
SYMPLECTIC AND ORTHOGONAL ROBINSON-SCHENSTEDALGORITHMSPETER E. TRAPA1. IntroductionLet GR denote a linear reductive real Lie group with maximal compact subgroup KR.Write g and k for the corresponding complexi�ed Lie algebras and g = k� p for the Cartandecomposition. Let B denote the ag variety for g. The points of the cotangent bundleT �B can be thought of as pairs consisting of a Borel b = h� n and a covector � 2 n�. Theprojection � : (b; �) 7! � from T �B to the nilpotent cone N (g�) is the moment map for theG action on T �B, and is the famous Grothendieck-Springer resolution of N (g�).Now consider an orbit of the complexi�cation K of KR on B, say Q, and its conormalbundle T �Q(B). Because Q is a K orbit, the image �(T �QB) is contained in p�. Since �is equivariant and proper and since T �QB is K invariant and irreducible1, �(T �QB) is anirreducible K invariant subvariety of N (p�). Since there are only a �nite number of Korbits on N (p�), �(T �QB) is the closure of a single K orbit on N (p�).In Proposition 3.3.1, we give a simple algorithm to compute the moment map images�(T �QB) explicitly for the groups GR = Sp(2n;R) and O(p; q). In Proposition 3.4.1, byanalyzing the intersection of T �QB with the �ber of � over a generic point � of the image,we obtain a new parametrization of the orbits of AG(�) on the irreducible components ofthe Springer �ber ��1(�) in terms of domino tableaux; here AG(�) is the component groupof the centralizer of � in G. We then show (Proposition 3.5.1) that this parametrization isclosely related to the computations of annihilators of derived functor modules for the groupsunder consideration.Previously the moment map computations for Sp(2n;R) and O(p; q) were treated byYamamoto ([Ya1]{[Ya2]). Her algorithms are signi�cantly di�erent from ours. In particular,they are not well suited for the analysis of the components of the Springer �ber.Our computations have very nice combinatorial interpretations as generalizations of theclassical Robinson-Schensted algorithm. As explained in Proposition 2.6.1, which I learnedfrom lectures of Springer and which applies to general GR, the mapQ 7! ��(T �Q(B)); T �Q(B) \ ��1(�)�is bijective. When GR = GL(n; C ), this bijection indeed reduces to the Robinson-Schenstedalgorithm ([St]). For the classical groups we consider, the domain can be parametrized interms of involutions in a symmetric group with certain signs attached to the �xed pointsof the involutions. As remarked above, the �rst component in the image is a nilpotent Korbit on p�, and in our case can be parametrized by signed tableaux. Meanwhile the secondThis paper was written while the author was an NSF Postdoctoral Fellow at Harvard University.1Actually, if K is disconnected, then T �Q(B) need not be irreducible, but this doesn't a�ect the foregoingdiscussion in an essential way. 1



2 PETER E. TRAPAcomponent, can be parametrized by domino tableaux. Thus the bijection has very much thesame combinatorial avor of the classical Robinson-Schensted algorithm. In fact the analogycan be made more precise from a purely combinatorial perspective, and can be seen as ageneralization of a symmetry of the classical Robinson-Schensted algorithm �rst observedby Sch�utzenberger. This viewpoint plays a key role in our proofs in Section 3.2. Preliminaries2.1. General notation. Given a linear real reductive group GR with Cartan involution�, we set KR = G�R, write gR and kR for the corresponding Lie algebras, g and k for theircomplexi�cations, and writeG andK for the corresponding groups. The complexi�ed Cartandecomposition is denoted g = k� p. We write N for the nilpotent cone in g� (or, using thetrace form, g), and set N (p) = N \ p.We writeB for the variety of Borel subalgebras in g, and choose a basepoint b = h�n 2 B.Let W denote the Weyl group of h in g. Write � : T �B �! g� ' g for the moment map ofthe G-action on the cotangent bundle to B. For a subvariety Q � B, we write T �QB for theconormal bundle to Q. Given N 2 N , we let ��1(N) for the �ber of � over N ; it consistsof the Borel subalgebras in B containing N . To emphasize this, we may also write BN inplace of ��1(N).For N 2 N (p), we write AG(N) for the component group of the centralizer of N in G,and write AK(N) for the component group of the centralizer in K. Clearly AK(N) maps toAG(N), and both groups act on Irr(BN ), the irreducible components of BN .2.2. Tableaux. We adopt the standard (English) notation for Young diagrams and standardYoung tableaux of size n. We let YD(n) denote the set of Young diagrams of size n, andSYT(n) the set of standard Young tableaux of size n. Write RS(w) for the right (or `Q�'or `counting') standard Young tableaux of size n that the Robinson-Schensted algorithmattaches to an element w of the symmetric group Sn.A standard domino tableau of size 2n is a Young diagram of size 2n which is tiled bytwo-by-one and one-by-two dominos labeled in a standard con�guration; that is, the tilesare labeled with distinct entries 1; : : : ; n so that the entries increase across rows and downcolumns. A Young diagram of size 2n which admits such a tiling is called a domino shape.A Young diagram of size 2n+1 is called a domino shape if after removing its upper-left box,it admits such a standard