooth orientable solution to (1.1) and let A(t) denote the area of Γ(t).
Then the function A is smooth and we find for its derivative (see e.g. [22, Theorem
4] or [15, p. 70])

1
n− 1

d

dt
A(t) =

∫
Γ(t)

V (t)HΓ(t) dσ =
∫

Γ(t)

[∆Γ(t)HΓ(t)]HΓ(t) dσ(1.2)

= −
∫

Γ(t)

|gradΓ(t)HΓ(t)|2Γ(t)dσ ≤ 0 .

Hence the motion driven by surface diffusion is area decreasing.
It is also possible to identify the surface diffusion flow as a H−1-gradient flow for

the area functional, see [10, 25]. The notion of such gradient flows was proposed by
Fife [19, 20].

Assume that Γ is a smooth solution to (1.1) consisting of embedded hypersurfaces
which enclose a region Ω(t), and let Vol(t) denote the volume of Ω(t). The derivative
of the smooth function Vol is then given by

d

dt
Vol(t) =

∫
Γ(t)

V (t) dσ =
∫

Γ(t)

∆Γ(t)HΓ(t) dσ = 0 ,

thus the motion driven by surface diffusion is also volume preserving in the embed-
ded case. Every Euclidean sphere is an equilibrium for (1.1), and it follows from
Alexandrov’s characterization [1] of embedded constant mean curvature surfaces that
spheres are the only equilibria. However, none of these equilibria is isolated, since in
every neighborhood of a fixed sphere there is a continuum of further spheres. Thus
the dynamics of the flow generated by (1.1) is even locally quite copious.

Theorem 1.2. Let S be a fixed Euclidean sphere and let M denote the set of
all spheres which are sufficiently close to S. Then M attracts all embedded solutions
which are h2+β(S)-close toM at an exponential rate. In particular, if Γ0 is sufficiently
close to S in h2+β(S) then Γ exists globally and converges exponentially fast to some
sphere in M enclosing the same volume as Γ0. The convergence is in the Ck-topology
for every initial hypersurface Γ0 which is in a sufficiently small h2+β(S)-neighborhood
W = W (k) of S, where k ∈ N is a fixed number.

The surface diffusion flow (1.1) was first proposed by Mullins [26] to model surface
dynamics for phase interfaces when the evolution is only governed by mass diffusion in
the interface. It has also been examined in a more general mathematical and physical
context by Dav̀ı and Gurtin [13], and by Cahn and Taylor [9]. More recently, Cahn,
Elliott, and Novick-Cohen [8] showed by formal asymptotics that the surface diffusion
flow is the singular limit of the zero level set of the solution to the Cahn–Hilliard
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equation with a concentration dependent mobility. In the case of constant mobility
in the Cahn–Hilliard equation, Alikakos, Bates, and Chen [2] proved that the motion
of the singular limit is governed by the Mullins–Sekerka model (also called the Hele-
Shaw model with surface tension), rigorously establishing a result that was formally
derived by Pego [27]. The Mullins–Sekerka model shares many properties with the
surface diffusion flow (1.1). They both preserve the enclosed volume, decrease the area
of the interface, and for both the invariant manifold M of spheres is exponentially
attracting, see [16, 17, 18].

In two dimensions and for strip-like domains, the surface diffusion flow was inves-
tigated by Baras, Duchon, and Robert [7]. They prove global existence of weak solu-
tions. Also in two dimensions, the surface diffusion flow for closed embedded curves
was analytically investigated by Elliott and Garcke [14]. They show local existence
and regularization for C4-initial curves, and global existence for small perturbations
of circles. Furthermore, assuming global existence, they show that any closed curve
will become circular under this evolution. They do not obtain uniqueness of solutions.
Recently, Giga and Ito [21] established the existence of unique (local) solutions for
immersed H4-initial curves. Moreover, they prove that the surface diffusion flow can
drive an initially embedded curve to a self intersection. The techniques in [14, 21]
seem to be restricted to two dimensions.

Our methods work in any dimension and we obtain existence and uniqueness for
immersed hypersurfaces. This is of particular interest since embedded hypersurfaces
can become immersed under the surface diffusion flow, which is in clear contrast to
the mean curvature flow where smooth solutions remain embedded if their initial
surface is embedded. Our numerical simulations show that an immersed curve can
develop singularities under the surface diffusion flow. Our example consists of a curve
with a loop within a loop where the inner loop tightens and then contracts to a
point. This situation has been analyzed in great detail by Angenent [6] for the mean
curvature flow. In case of surface diffusion we do not have an analytical proof for
the occurrence of singularities. We also give an example showing that an immersed
curve evolves towards a stable limiting configuration which is not an embedded circle,
but a multiply covered immersed circle. Finally, we provide evidence that the surface
diffusion flow shrinks a figure-eight to a point in finite time. Our approach for proving
existence and uniqueness of solutions can be used to set up the numerical scheme for
our simulations.

