SYMPLECTIC AND ORTHOGONAL ROBINSON-SCHENSTED
ALGORITHMS

PETER E. TRAPA

1. INTRODUCTION

Let Gr denote a linear reductive real Lie group with maximal compact subgroup K.
Write g and ¢ for the corresponding complexified Lie algebras and g = £ & p for the Cartan
decomposition. Let B denote the flag variety for g. The points of the cotangent bundle
T*9B can be thought of as pairs consisting of a Borel b = h & n and a covector £ € n*. The
projection p : (b,&) — & from T*B to the nilpotent cone N(g*) is the moment map for the
G action on T* B, and is the famous Grothendieck-Springer resolution of A (g*).

Now consider an orbit of the complexification K of K on 9B, say @, and its conormal
bundle T{,(B). Because ) is a K orbit, the image (7)) is contained in p*. Since p
is equivariant and proper and since T,% is K invariant and irreducible!, ,u(Té%) is an
irreducible K invariant subvariety of A(p*). Since there are only a finite number of K
orbits on NV (p*), u(T,%B) is the closure of a single K orbit on N (p*).

In Proposition 3.3.1, we give a simple algorithm to compute the moment map images
n(T)B) explicitly for the groups Gr = Sp(2n,R) and O(p,q). In Proposition 3.4.1, by
analyzing the intersection of 758 with the fiber of u over a generic point ¢ of the image,
we obtain a new parametrization of the orbits of Ag(£) on the irreducible components of
the Springer fiber = !(€) in terms of domino tableaux; here Ag(€) is the component group
of the centralizer of ¢ in G. We then show (Proposition 3.5.1) that this parametrization is
closely related to the computations of annihilators of derived functor modules for the groups
under consideration.

Previously the moment map computations for Sp(2n,R) and O(p,q) were treated by
Yamamoto ([Yal] [Ya2]). Her algorithms are significantly different from ours. In particular,
they are not well suited for the analysis of the components of the Springer fiber.

Our computations have very nice combinatorial interpretations as generalizations of the
classical Robinson-Schensted algorithm. As explained in Proposition 2.6.1, which I learned
from lectures of Springer and which applies to general Gr, the map

Q = (W(T5(B)), T5(B) N u™'(€))

is bijective. When Ggr = GL(n,C), this bijection indeed reduces to the Robinson-Schensted
algorithm ([St]). For the classical groups we consider, the domain can be parametrized in
terms of involutions in a symmetric group with certain signs attached to the fixed points
of the involutions. As remarked above, the first component in the image is a nilpotent K
orbit on p*, and in our case can be parametrized by signed tableaux. Meanwhile the second

This paper was written while the author was an NSF Postdoctoral Fellow at Harvard University.
1Actually, if K is disconnected, then T}5(8) need not be irreducible, but this doesn’t affect the foregoing
discussion in an essential way.
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component, can be parametrized by domino tableaux. Thus the bijection has very much the
same combinatorial flavor of the classical Robinson-Schensted algorithm. In fact the analogy
can be made more precise from a purely combinatorial perspective, and can be seen as a
generalization of a symmetry of the classical Robinson-Schensted algorithm first observed
by Schutzenberger. This viewpoint plays a key role in our proofs in Section 3.

2. PRELIMINARIES

2.1. General notation. Given a linear real reductive group Gr with Cartan involution
0, we set Kp = G%, write gr and Bg for the corresponding Lie algebras, g and & for their
complexifications, and write G and K for the corresponding groups. The complexified Cartan
decomposition is denoted g = €@ p. We write N for the nilpotent cone in g* (or, using the
trace form, g), and set N'(p) = N Np.

We write 9B for the variety of Borel subalgebras in g, and choose a basepoint b = hEn € B.
Let W denote the Weyl group of h in g. Write u : T*B — g* ~ g for the moment map of
the G-action on the cotangent bundle to B. For a subvariety @ C B, we write 7,8 for the
conormal bundle to Q. Given N € N, we let u~!(N) for the fiber of 1 over N; it consists
of the Borel subalgebras in 98 containing N. To emphasize this, we may also write BV in
place of = '(N).