tiling.We let SDTC(2n) (resp. SDTD(2n)) denote the set of standard domino tableau of size2n whose shape is that of a nilpotent orbit for Sp(2n; C ) (resp. O(2n; C ); i.e. whose odd(resp. even) parts occur with even multiplicity. Finally, we de�ne SDTB(2n+1) to be the setof Young diagrams of size 2n+ 1 and shape of the form of a nilpotent orbit for O(2n+1; C )(i.e. even parts occur with even multiplicity), whose upper left box is labeled 0, and whoseremaining 2n boxes are tiled by dominos labeled 1; : : : n in a standard con�guration.An element of SDTC(2n) has special shape if the number of even parts between con-secutive odd parts or greater than the largest odd part is even. An element of SDTD(2n)(resp. SDTB(2n+1)) has special shape if the number of odd rows between consecutive evenrows is even and the number of odd rows greater than the largest even row is even (resp. odd).A signed Young tableau of signature (p; q) is an arrangement of p plus signs and q minussigns in a Young diagram of size p+q so that the signs alternate across rows, modulo the



SYMPLECTIC AND ORTHOGONAL ROBINSON-SCHENSTED ALGORITHMS 3equivalence of interchanging rows of equal length. We denote the set of signature (p; q)signed tableau by YT�(p; q).2.3. Evacuation. We briey recall Sch�utzenberger's shape-preserving evacuation algorithm,ev : SYT(n) �! SYT(n);see [Sa, Chapter 3.11], for instance, for more details. Given T 2 SYT(n), begin by in-terchanging the index 1 with the index immediately to its right or immediately below itaccording to which index is smaller. By successively repeating this procedure, the index 1eventually ends up in a corner of T . Begin to build a new tableau ev(T ) (the evacuationof T ) of the same shape as T , by entering the index n in the (corner) location occupied by1. Now remove 1 from the shu�ed T , repeat the shu�ing procedure, and enter n � 1 inev(T ) according to the ultimate location that 2 occupies in the current rearrangement of T .Repeating this procedure de�nes ev(T ) 2 SYT(n). As a consequence of Proposition 2.3.1below, ev is an involution on SYT(n).A tableau T 2 SYT(n) is called self-evacuating if ev(T ) = T . We need to record thefollowing property of ev due to Sch�utzenberger; see [Sa, Theorem 3.11.4] for an exposition.Proposition 2.3.1. For w 2 Sn,RS(w�ww�) = ev�RS(w�1)�:If particular, if � is an involution, then RS(�) is self-evacuating if and only if w��w� = �.We now recall the bijectiondom : fT 2 SYT(n) j ev(T ) = Tg �! SDT(n)de�ned inductively as follows. Begin by applying the evacuation procedure to 1 in T . Sinceev(T ) = T , at the penultimate step (just before 1 reaches a corner of T ), 1 will be adjacentto n. Hence we can remove 1 and n from the shu�ed T and replace these two labels bya domino labeled by [n=2], the greatest integer less than n=2. Now continue by evacuating2 from what remains of the shu�ed T . At the penultimate step 2 is adjacent to n � 1,and hence de�nes a domino labeled [n� 2=2]. Repeating this procedure de�nes an elementdom(T ) 2 SDT(n) (In the case that n = 2m+1 is odd, we change the label of the upperleft hand corner of dom(T ) from m+1 to 0.)2.4. Primitive ideals. Consider the set Prim(U(g))� of primitive ideals in U(g) which con-tain the maximal ideal of Z(g) parametrized (via the Harish-Chandra isomorphism) by �. Incase of simple classical g, we now discuss the combinatorial parametrization of Prim(U(g))�due to Joseph, Barbasch-Vogan, and Gar�nkle.If g = gl(n; C ), then there is a bijection from SYT(n)! Prim(U(g))� obtained as follows.Given T 2 SYT(n), let w be any element of Sn such that RS(w) = T . The primitiveideal I(T ) 2 Prim(U(g))� parametrized by T is the annihilator of the simple highest weightmodule L(w) that arises as a quotient of the Verma module induced from ww����. (See [T2,Section 3], for instance, for the exact details of this parametrization.)For future reference, we need to record a symmetry property of this parametrization.Proposition 2.4.1. Let g = gl(n; C ), and �x I 2 Prim(U(g))�. Let I 0 denote the primitiveideal obtained from I by applying the diagram automorphism for g. Write T and T 0 for thetableaux parametrizing I and I 0. Then T 0 = ev(T );



4 PETER E. TRAPAthe evacuation of T (Section 2.3).Sketch. It is essentially built into Joseph's parametrization of Prim(U(g))� that T = RS(w)if and only if T 0 = RS((w�ww�)�1). So Proposition 2.3.1 gives the current proposition. �If g = sp(2n; C ), then there is a map from SDT(2n) to Prim(U(g))� obtained as follows.First we include W (Cn) � W (A2n+1) = S2n as the centralizer of the long word w� 2 S2n,i.e. as the �xed points of the diagram automorphism of A2n�1. Given T 2 SDT(2n), welet w 2 W (Cn) � S2n be any element whose evacuated right Robinson-Schensted tableauxcoincides with T ; i.e. in the notation of Section 2.3, T = dom(RS(w)) (which makes senseby Proposition 2.3.1). Then the corresponding primitive ideal is Ann(L(w)). This map is abijection when restricted to the subset of SDTC(2n) consisting of tableau of special shapein the sense of Gar�nkle citeg:i.If g = so(2n+1; C ), then there is a map from SDT(2n+1) to Prim(U(g))� obtained in theanalogous way. We include W (Bn) � W (A2n+1) = S2n+1 as the �xed point of the diagraminvolution. Given T 2 