In case the initial hypersurface has several components it is clear that some com-
ponents may collide under the surface diffusion flow. This is most easily seen by
choosing any non-stationary initial hypersurface, and then placing a stationary sphere
in its path.

Theorem 1 constitutes a precise local existence and uniqueness result for classical
solutions to (1.1) starting out as immersed hypersurfaces. In particular, the results
disclose a parabolic regularization of the flow ϕ since we are allowed to choose initial
surfaces Γ0 of class h2+β , although ∆Γ0HΓ0 is for such Γ0 in general not a classical
function. This parabolic structure also provides the foundation for the study of the
qualitative behavior of the semiflow ϕ. Our approach for proving existence, unique-
ness, and regularity of solutions is based on the general theory of Amann [3, 4] for
quasilinear parabolic evolution equations.

The proof of Theorem 2 consists of two steps. We first show that the semiflow ϕ
admits a stable (n+ 1)-dimensional local center manifoldMc. This means, in partic-
ular, that Mc is a locally invariant manifold and that Mc contains all small global
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solutions of ϕ. In a second step we then prove that Mc coincides with the manifold
M of the theorem. It is well-known that local center manifolds are generally not
unique. However since each local center manifold of the surface diffusion flow consists
of equilibria only this forces uniqueness. Under suitable spectral assumptions for the
linearization the existence of center manifolds is well-known for finite-dimensional dy-
namical systems. The corresponding construction for quasilinear infinite-dimensional
semiflows (e.g. for ϕ) is considerably more involved. The basic technical tool here is
the theory of maximal regularity, due to G. Da Prato and P. Grisvard [11], see also
[4, 5, 23]. In particular, these results allow to treat (1.1) as a fully-nonlinear perturbed
linear evolution equation, see [12, 23, 29].

2. Existence and uniqueness. In this section we introduce the mathematical
setting in order to reformulate (1.1) as a quasilinear parabolic evolution equation. Let
Σ be a smooth compact closed immersed oriented hypersurface in Rn, and assume
that Γ0 is close to this fixed reference manifold Σ. Let ν be the unit normal field on
Σ commensurable with the chosen orientation. Choose a > 0 and an open covering
{Ul ; l = 1, . . . ,m} of Σ such that

Xl : Ul × (−a, a)→ R
n , Xl(s, r) := s+ rν(s)

is a smooth diffeomorphism onto its image Rl := im(Xl), that is,

Xl ∈ Diff∞(Ul × (−a, a),Rl) , 1 ≤ l ≤ m.

This can be done by choosing the open sets Ul ⊂ Σ in such a way that they are
embedded in Rn instead of only immersed, and then taking a > 0 sufficiently small
so that each of the Ul has a tubular neighborhood of radius a. It is convenient to
decompose the inverse of Xl into X−1

l = (Sl,Λl), where

Sl ∈ C∞(Rl, Ul) and Λl ∈ C∞(Rl, (−a, a)) .

Note that Sl(x) is the nearest point on Ul to x ∈ Rl, and that Λl(x) is the signed
distance from x to Ul (that is, to Sl(x)). Moreover, the union of the setsRl, 1 ≤ l ≤ m,
consists exactly of those points in Rn with distance less than a to Σ.

Let T > 0 be a fixed number. We assume that Γ := {Γ(t), t ∈ [0, T )} is a family
of immersed graphs in normal direction over Σ. To be precise, we ask that there is a
globally defined function

ρ : Σ× [0, T )→ (−a, a)

such that for fixed t ∈ [0, T ) a manifold Γ(t) is locally given by the images of the
maps [s 7→ Xl(s, ρ(s, t))], 1 ≤ l ≤ m.