SDTB(2n+1), let w 2 W (Bn) � S2n+1 be any element such thatT = dom(RS(w)). Then the corresponding primitive ideal is Ann(L(w)). This map is abijection when restricted to tableaux in SDTB(2n+1) of special shape.Finally, if g = so(2n; C ), there is a map from SDT(2n) to Prim(U(g))� obtained as follows.We include W (Dn) in W (Bn) in the obvious way, and then include W (Cn) � S2n as above.Given T 2 W (Dn) � S2n, let w be any element of W 0(Dn) such that T = dom(RS(w)).Then the corresponding primitive ideal is Ann(L(w)). This map is a bijection when restrictedto tableaux in SDTD(2n) of special shape2.5. Representation of the hyperoctahedral group. Let Y denote the Young lattice.This is the lattice poset whose unique minimal element is the empty set, whose elementsconsist of Young diagrams (of any size) and whose covering relations are given by the oper-ation of adding a corner to a Young diagram. Let D denote the even domino lattice, de�nedin the analogous way; i.e. the elements are domino shapes of even size and the coveringrelations are the addition of domino corners. Let D0 denote the odd domino lattice of typeB; here the minimal element is a single box, and the other elements are domino shapes ofodd size, and the covering relations are the addition of domino corners. It is a standard factthat as lattice posets, Y � Y ' D ' D0. The latter isomorphism is trivial. For the �rst,see [S], for instance.Recall that the irreducible representations of the hyperoctahedral groupW (Bn) =W (Cn)are parametrized by pairs of standard Young tableaux whose aggregate size is n, i.e. byelements of Y � Y; see, for instance, [CMc, Chapter 10] for this standard fact. Note alsothat the dimension of such a representation parametrized by (D;D0) is the number of pathsfrom ; to (D;D0) in Y�Y. Using the isomorphism Y�Y ' D ' D0, we obtain the followingparametrization.Proposition 2.5.1. The irreducible representation of the hyperoctahedral group Snn(Z=2)nare parametrized by domino shapes of size 2n (or 2n+1). Moreover, if we write �(D) for therepresentation corresponding to a given domino shape, the dimension of �(D) is the numberof standard domino tableaux of shape �(D).Remark 2.5.2. The identical argument shows that the irreducible representations of thegroup of r colored permutations, G(r; n) := Sno(Z=r)n, are parametrized by Young diagramsof size nr that can be tiled by rim hooks of size r; for the de�nition of rim hook, see [Sa,



SYMPLECTIC AND ORTHOGONAL ROBINSON-SCHENSTED ALGORITHMS 5Chapter 4.10]. Here we are using that the rim hook lattice is isomorphic to r copies of theYoung lattice, which follows by exactly the same argument used to establish the dominocase. In the context of G(r; n), the corresponding dimension formula counts the numberof standard rim hook tilings. Either by using the decomposition of the group algebra ofG(r; n) into irreducibles or an argument from [S], it follows that the number of elementsin G(r; n) is equal to the number of same-shape standard r-rim hook tableaux of size rn.A constructive bijection (for all r) was constructed in [SW], but when r = 2 it does notreduce to the bijection de�ned in the �rst paragraph of the introduction. This suggeststhat there should exist an algorithm from G(r; n) to same-shape pairs of standard rim hooktableau generalizing the bijection of the introduction. It is this bijection that should haveapplications to the (as of yet nonexistent) theory of cells for G(r; n); see [Br].2.6. A framework for generalized Robinson-Schensted algorithms. Fix GR as inSection 2.1. Recall that the set of K orbit on N (p) is �nite, and write fN1; N2; : : : ; Nkg fora set of representatives of such orbits. Let Ai denote the component group of the centralizerof Ni in K. Given Q 2 KnB, let NQ 2 fN1; N2; : : : ; Nkg denote the representative whoseK orbit is dense in the moment map image of T �Q(B).Proposition 2.6.1. The mapQ 7! �NQ; ��1(NQ) \ T �Q(B)�is a bijection(2.1) KnB �! f(Ni; C) j C 2 AinIrr(BNi); i = 1; : : : kgSketch. Using Spaltenstein's dimension formula ([Spa1]), one can check that the K sat-uration of (Ni; C) (viewed as a subvariety of the conormal variety T �KB) is irreducible ofdimension equal to the dimension of B. Since the conormal variety is pure of dimensiondim(B) and since its irreducible components are exactly the closures of the conormal bundlesto K orbits on B, we conclude that there is some Q such that T �QB is dense in K � (Ni; C).This gives the bijection of the proposition. More details can be found in [T1, Proposition3.1]. (In that paper, it was attributed to Springer, but it appears to have been observedindependently by a number of people.) �Because the sets appearing in Equation (2.1) each admit a combinatorial parametriza-tion, Proposition 2.6.1 gives rise to an interesting family of combinatorial algorithms. (TheRobinson-Schensted terminology is explained by Example 2.7.1.)2.7. Irr(BN ) for G = GL(n; C ). Let g = gl(n; C ), and �x a nilpotent element N 2 g. ThenIrr(BN ) is parametrized by SYT(n) as follows. If a ag (F0 � F1 � � � � � Fn) is an elementof BN , then the restriction of N to Fi is a nilpotent endomorphism, and hence speci�esa Young diagram Di of size i. We de�ne a tableau T (F ) 2 SYT(n) by requiring that theshape of the �rst i boxes of T (F ) coincide with Di, for all i. The assignment F 7! T (F )is constant on an open piece of each component of BN , and de�nes the parametrization ofIrr(BN ) by SYT(n) ([St], [Spa2]).Example 2.7.1. Consider the case of GR = GL(n; C ) in Proposition 2.6.1. Then G iden-ti�es with two copies of GL(n; C ), K with the diagonal GL(n;C), and B consists of twocopies of the ag variety for GL(n; C ). The Bruhat decomposition implies that the K orbitson B are parametrized by the symmetric group Sn. The Ni are parametrized by partitions



6 PETER E. TRAPAof n according to the above discussion Irr(BN ) is parametrized by SYT(n). Hence Propo-sition 2.6.1 asserts the existence of a bijection from Sn to same-shape triples consisting ofa partition of n and a pair of standard Young tableaux of the corresponding shape. (The�rst datum is redundant.) Steinberg ([St]) proved that this coincides with the Robinson-Schensted algorithm.2.8. K orbits on N (p) for Sp(2n;R) and O(p; q). The following result is well-known;see [CMc, Chapter 9], for instance.Proposition 2.8.1. Recall the notation of 2.2.(1) For GR = U(p; q), KnN (p�) is parametrized by YT�(p; q). (As a matter of notation,we set YT�(SU(p; q)) = YT�(p; q).)(2) For GR = Sp(2n;R), KnN (p�) is parametrized by the subsetYT�(Sp(2n;R)) � YT�(n; n)of elements such that for each �xed odd part, the number of rows beginning with +coincides with the number beginning with �.(3) For GR = O(p; q), KnN (p�) is parametrized by the subsetYT�(O(p; q)) � YT�(p; q)consisting of signed tableaux such that for each �xed even part, the number of rowsbeginning with + equals the number beginning with �.2.9. The conormal variety and Weyl group representations. Write T �K(B) for theunion (over K orbits Q on B) of the conormal bundles T �Q(B). Clearly T �K(B) is pureof dimension dim(B) and its irreducible components are just the closures of the conormalbundles T �Q(B). In particular the fundamental classes [T �Q(B)] of the conormal bundleclosures are a basis for the top Borel-Moore homology group Htop(T �K(B);Z). A standardconvolution construction de�nes a module structure on Htop(T �K(B);Z) for the convolutionalgebra Htop�T �diag(G)(B�B);Z� which, according to a theorem of Kazhdan-Lusztig, is thegroup algebra Z[W ]. It is an easy consequence of the de�nition that this action is suitablygraded in the sense that for a �xed K orbit on N (p) (say OK),XQ s.t. �(T �Q(B))�OK [T �Q(B)]is W -invariant, and henceM(OK) := XQ s.t. �(T �Q(B))�OK [T �Q(B)] � XQ s.t. �(T �Q(B))(OK [T �Q(B)]:is a representation of W . In particular, the orbits Q such that �(T �Q(B)) = OK index abasis of a Weyl group representation.Fix N 2 N (p), and recall the W � AG(N) representations on Htop(BN ) de�ned bySpringer. As a matter of notation, we write sp(O) for the AG(N) invariants of this repre-sentations; here O = G � N . In any event, since AK(N) maps to AG(N), we can considerthe AK(N) invariants in Htop(BN ). The following result is taken from [Ro].



SYMPLECTIC AND ORTHOGONAL ROBINSON-SCHENSTED ALGORITHMS 7Theorem 2.9.1 (Rossmann). Fix N 2 N (p) and let OK = K �N . Then as a W represen-tation, M(OK) = Htop(BN )AK(N):The isomorphism maps the fundamental class of closure of T �Q(B) (where �(T �Q(B)) = OK)to the fundamental class of ��1(N) \ T �Q(B) (compare Proposition 2.6.1).Lemma 2.9.2. If GR = Sp(2n;R) or O(p; q), and N 2 N (p), then the natural mapAK(N) �! AG(N) is surjective. In particular, the AK(N) and AG(N) orbits on Irr(BN )coincide.Proof. This follows from explicit centralizer calculations. We omit the details. �Corollary 2.9.3. Let GR = Sp(2n;R) or O(p; q), and let OK be parametrized by a signedtableau S (Proposition 2.8.1). Write �(S) for the representation of W corresponding to theshape of S by Proposition 2.5.1. Then M(OK) ' �(S), andHtop(T �K(B);Z) ' MS2YT�(GR)�(S):In particular, if we write d(S) for the number of standard domino tableaux whose shapecoincides with that of S. Then#fQ j �(T �Q(B)) = OKg = d(S);and(2.2) #KnB = XS2YT�(GR) d(S):Proof. Proposition 2.5.1 reduces the corollary to establishing M(OK) ' �(S). By The-orem 2.9.1 and Lemma 2.9.2, this amounts to showing sp(O) = �(S), where O is the Gsaturation of the orbit OK parametrized by S. This follows from Lusztig's computation ofthe Springer correspondence for classical groups in terms of symbols, together with Propo-sition 2.5.1; cf. [Mc2, Section 2{3]. �The corollary thus gives the existence a bijection from KnB to the same-shape subset ofpairs consisting of an element of YT�(GR) and a standard domino tableaux. This will beconstructed in Proposition 3.2.2 below as a Robinson-Schensted algorithm in the sense ofSection 2.6.2.10. Involutions with signed �xed points. Write �(n) for the set of involutions in thesymmetric group Sn. Let��(n) = f(�; �) 2 �� f+;�; 0gn j �j = 0 if and only if �(j) 6= jg;which we view as the set of involutions in Sn with signed �xed points. We write ��[U(p; q)]for the subset of ��(p+q) consisting of element (�; �) such thatp = #fj j �j = +g + (1=2)#fj j �(j) 6= jgq = #fj j �j = �g + (1=2)#fj j �(j) 6= jg:De�ne ��[Sp(2n)] to be the subset of elements (�; �) in ��[U(n; n)] such that(1. (Antisymmetry of signs) �2n+1�j = ��j;2. (Symmetry of involution) �(2n+ 1� j) = 2n+ 1� �(j).