Conversely, given any (sufficiently) smooth function ρ : Σ× [0, T )→ (−a, a), let

Φl,ρ : Rl × [0, T )→ R , Φl,ρ(x, t) := Λl(x)− ρ(Sl(x), t) , 1 ≤ l ≤ m.(2.1)

Then for each t ∈ [0, T ), the zero-level set Φ−1
l,ρ (0, t) ⊂ Rl defines a smooth hypersur-

face, and the hypersurfaces Φ−1
l,ρ (0, t) can be glued together to constitute a compact

closed immersed orientable hypersurface Γρ(t). It is then easy to see that

Γρ(t) = Γ(t) =
m⋃
l=1

Im
(
Xl : Ul → R

n , [s 7→ Xl(s, ρ(s, t))]
)
.
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In addition, the normal velocity V of Γ := {Γρ(t) ; t ∈ [0, T )} at time t and at the
point x = Xl(s, ρ(s, t)), expressed as a function over Ul, is given by

V (s, t) = − ∂tΦl,ρ(x, t)
|∇xΦl,ρ(x, t)|

∣∣∣∣
x=Xl(s,ρ(s,t))

=
∂tρ(s, t)

|∇xΦl,ρ(x, t)|

∣∣∣∣
x=Xl(s,ρ(s,t))

for (s, t) ∈ Ul × (0, T ). In the following we fix t ∈ [0, T ) and drop it in our notation.
Moreover, we fix 0 < α < β < 1 and define

A := {ρ ∈ h2+α(Σ) ; ||ρ||C(Σ) < a} .

Then for any ρ ∈ A,

θρ : Σ→ Γρ, θρ(s) := Xl(s, ρ(s)) for s ∈ Ul ,

is a well-defined global (2+α)-diffeomorphism. We write ∆Γρ for the Laplace–Beltrami
operator of Γρ and HΓρ for the mean curvature of Γρ. Finally, let

G(ρ) := −Lρθ∗ρ(∆ΓρHΓρ) for ρ ∈ h4+α(Σ) ∩ A ,

where Lρ(s) := θ∗ρ|∇xΦl,ρ|(s) for s ∈ Ul, 1 ≤ l ≤ m. On the phase space

V := h2+β(Σ) ∩ A

we are now considering the following evolution equation for the distance function ρ :

∂tρ+G(ρ) = 0 , ρ(0) = ρ0 ,(2.2)

where ρ0 is a function on Σ determined by Γ0. More precisely, given ρ ∈ V, we call a
family ρ : [0, T )→ V a classical solution of (2.2) if

ρ ∈ C([0, T ),V) ∩ C∞((0, T ), C∞(Γ))

and if ρ satisfies (2.2) point-wise for t ∈ (0, T ). It is not difficult to see that the surface
diffusion flow (1.1) and the evolution equation (2.2) are equivalent on R := ∪ml=1Rl.
That is, if Γ := {Γ(t) ; t ∈ [0, T )} is a classical solution of (1.1) such that Γ(t) ⊂ R
for t ∈ [0, T ) then the above construction yields a classical solution of (2.2) and vice-
versa; if ρ : [0, T )→ V is a classical solution of (2.2) then Γ := {Γρ(t) ; t ∈ [0, T )} is
a classical solution of (1.1).

In order to state our next result, let E1 and E0 be Banach spaces with E1 ↪→ E0,
and let H(E1, E0) be the set of all A ∈ L(E1, E0) such that −A, considered as an
unbounded operator in E0, generates a strongly continuous analytic semigroup on
E0. It can be shown that H(E1, E0) is open in L(E1, E0), cf. [4, Theorem 1.3.1].
We always assume that H(E1, E0) carries the corresponding relative topology. Recall
that we already fixed 0 < α < β < 1. Pick now in addition β0 ∈ (α, β) and let

U := h2+β0(Σ) ∩ A .

Lemma 2.1. There exist

P ∈ C∞(U ,H(h4+α(Σ), hα(Σ))) , F ∈ C∞(U , hβ0(Σ)) ,

such that

G(ρ) = P (ρ)ρ+ F (ρ), ρ ∈ h4+α(Σ) ∩ A .
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Proof. (a) The first step is to define a metric on Σ that lends itself well for
computations in local coordinates. We choose a system of local coordinates on Σ,
where we can assume that the sets Ul, 1 ≤ l ≤ m, are exactly the domains of the
charts. We fix some index l ∈ {1, . . . ,m} and we let η be the restriction of the
Euclidean metric on Rl ⊂ Rn. Now define the pull-back metric

gl := X∗l η on T (Ul × (−a, a)) .

The mapping Xl is exactly translation into the normal direction of Ul, and hence
it is easily seen that the metric gl splits along the fibers of Ul × (−a, a), i.e. gl =
wl(r) + dr ⊗ dr. Here r denotes the coordinate in the normal direction of Ul, and
wl(r) is a metric on the tangent space to Ul × {r} ≡ Ul. Given ρ ∈ U , we set

g(ρ) := w(ρ) + dr ⊗ dr := gl|(s,ρ(s)) on T(s,ρ(s))(Ul × (−a, a)) .