8 PETER E. TRAPASimilarly de�ne ��[O(p; q)] to be the subset of elements (�; �) in ��[U(p; q)] such that(1. (Symmetry of signs) �2(p+q)+1�j = +�j;2. (Symmetry of involution) �(2(p+q) + 1� j) = 2n+ 1� �(j).Note that the symmetric group Sn acts on ��(n) in the obvious way: w � (�; �) = (�0; �0),where � = w�w�1, and �w�1i = �i. Let w� denote the long word in the symmetric group.Observe that(2.3) ��[O(p; q)] = the �xed points of w� on ��[U(p; q)]:The same statement is almost true for ��[Sp(2n)], but we must introduce an additionaltwist. De�ne s : ��[U(p; q)]! ��[U(q; p)] via s(�; �) = (�;��). Then(2.4) ��[Sp(2n)] = the �xed points of s � w� on ��[U(p; q)]:2.11. K orbits on B. Fix, once and for all, a signature (p; q) Hermitian form on C p+q ,write GR = U(p; q) for its isometry group, and �x a Cartan involution � for GR. Recall thenotation of Section 2.10. It is well known that ��[U(p; q)] parametrizes the K orbits onB. (Formulas are given in [Ya1], for instance.) Given � 2 ��[U(p; q)], we write Q� for thecorresponding orbit.For a choice of nondegenerate symplectic form on C 2n , let B0! denote the set of Borelsubalgebras in sp(C 2n ; !). Then B0! embeds in B, the set of Borels in gl(2n; C ). Setp = q = n. Then there exists a choice of ! such thatQ0� := Q� \B0! 6= ; () � 2 ��[Sp(2n)]:Write G0R = Sp(C 2n ; !)\U(n; n) ' Sp(2n;R). Then Q0� is an orbit for K 0 on B0!, where K 0is the complexi�cation of the �xed points of � (the Cartan involution for U(n; n)) on G0R. Asan example of the choices involved, �x a basis e1; : : : ; e2n for C 2n , and de�ne U(n; n) withrespect to � 2nXi=1 aiei; 2nXi=1 biei� = nXi=1 aibi � 2nXi=n+1 aibi;then we take ! = e1 ^ e2n + e2 ^ e2n�1 + � � �+ en ^ en+1:More details of this parametrization can be found in [Ya1].Similarly, a choice of nondegenerate symmetric form R on C 2(p+q) induces an inclusion ofB00R (the variety of Borels in so(C 2(p+q) ; R)) into B, the variety of Borels in gl(2(p+q); C ).There exists a choice of R such thatQ00� = Q� \B00R 6= ; () � 2 ��[O(p; q)]:Write G00R := O(C 2(p+q) ; R)\U(2p; 2q) ' O(p; q). Then Q00� is an orbit for K 00 on B00R, whereagain K 00 is the complexi�cation of the �xed points of � on G00R. Explicit details of thesechoices may be found in [Ya2].When we speak of Sp(2n;R) and U(n; n) in the same context, we will always assume theyare de�ned compatibly as above. A similar remark applies to O(p; q) and U(p; q). Thesechoices are analogous to the inclusion ofW (Cn) intoW (A2n�1) as the centralizer of w� madein Section 2.4.



SYMPLECTIC AND ORTHOGONAL ROBINSON-SCHENSTED ALGORITHMS 92.12. A Robinson-Schensted algorithm for U(p; q). We now describe a bijection from��[U(p; q)] to the set of same-shape pairs consisting of a standard Young tableau and asignature (p; q) signed tableau (Section 2.2).Given (�; �) 2 ��[U(p; q)], form a sequence of pairs of the form(i; �i) if �(i) = i; and(i; �(i)) if i < �(i).Arrange the pairs in order by their largest entry, with the convention that a sign has numer-ical size zero. Write �1; : : : ; �r for the resulting ordered sequence. From such a sequence, wenow describe how to build a same-shape pair of tableaux�RSu;�(�);RSu(�)� 2 YT�(p; q)� SYT(p+q):Each tableau is constructed by inductively adding the pairs �j. So suppose that we haveadded �1; : : : ; �j�1 to get a (smaller) same-shape pair of tableau (T�; T ). If �j = (k; �k),then we �rst add the sign �k to the topmost row of (a signed tableau in the equivalence classof) T� so that the resulting tableau has signs alternating across rows. Then add the indexj to T in the unique position so that the two new tableaux have the have the same shape.If �j = (k; �(k)) we �rst add k to T using the Robinson-Schensted bumping algorithm toget a a new tableau T 0, and then add a sign � (either + or � as needed) to T� so that theresult is a signed tableau T 0� of the same shape as T 0. We then add the pair (�(k);��) (bythe recipe of the �rst case) to the �rst row strictly below the row to which � was added. Wecontinue inductively to get (RSu;�(�);RSu) 2 YT�(p; q) � SYT(p+q). (For a more formalde�nition, the reader is referred to [G].)The �rst statement in the next theorem explains why this algorithm is a generalizedRobinson-Schensted algorithm in the sense of Section 2.6. The concluding statement indi-cates its representation theoretic signi�cance.Theorem 2.12.1. Let GR = U(p; q), �x � 2 ��[U(p; q)], and let Q� be the correspondingK orbit on B. In terms of the parametrizations of Proposition 2.8.1(1) and Section 2.7, themap Q� 7! �NQ; ��1(NQ) \ T �Q�B�of Proposition 2.6.1 coincides with� 7! �RSu;�(�);RSu(�)�:Let X(Q�) be the Harish-Chandra module with trivial in�nitesimal character attached viathe Beilinson-Bernstein parametrization to the trivial local system on Q�, and recall theparametrizations of Section 2.4 and Proposition 2.8.1(1). Then RSu(�)) parametrizes Ann(X(�))and the closure of the orbit parametrized by RSu;�(�) is the associated variety of X(Q�).Proof. The annihilator statement is the main result in [G]. The remainder is proved in [T1,Theorem 5.6]. �3. Main results3.1. Symmetry properties of the Robinson-Schensted algorithm for U(p; q). Weneed to examine how the algorithm of Section 2.12 behaves under the action of w� and sintroduced at the end of Section 2.10. Recall the evacuation operation ev introduced inSection 2.3.



10 PETER E. TRAPAProposition 3.1.1. Fix � 2 ��[U(p; q)] and write (RSu;�(�);RSu(�)) = (S; T ). ThenRSu;�(w� � �) = Srev RSu(w� � �)) = ev(T );and RSu;�(s�) = �S RSu(s�)) = T ;where Srev is obtained from S by reversing each row of S, and �S is the tableau obtained byinverting all signs in S.Proof. The only part of the proposition which is not obvious from the de�nitions isthe assertion that RSu(w� � �)) = ev(T ). One can probably prove this directly withouttoo much di�culty, but we opt for a slightly more abstract argument. Let g = gl(n; C ).It is clear that the U(g)-modules X(�) and X(w� � �) di�er by the diagram automorphismof gl(n; C ) (say �). So their annihilators Ann(X(�)) and Ann(X(w� � �)) also di�er by � .Proposition 2.4.1 implies that the tableaux parametrizing Ann(X(�)) and Ann(X(w� � �))di�er by evacuation. But the last assertion in Theorem 2.12.1 implies that these tableauxare RSu(�) and RSu(w� � �), so the current proposition follows. �3.2. A Robinson-Schensted algorithm for Sp(2n;R) and O(p; q). We begin by notinga simple corollary to Proposition 3.1.1.Corollary 3.2.1. Recall the inclusions ��[O(p; q)];��[Sp(2n)] � ��[U(p; q)].(1) If � 2 ��[Sp(2n)], then RSu;�(�) 2 YT�(Sp(2n)).(2) If � 2 ��[O(p; q)], then RSu;�(�) 2 YT�(O(p; q)).Proof. Consider the statement for Sp(2n;R), and �x � 2 ��[Sp(2n)]. From Proposi-tion 3.1.1 and Equation (2.4), one concludes that if we reverse each row of RSu;�(�) andsubsequently invert all signs in the resulting tableau, we must again obtain RSu;�(�). Thiscan be achieved if and only if the number of odd rows of RSu;�(�) of a �xed length beginningwith a plus sign coincides with the number of such rows beginning with a minus sign. ThusRSu;�(�) 2 YT�(Sp(2n)). A similar argument establishes the corollary for O(p; q). �Proposition 3.2.2. There are bijective maps(RSsp;�;RSsp) : ��[Sp(2n)]! same-shape subset of YT�(Sp(2n)) � SDT(2n)(RSo;�;RSo) : ��[O(p; q)]! same-shape subset of YT�(O(p; q)) � SDT(p+ q);obtained as follows. The maps RSsp;� and RSo;� are the restriction of the RSu;�, the signedtableau part of the Robinson-Schensted algorithm for U(p; q) (Section 2.12). The mapsRSsp;� and RSo;� are obtained by composing RSu with the domino evacuation algorithmdom of Section 2.3.Proof. Equations (2.3) and (2.4) and Proposition 3.1.1 (together with Corollary 3.2.1)imply that the maps described in the Proposition are indeed well-de�ned. The maps(RSsp;�;RSsp) and (RSo;�;RSo) are clearly injective, since (RSu;�;RSu) and dom are injec-tive. On the other hand, ��[Sp(2n)] parametrizes K orbits on the ag variety for Sp(2n;R)(Section 2.11), so Equation (2.2) in Corollary 2.9.3 implies (RSsp;�;RSsp) is surjective (andhence bijective). A similar argument implies (RSo;�;RSo) is bijective. �Remark 3.2.3. Without resorting to Section 2.9, it is easy to give a purely combinatorialproof that the maps in Proposition 3.2.2 are surjective (and hence bijective). For instance,suppose (S; T ) is an element of the same-shape subset of YT�(Sp(2n))�SDT(2n). We are to



SYMPLECTIC AND ORTHOGONAL ROBINSON-SCHENSTED ALGORITHMS 11�nd � 2 ��[Sp(2n)] such that (RSu;�(�);dom�RSu(�)) = (S; T ). By Theorem 2.12.1, thereexists such a � 2 ��[U(p; q)], and we need only show that s�w�(�) = �. Suppose not, i.e. sup-pose � := s � w�(�) 6= �. But since (RSu;�(�);RSu(�)) = (S;dom�1(T )) and dom�1(T )is self-evacuating, Proposition 3.1.1 implies (RSu;�(�);RSu(�)) = (S;dom�1(T )). Since(RSu;�;RSu) is injective (Theorem 2.12.1) we conclude � = �, contradiction. An identicalargument works for O(p; q). This gives a combinatorial proof of Proposition 3.2.2. We haveincluded the argument relying on Section 2.9 to highlight the connection with Weyl grouprepresentations.3.3. Moment map images of conormal bundles for Sp(2n;R) and O(p; q). The nextresult shows that the algorithms in Proposition 3.2.2 �t the generalized Robinson-Schenstedframework of Section 2.6.Proposition 3.3.1. Fix GR = Sp(2n;R) or O(p; q). Recall the parametrizations of KnB(Section 2.11) and the algorithm RSu;� of Section 2.12. For � 2 ��(GR), the orbit parametrizedby RSu;�(�) (Section 2.8) is dense in the moment map image �(T �Q�(B)).Proof. Embed GR compatibly into G0R = U(n; n) or U(p; q) as in Section 2.11. (Here weare inverting the notational role of GR and G0R, but this should cause little confusion.) For� 2 ��(GR) � ��[U(p; q)], let Q� denote the corresponding K orbit on the ag variety Bfor GR, and let Q0� denote the corresponding orbit on B0 for G0R. Given a signed tableauS 2 YT�(GR) � YT�(U(p; q)), write OS for the corresponding K orbit on N (p) for GR,and adopt the analogous notation for O0S . Write �(�) for