In particular w(ρ) constitutes a metric on T (Ul) with components wjk(ρ). Fur-
thermore, let w∗(ρ) be the induced metric on the cotangent bundle T ∗(Ul), that
is w∗(ρ)(ξ, ζ) := wjk(ρ)ξjζk for ξ, ζ ∈ T ∗(Ul), where wjk(ρ) are the entries of the
inverse matrix of [wjk(ρ)]. Note that the metric w(ρ) is not the same as θ∗ρη. In
particular, w(ρ) does not involve any derivatives of ρ, whereas θ∗ρη does. We define
Ul,ρ := (Ul, w(ρ)) and Ξl := (Ul × (−a, a), gl). As a consequence of the special form
(2.1) of Φl,ρ we have Φ̂l,ρ(s, r) := Φl,ρ(Xl(s, r)) = r − ρ(s) on Rl, and hence

∇ΞlΦ̂l,ρ(s, r) = ∂
∂r
−∇Ul,ρρ(s) , (s, r) ∈ Ul × (−a, a) .

Therefore we get for s ∈ Ul

L2
ρ(s) = |∇RnΦl,ρ|2

∣∣∣
x=Xl(s,ρ(s))

= gl(∇ΞlΦ̂l,ρ,∇ΞlΦ̂l,ρ)
∣∣∣
(s,ρ(s))

= 1 + w(ρ)(∇Ul,ρρ,∇Ul,ρρ)
∣∣∣
s

= 1 + w∗(ρ)(dρ, dρ)
∣∣∣
s
,

(2.3)

where dρ := ∂jρdx
j ∈ T ∗(Σ) denotes the exterior differential of any ρ ∈ C1(Σ). We

did not label the metrics g(ρ) and w(ρ) with an index l as they can be defined globally
on Σ.

To simplify the notation we set Hρ := θ∗ρHΓρ . It is known that the mean curvature
operator Hρ is a second order quasilinear elliptic operator acting on functions defined
on Σ, see for instance [18, Lemma 3.1]. Moreover, it follows from the proof of that
lemma presented in [18] that

Hρ = P1(ρ)ρ+ F1(ρ), ρ ∈ U .

P1(ρ) and F1(ρ) are represented in local coordinates by

P1(ρ) =
1

(n− 1)L3
ρ

[(
− L2

ρw
jk(ρ) + wjl(ρ)wkm(ρ)∂lρ∂mρ

)
∂j∂k

+
(
L2
ρw

jk(ρ)Γijk(ρ) + wjl(ρ)wki(ρ)Γnjk(ρ)∂lρ

+2wkm(ρ)Γink(ρ)∂mρ− wjl(ρ)wkm(ρ)Γijk(ρ)∂lρ∂mρ
)
∂i

]
,

F1(ρ) = − 1
(n− 1)Lρ

wjk(ρ)Γnjk(ρ) .

Here the summation runs from 1 to (n − 1) for all repeated indices. Moreover, Γijk
are the Christoffel symbols of the metric gl and

Γijk(ρ) := Γijk
∣∣∣
(s,ρ(s))

on T(s,ρ(s))(Ξl) .
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An important observation is here that wjk(ρ) and Γijk(ρ) are all independent of the
derivatives of ρ, and hence the above equations together with (2.3) give complete
information on how derivatives of ρ go into the operators P1(ρ) and F1(ρ).

Given ξ ∈ T ∗(Σ), let pπ1 (ρ)(ξ) denote the symbol of the principal part of P1(ρ).
Then (2.3) and the Cauchy-Schwarz inequality yield

pπ1 (ρ)(ξ) =
1

(n− 1)L3
ρ

[
w∗(ρ)(ξ, ξ) + w∗(ρ)(dρ, dρ)w∗(ρ)(ξ, ξ)− (w∗(ρ)(dρ, ξ))2

]
≥ w∗(ρ)(ξ, ξ)

(n− 1)L3
ρ

for any ξ ∈ T ∗(Σ).
(b) Let us now turn to the operator θ∗ρ∆Γρ . Since θρ is a diffeomorphism between

Σ and Γρ we obtain that

θ∗ρ∆Γρ = ∆ρθ
∗
ρ , ρ ∈ U ,

where ∆ρ is the Laplace–Beltrami operator on (Σ, θ∗ρη). Here η is the Euclidean metric
on the immersed manifold Γρ and θ∗ρη denotes the Riemannian metric that is induced
by θρ on the manifold Σ. To simplify the notation we set σ(ρ) := θ∗ρη. Let σjk(ρ) be
the components of σ(ρ) in local coordinates and let σ∗(ρ) be the induced metric on
T ∗(Σ), that is, σ∗(ρ)(ξ, ζ) := σjk(ρ)ξjζk for ξ, ζ ∈ T ∗(Σ). As usual, σjk(ρ) are the
entries of the inverse matrix of [σjk(ρ)]. Finally, γijk(ρ) denote the Christoffel symbols
of σ(ρ). Using local coordinates, we find

∆ρ = σjk(ρ)
(
∂j∂k − γijk(ρ)∂i

)
, ρ ∈ U .

(c) Let ρ ∈ U be given. Then we define Pπ(ρ) ∈ L(h4+α(Σ), hα(Σ)) by

Pπ(ρ) := − 1
(n− 1)L2

ρ

σrs(ρ)
[
− L2

ρw
jk(ρ) + wjl(ρ)wkm(ρ)∂lρ∂mρ

]
∂r∂s∂j∂k .

We show that there exists a mapping Q(ρ) ∈ L(h3+α(Σ), hα(Σ)) such that

−Lρ∆ρP1(ρ)ρ− Pπ(ρ)ρ = Q(ρ)ρ, ρ ∈ U ∩ h4+α(Σ) .

Using the representations of ∆ρ and P1(ρ)ρ in local coordinates we see that fourth
order derivatives of ρ can only occur when ∂r∂s falls on ∂j∂kρ, and these terms are
exactly collected in the operator Pπ(ρ). Third order derivatives of ρ can only enter
in a linear way. For this recall that wjk(ρ) and Γijk(ρ) do depend on ρ, but not on
its derivatives. So ∂r∂s applied to these functions will only generate second order
derivatives of ρ. Hence

∂r∂s(wjl(ρ)wkm(ρ)∂lρ∂mρ)

will, for instance, produce a third order derivative of ρ exactly when ∂r∂s falls on ∂lρ
or on ∂mρ. The result is clearly linear in the third order derivatives. Next observe
that Lρ is represented in local coordinates by

Lρ =
√

1 + wjk(ρ)∂jρ∂kρ ,

see (2.3). It is then easily seen that ∂r∂sL−1
ρ generates, once again, third order

derivatives which enter linearly. Similar arguments apply to all of the remaining
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terms. Finally, in case that an expression does not contain third order derivatives we
can always split off a linear term ∂j∂kρ or ∂iρ. By similar arguments we also conclude
that there exists a mapping R(ρ) ∈ L(h3+α(Σ), hα(Σ)) such that

−Lρ
(
∆ρ

1
Lρ

)
LρF1(ρ) = R(ρ)ρ , ρ ∈ U ∩ h3+α(Σ) .

We set

P (ρ) := Pπ(ρ) +Q(ρ) +R(ρ), ρ ∈ U ,
F (ρ) := −Lρ∆ρF1(ρ)−R(ρ)ρ, ρ ∈ U ∩ h3+α(Σ) .

It follows from the above considerations and from the representation of F1(ρ) in local
coordinates that

P ∈ C∞(U ,L(h4+α(Σ), hα(Σ))) , F ∈ C∞(U , hβ0(Σ))

and that G(ρ) = P (ρ)ρ+ F (ρ) for ρ ∈ h4+α(Σ) ∩ A.
(d) It remains to show that P (ρ) ∈ H(h4+α(Σ), hα(Σ)) for ρ ∈ U . Given ρ ∈ U ,

let pπ(ρ) denote the symbol of Pπ(ρ). Then the results in steps (a)–(c) yield

pπ(ρ)(ξ) = Lρ σ
∗(ρ)(ξ, ξ) pπ1 (ρ)(ξ) ≥ 1

(n− 1)L2
ρ

σ∗(ρ)(ξ, ξ)w∗(ρ)(ξ, ξ)

for all ξ ∈ T ∗(Σ). Hence, for any fixed ρ ∈ U , the operator Pπ(ρ) is a uniformly elliptic
fourth order operator acting on functions over the compact manifold Σ. Consequently,
−Pπ(ρ) generates a strongly continuous analytic semigroup on hα(Σ), that is, we have
that

Pπ(ρ) ∈ H(h4+α(Σ), hα(Σ)), ρ ∈ U .

Since Q(ρ) and R(ρ) are lower order perturbations we can now conclude that −P (ρ)
generates an analytic semigroup on hα(Σ) as well.

Now we are in a position to apply the general theory of quasilinear evolution equa-
tions developed by H. Amann providing a unique classical solution of problem (2.2).
More precisely, we have the following theorem.