the dense orbit in �(T �Q�(B)), andwrite �0(�) for the dense orbit in �0(T �Q0�(B0)). We also let �(�) denote the correspondingelement of ��(GR).We �rst establish that �(�) � ORSu;�(�), by using the equivariance of the moment map,and the known moment map image computation for U(p; q) (Theorem 2.12.1). It is clearthat K 0 � T �Q�(B) � T �Q0�(B0):The equivariance of the moment map, together with the fact that O0RSu;�� = �0(�) (Theo-rem 2.12.1), we conclude that K 0 � �(�) � O0RSu;�(�):By intersecting with N (p) (and noting that the parametrizations of Proposition 2.8.1 aresuitably compatible), we conclude that �(�) � ORSu;�(�), as claimed.Now suppose that there is some � for which �(�) 6= RSu;�(�), i.e. for which�(�) ( ORSu;�(�):We may assume that � is chosen so that ORSu;�(�) has the minimal possible dimension (sayd) among all � for which �(�) 6= RSu;�(�). We now simply count the number of elements inA(�) := f� 2 ��[GR] j �(�) = �(�)g:Because d was assumed to be minimal,RS�1u;�(�(�)) � A(�):By hypothesis � 2 A(�) but � =2 RS�1u;�(�(�)). So we conclude that(3.1) #A(�) > #RS�1u;�(�(�)):



12 PETER E. TRAPACorollary 2.9.3 says that the number of elements in A(�) is the number of standard dominotableau of shape equal to that of RSu;�(�). Proposition 3.2.2 say that RS�1u;�(�(�)) has thesame number of elements. So Equation (3.1) gives a contradiction, and the proposition isproved. �3.4. A domino tableau parametrization of AG(N) orbits on Irr(BN ). Let GR =Sp(2n;R) or O(p; q). Fix a K orbit OK on N (p), �x N 2 OK , and let S be the signedtableau parametrizing OK (Proposition 2.8.1). We now describe a bijection(3.2) fT 2 SDT(n) whose shape is that of Ng �! AG(N) orbits on Irr(BN )obtained as follows. Given a domino tableau S whose shape is that of N , using Proposi-tion 3.2.2 we obtain an element � 2 ��[GR] by requiring�RSu;�(�);dom �RSu(�)� = (S; T ):Let Q� 2 KnB be the K orbit corresponding to � (Section 2.11). Recall that the orbitsof AK(N) and AG(N) on Irr(BN ) coincide (Lemma 2.9.2). So Propositions 2.6.1 and 3.3.1imply that ��1(N) \ T �Q�(B)is an element of the right-hand side of Equation (3.2). This de�nes the map in Equation(3.2). Tracing through each step, one sees that this map is bijective.We thus we conclude that the AG(N) orbits on Irr(BN ) are parametrized by standarddomino tableau of shape equal to the Jordan form of N . It is important to note that thede�nition of this parametrization involved a choice of OK 2 Irr[(G � N) \ p], and it is notimmediately clear that di�erent choices lead to the same parametrization.Proposition 3.4.1. Let GR = Sp(2n;R) or O(p; q), and �x N 2 N (p). The bijectionfT 2 SDT(n) whose shape is that of Ng �! AG(N) orbits on Irr(BN )de�ned in Equation (3.2) is independent of the choice of OK .Proof. We give the argument for GR = Sp(2n;R). (The case of O(p; q) is identical exceptin notation.) Fix N1; N2 2 N (p) with N2 2 G � N1 but N2 =2 K � N1. Let Si denote thesigned tableau parametrizing K � Ni. Fix a domino tableau T whose shape coincides withthat of N1 (or N2). Let(3.3) Qi = (RSsp �RSsp;�)�1(T; Si);here (and below), we are identifying elements of ��[Sp(2n)] with the K orbit on B thatthey parametrized (Section 2.11). The proposition amounts to showing that(3.4) T �Q1(B) \ ��1(N1) = T �Q2(B) \ ��1(N2):Recall the inclusion GR � G0R = U(n; n) (Section 2.11 | we have inverted the notationalrole of GR and G0R), and let Q0i denote the K 0 saturation of Qi in B0. Suppose Equation(3.4) fails. Then the corresponding statement fails for G0R,T �Q01(B0) \ �0�1(N1) 6= T �Q02(B0) \ �0�1(N2):By Theorem 2.12.1, this implies that RSu(Q01) 6= RSu(Q02). Since RSsp(Q1) = dom(RSu(Q02)),we conclude that RSsp(Q1) 6= RSsp(Q2). But this contradicts Equation (3.3). �



SYMPLECTIC AND ORTHOGONAL ROBINSON-SCHENSTED ALGORITHMS 13Remark 3.4.2. Recently McGovern ([Mc1]) and Pietraho ([P]) gave two independent parametriza-tions of the AG(N) orbits on Irr(BN ) by domino tableau. It is expected (but still notknown) that their parametrizations coincide and, moreover, that they coincide with the onein Proposition 3.4.1.3.5. Connection with annihilators. For GR = Sp(2n;R) or O(p; q), the maps RSsp andRSo attach a domino tableau to each K orbit Q on B. According to [G1]{[G4], such atableaux parametrizes a primitive ideal in the enveloping algebra of g. By analogy withTheorem 2.12.1, it is natural to ask whether this primitive ideal has anything to do withHarish-Chandra modules for GR supported on the closure of Q. By contrast with the U(p; q)case, this question is complicated enormously by the existence of nontrivial K equivariantlocal systems on Q, as well as the presence of