Theorem 2.2. Given any ρ ∈ V, there exists a unique classical solution

ρ ∈ C([0, t+),V) ∩ C∞((0, t+), C∞(Σ))

of problem (2.2). Here, t+ := t+(ρ0) > 0 stands for the maximal time of existence.
The map [(t, ρ0) 7→ ρ(t, ρ0)] defines a smooth local semiflow on V.

Proof. Set E0 := hα(Σ) and E1 := h4+α(Σ) and let

Eθ := (E0, E1)0
θ,∞, θ ∈ (0, 1) ,

denote the continuous interpolation spaces between E1 and E0, see [23] or [4]. Next
we fix

θ1 :=
2 + β − α

4
, θ0 :=

2 + β0 − α
4

, θ :=
β0 − α

4
.

Since the little Hölder spaces are stable under continuous interpolation we get the
following identities

Eθ1 = h2+β(Σ) , Eθ0 = h2+β0(Σ) , Eθ = hβ0(Σ) .
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Hence Lemma 2.1 and [3, Theorem 12.1] imply that there exists a unique solution in
the class

C([0, t+),V) ∩ C((0, t+), h4+α(Σ)) ∩ C1((0, t+), hα(Σ)) .

The additional regularity in the assertion follows from a bootstrapping argument in
the scale of Banach spaces hs(Σ), cf. the proof of [17, Theorem 1]. Moreover, the
results in [3, Section 12] also show that the map [(t, ρ0) 7→ ρ(t, ρ0)] defines a smooth
local semiflow on V.

3. Global Existence. To prove Theorem 2, we fix a Euclidean sphere S and
set Σ = S in the construction of Section 2. Without loss of generality we may assume
that S is the unit sphere centered at 0. Observe that Lemma 2.1 implies that

G : U ∩ h4+α(S)→ hα(S) , ρ 7→ G(ρ)

is smooth. Let A := ∂G(0) be the Fréchet derivative of G at 0. Then we have the
following representation of A :

Lemma 3.1.

A =
1

n− 1
∆2
S + ∆S ,

where ∆S denotes the Laplace–Beltrami operator on S.
Proof. Recall that G(ρ) = −Lρ∆ρHρ for ρ ∈ U ∩ h4+α(S). Thus we get

Ah = ∂G(0)h = −∂
(
Lρ∆ρ

)∣∣
ρ=0

[h,H0]− L0∆0∂Hρ

∣∣
ρ=0

h(3.1)

for h ∈ h4+α(S). Observe furthermore that

L0 ≡ 1, ∆0 = ∆S , H0 ≡ 1 .(3.2)

In particular, given ρ ∈ U , we have that Lρ∆ρH0 = 0. Hence

∂
(
Lρ∆ρ

)∣∣
ρ=0

[h,H0] =
d

dε

(
Lεh∆εh

)∣∣
ε=0

H0 = 0 .(3.3)

Finally, it was shown in [18, Lemma 3.1] that

∂Hρ

∣∣
ρ=0

h = − 1
n− 1

(
n− 1 + ∆S

)
h(3.4)

and the assertion follows from (3.1)–(3.4).
Lemma 3.2. The spectrum of −A consists of a sequence of real eigenvalues

· · · < µk+1 < µk < µk−1 < · · · < µ1 < µ0 = 0 .

In addition, µ0 is an eigenvalue of geometric multiplicity (n+ 1).
Proof. (a) Due to the compact embedding of h4+α(S) in hα(S) it is clear that

the spectrum of −A consists only of eigenvalues.
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(b) Assume that

Ah =
1

n− 1
∆S(n− 1 + ∆S)h = 0

for some h ∈ h4+α(S). Then

(n− 1 + ∆S)h = c(3.5)

for some constant c. Observe that g0 = c/(n− 1) is a solution of (3.5). Consequently,
we find that

(n− 1 + ∆S)(h− g0) = 0 .

On the other hand it is well-known that (n−1) is an eigenvalue of −∆S of multiplicity
n and that the spherical harmonics {Yk ; 1 ≤ k ≤ n} of degree 1 span the corresponding
eigenspace. Let Y0 = 1 and set N := span{Yk ; 0 ≤ k ≤ n}. We have shown that 0 is
an eigenvalue of A of geometric multiplicity (n+ 1) with eigenspace N .

(c) Suppose that λ ∈ C \ {0} and h ∈ h4+α(S) satisfy the equation (λ+A)h = 0.
Then h belongs to N⊥, where the orthogonal complement has to be taken in L2(S).
Indeed, given k ∈ {0, . . . , n}, we have that

0 =
(
(λ+A)h|Yk

)
= λ (h|Yk) ,

showing that h ∈ N⊥. Next observe that there are positive constants c1 and c2 such
that (

(∆S)−1g|g
)
≤ −c1

(
g|g
)
,

(
(n− 1 + ∆S)g|g

)
≤ −c2

(
g|g
)

for all g ∈ h2+α(S) ∩ N⊥, where ( · | · ) denotes the inner product in L2(S). Now,
multiplying the equation (λ+A)h = 0 in L2(S) with (∆S)−1h, we get

λ (h|(∆S)−1h) +
1

n− 1
(
(n− 1 + ∆S)h|h

)
= 0 .

It follows that λ < 0 and this completes the proof.
We are now ready to prove our Theorem 2. Here we follow [18].
(i) In a first step we sketch the construction of a center manifold Mc over N.

For g ∈ hr(S), r > 0, let Pg :=
∑n
k=0(g|Yk)Yk . Then it is easily verified that P is a

continuous projection of hr(S) onto N = {Yk ; 0 ≤ k ≤ n}, the kernel of the operator
A. Moreover, P commutes with A, that is, PAg = APg = 0 for all g ∈ h4+α(S).
Therefore, N and h4+α

s (S) := ker(P ) provide topologically complementary subspaces
of h4+α(S) which reduce the operator A. We conclude that σ(−πcA) = {0} and
σ(−πsA) ⊂ (−∞, µ1] with µ1 < 0, where πc = P and πs = id− P denote the projec-
tions onto N and h4+α

s (S) respectively, the center subspace and the stable subspace
of −A. It is now clear that the eigenvalue 0 does also have algebraic multiplicity
(n + 1). We can now apply [29, Theorem 4.1], see also [23, Theorem 9.2.2]. These
results imply that, given m ∈ N∗, there exists an open neighborhood U of 0 in N and
a mapping

γ ∈ Cm(U, h4+α
s (S)) with γ(0) = 0, ∂γ(0) = 0

such that Mc := graph(γ) is a locally invariant manifold for the semiflow generated
by the solutions of (2.2). Mc is an (n + 1)-dimensional submanifold of h4+α(S)
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with T0(Mc) = N . In addition, the manifold Mc is exponentially attractive. More
precisely, it follows from [29, Theorem 5.8] that given ω ∈ (0,−µ1) there exist a
positive constant c and a neighborhood W of 0 in h2+β(S) such that

‖πsρ(t, ρ0)− γ(πcρ(t, ρ0))‖h4+α(S) ≤
c

t1−θ
e−ωt‖πsρ0 − γ(πcρ0)‖h2+β(S)(3.6)

for each ρ0 in W. Estimate (3.6) is valid for all t ∈ (0, t+(ρ0)) with πcρ(t, ρ0) ∈ U.
Moreover, θ := (2 + β − α)/4.

(ii) Step (i) implies that Mc contains all small equilibria of (2.2). We show that
Mc and M coincide near 0. Suppose that S′ is a sphere which is sufficiently close to
S. Let (z1, . . . , zn) be the coordinates of its center and r be its radius. Recall that S
is the unit sphere in Rn and let z0 := 1− r. If ρ measures the distance from S to S′

in normal direction with respect to S, we get the identity

(1 + z0)2 =
n∑
k=1

(
(1 + ρ)Yk − zk

)2
.(3.7)

Here we used that the spherical harmonics Yk, k = 1, . . . , n, are just the restrictions
of the harmonic polynomials [x 7→ xk]. Solving (3.7) for ρ we obtain that S′ can be
parameterized over S by the distance function

ρ(z) =
n∑
k=1

zkYk − 1 +

√√√√( n∑
k=1

zkYk
)2 + (1 + z0)2 −

n∑
k=1

z2
k ,(3.8)

where z := (z0, . . . , zn) ∈ Rn+1. If O is a sufficiently small neighborhood of 0 in Rn+1,
then it is clear that any sphere S′ which is close to S can be characterized by (3.8)
with z ∈ O. Furthermore, the mapping [z 7→ ρ(z)] : O → h4+α(S) is smooth and its
derivative at 0 is given by

∂ρ(0)h =
n∑
k=0

hkYk, h ∈ Rn+1 .(3.9)

Let now {F0(z), . . . , Fn(z)} be the coordinates of πcρ(z) with respect to the basis
{Y0, . . . , Yn} of N . Then eqref3.9 yields that ∂F (0) = idRn+1 . Consequently, the
inverse function theorem implies that F is a smooth diffeomorphism from O onto its
image V := im(F ), provided O is small enough. Let M := {ρ(z) ; z ∈ O}. Then it
follows that πcM is an open neighborhood of 0 in N which can be assumed to coincide
with the open neighborhood U of 0 in N obtained in step (i). Hence we conclude that
M =Mc.