nonspecial shapes. Nonetheless the Robinson-Schensted algorithms of Section 3.2 compute annihilators and associated varieties of derivedfunctor modules.Proposition 3.5.1. Fix GR = Sp(2n;R) or O(p; q) and write RS for RSsp or RSo (Sec-tion 3.2). Let q be a �-stable parabolic of g containing a �xed �-stable Borel b, and let Q0denote the K orbit of q on G=P (where P is the parabolic subgroup of G corresponding to q).Let Q be the dense K orbit in the preimage of Q0 under the projection of B = G=B ! G=P ,and write Q = Q� for � 2 ��(GR) (Section 2.11). Write Aq for the Harish-Chandra modulefor GR with trivial in�nitesimal character attached via the Beilinson-Bernstein parametriza-tion to the trivial local system on Q. Then RS(�) has special shape and (in the parametriza-tion of Section 2.4), Ann(Aq) = RS(�):Moreover the closure of the K orbit parametrized by RS�(�) is the associated variety of Aq.Proof. The Harish-Chandra modules Aq are derived functor modules induced from thetrivial representation of the Levi factor l of q; see [T3] for more details. Since AV(Aq) =�(T �Q(B)) (see the introduction of [T3], for instance), Proposition 3.3.1 implies that RS�(�)parametrizes the dense orbit in AV(Aq). So to establish Proposition 3.5.1 we need onlytreat the annihilator statement. Since we have computed the annihilators of Aq modulesin [T3, Section 8], and we can compute � directly from q directly (cf. [VZ]), this amountsto a combinatorial check. A better, less combinatorial approach would be to proceed by aninduction on the number of simple components type A in the Levi factor l, in a mannerexactly analogous to the computation of annihilators given in Section 8 of [T3]. In eithercase, the assertion is not terribly di�cult, and we omit the details. �Proposition 3.5.1 and Theorem 2.12.1 suggest the following more general questions:(�) Suppose X is a Harish-Chandra module for GR with trivial in�nitesimal characterattached to the trivial local system on a K orbit Q�. Suppose further RS�(�) hasspecial shape. Then does RS�(�) compute a component of the associated variety ofX? Does RS(�) compute the annihilator of X?Unfortunately this is false, as the next example indicates.Example 3.5.2. Let GR = Sp(8;R). Consider the orbit Q� parametrized by � = (�; �) with� = (36) (the transposition interchanging 3 and 6) and � = (+;+; 0;�;+; 0;�;�). One



14 PETER E. TRAPAcomputes RS�(�) as + � + �+ �+ � ;and RSsp(�) as 1 32 4 :Let X be the Harish-Chandra module attached to the trivial local system on Q�. (Moreprecisely, X is cohomologically induced from a one-dimensional representation of U(2; 0)tensored with a nonunitary highest weight module for Sp(4;R).) Then one can check that Xis in the same Harish-Chandra cell as the Aq module induced from the trivial representationon a levi factor of the form u(2; 0) � u(0; 2) and, moreover, that AV(X) is+ � + �+ � + � ;while Ann(X) is 1 32 4 :So RS(�) (which has special shape) does not compute Ann(X).It is of considerable interest to note that Q� in the example admits a unique nontrivial Kequivariant local system, and the annihilator and associated variety of the Harish-Chandramodule attached to it are indeed given by RSsp(�) and RS�(�). This immediately suggestsa way to modify (�) by allowing X to be attached to nontrivial local systems. Even thoughwe have no counterexample to this modi�cation, it still seems ambitious. Instead it seemsplausible that if we further modify (�) by placing further restrictions on RS�(�), then thequestion admits a positive answer. We hope to return to this elsewhere.References[Br] M. Brou�e, Reection groups, braid groups, Hecke algebras, and �nite reductive groups, in CurrentDevelopments in Mathematics 2000, preliminary edition, International Press (Somerville, MA), 2000,1{105.[CMc] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Chapman andHall (London), 1994.[G] D. Gar�nkle, The annihilators of irreducible Harish-Chandra modules for SU(p; q) and other typeAn�1 groups, Amer. J. Math., 115(1993), 305{369.[G1] D. Gar�nkle, On the classi�cation of primitive ideals for complex classical Lie algebras I, CompositioMath., 75 (1990), no. 2, 135{169.[G2] D. Gar�nkle, On the classi�cation of primitive ideals for complex classical Lie algebras II, CompositioMath., 81 (1992), no. 3, 307{336.[G3] D. Gar�nkle, On the classi�cation of primitive ideals for complex classical Lie algebras III, CompositioMath., 88 (1993), no. 2, 187{234.[G4] D. Gar�nkle, in preparation.[Mc1] W. M. McGovern, On the Spaltenstein-Steinberg map for classical Lie algebras, Comm. Algebra,27(1999), no. 6, 2979{2993.
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