(iii) It follows from step (ii) that the reduced flow of (2.2) on Mc consists of
equilibria. Therefore, 0 is a stable equilibrium for the reduced flow and we conclude
that 0 is also stable for the evolution equation (2.2), see [28, Theorem 3.3]. In partic-
ular, there exists a neighborhood W of 0 in h2+β(S) such that solutions of (2.2) exist
globally for every initial value ρ0 ∈W and such that estimate (3.6) is satisfied for all
t > 0.

(iv) As in [18, Theorems 6.5 and 6.6] one can show the following result. Given
k ∈ N and ω ∈ (0,−µ1) there exists a neighborhood W = W (k, ω) of 0 in h2+β(S)
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Fig. 1 The limacon r(θ) = 1 + 1.7 sin(θ).

with the following property: Given ρ0 ∈W , the solution ρ(·, ρ0) of (2.2) exists globally
and there exist c = c(k, ω) > 0, and a unique z0 = z0(ρ0) ∈ U such that

||
(
πcρ(t, ρ0), πsρ(t, ρ0)

)
−
(
z0, γ(z0)

)
||Ck(S) ≤ ce

−ωt||πsρ0 − γ(πcρ0)||h2+β(S)

for t ≥ 1. According to step (ii), (z0, γ(z0)) ∈Mc is a sphere. Hence we have proved
that given ρ0 ∈ W the solution ρ(t, ρ0) of (2.2) exists globally and converges to the
sphere (z0, γ(z0)) exponentially fast in the Ck-topology as t→∞. And so, the proof
of Theorem 2 is now completed.

4. Numerical simulations. The general theory from the previous sections can
be used to set up a numerical scheme as well. The idea is to discretize in time and to
use an implicit scheme for stability reasons. Linearization of the dependence on the
next time step leads to a semi-implicit scheme. Discretization of the interface leads
then to a front-tracking method. We implement this here for two space dimensions,
for three space dimensions and further details see [24, 25].

4.1. A limaçon. The example of a limaçon shows that the surface diffusion
flow can produce singularities. This is not unlike the mean curvature flow, for which
Angenent [6] has investigated the singularities arising from the evolution of this shape.
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Fig. 2 The rose r(θ) = sin(2θ).
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The smaller loop tightens, having a maximum for the curvature. Therefore the
curvature increases for the smaller loop. This leads to a blow-up of the curvature in
finite time. Observe that the limaçon seems to be developing inflection points near
the loop.

4.2. A four-leaved rose. The rose exhibits the phenomenon that the stable
limiting configuration need not necessarily be an embedded circle, it can also be a
multiply covered immersed circle. For positive time the winding number of the curve
with respect to the origin does not change, and hence the limiting curve is a triply
covered circle.

4.3. A figure-eight. One can make perfect sense of the enclosed signed area of
a figure-eight, which is for a symmetric figure-eight equal to zero. As the evolution
decreases the length of the curve, and preserves the enclosed area, it can be expected
that the limiting figure has zero area and zero length. This is exactly what happens,
the figure-eight shrinks in finite time to a point. As the curve shortens it is necessary
to remove vertices from the numerical simulation to maintain the ratio of temporal
versus spatial resolution. In other words, as the length of the curve decreases one
needs to remove vertices to maintain a given lower bound on the distance between
any two consecutive points of the discretized curve. This is somewhat visible in the last
picture where the curve has shrunk so much that because of the increased curvature
one can discern faint corners.

Acknowledgment. We thank the anonymous referee for valuable suggestions.

REFERENCES

[1] A.D. Alexandrov, Uniqueness theorems for surfaces in the large I, Vestnik Leningrad Univ.
11, 5–7 (1956) (Math. Rev. 19, 167).

[2] N. Alikakos, P.W. Bates, X. Chen, Convergence of the Cahn–Hilliard Equation to the Hele-
Shaw model, Arch. Rational Mech. Anal. 128, 164–205 (1994).

[3] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value prob-
lems, in Function Spaces, Differential Operators and Nonlinear Analysis (H. J. Schmeisser,
H. Triebel, editors), Teubner, Stuttgart, Leipzig, 9–126, (1993).

[4] , Linear and Quasilinear Parabolic Problems, Vol I, Birkhäuser, Basel, 1995, Vol II, III,
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