For N € N(p), we write Ag(N) for the component group of the centralizer of N in G,
and write Ax (N) for the component group of the centralizer in K. Clearly Ag(N) maps to
Ag(N), and both groups act on Irr(B%), the irreducible components of B".

2.2. Tableaux. We adopt the standard (English) notation for Young diagrams and standard
Young tableaux of size n. We let YD(n) denote the set of Young diagrams of size n, and
SYT(n) the set of standard Young tableaux of size n. Write RS(w) for the right (or ‘Q—’
or ‘counting’) standard Young tableaux of size n that the Robinson-Schensted algorithm
attaches to an element w of the symmetric group .S,.

A standard domino tableau of size 2n is a Young diagram of size 2n which is tiled by
two-by-one and one-by-two dominos labeled in a standard configuration; that is, the tiles
are labeled with distinct entries 1,...,n so that the entries increase across rows and down
columns. A Young diagram of size 2n which admits such a tiling is called a domino shape.
A Young diagram of size 2n+1 is called a domino shape if after removing its upper-left box,
it admits such a standard tiling.

We let SDT¢(2n) (resp. SDTp(2n)) denote the set of standard domino tableau of size
2n whose shape is that of a nilpotent orbit for Sp(2n,C) (resp. O(2n,C); i.e. whose odd
(resp. even) parts occur with even multiplicity. Finally, we define SDT g(2n+1) to be the set
of Young diagrams of size 2n + 1 and shape of the form of a nilpotent orbit for O(2n+1, C)
(i.e. even parts occur with even multiplicity), whose upper left box is labeled 0, and whose
remaining 2n boxes are tiled by dominos labeled 1,...7n in a standard configuration.

An element of SDT¢(2n) has special shape if the number of even parts between con-
secutive odd parts or greater than the largest odd part is even. An element of SDT p(2n)
(resp. SDT g (2n+1)) has special shape if the number of odd rows between consecutive even
rows is even and the number of odd rows greater than the largest even row is even (resp. odd).

A signed Young tableau of signature (p, q) is an arrangement of p plus signs and ¢ minus
signs in a Young diagram of size p+¢ so that the signs alternate across rows, modulo the
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equivalence of interchanging rows of equal length. We denote the set of signature (p,q)
signed tableau by YT4(p,q).

2.3. Evacuation. We briefly recall Schiitzenberger’s shape-preserving evacuation algorithm,
ev : SYT(n) — SYT(n);

see [Sa, Chapter 3.11], for instance, for more details. Given T' € SYT(n), begin by in-
terchanging the index 1 with the index immediately to its right or immediately below it
according to which index is smaller. By successively repeating this procedure, the index 1
eventually ends up in a corner of 7. Begin to build a new tableau ev(T") (the evacuation
of T') of the same shape as T', by entering the index n in the (corner) location occupied by
1. Now remove 1 from the shuffled 7', repeat the shuffling procedure, and enter n — 1 in
ev(T) according to the ultimate location that 2 occupies in the current rearrangement of 7.
Repeating this procedure defines ev(T") € SYT(n). As a consequence of Proposition 2.3.1
below, ev is an involution on SYT(n).

A tableau T' € SYT(n) is called self-evacuating if ev(7) = 7. We need to record the
following property of ev due to Schiitzenberger; see [Sa, Theorem 3.11.4] for an exposition.

Proposition 2.3.1. For w € S,
RS(woww,) = ev(RS(w™1)).
If particular, if o is an involution, then RS(o) is self-evacuating if and only if woow, = o.

We now recall the bijection
dom : {T € SYT(n) | ev(T) =T} — SDT(n)

defined inductively as follows. Begin by applying the evacuation procedure to 1 in T'. Since
ev(T) =T, at the penultimate step (just before 1 reaches a corner of T'), 1 will be adjacent
to n. Hence we can remove 1 and n from the shuffled T' and replace these two labels by
a domino labeled by [n/2], the greatest integer less than n/2. Now continue by evacuating
2 from what remains of the shuffled T'. At the penultimate step 2 is adjacent to n — 1,
and hence defines a domino labeled [n — 2/2]. Repeating this procedure defines an element
dom(T) € SDT(n) (In the case that n = 2m+1 is odd, we change the label of the upper
left hand corner of dom(7") from m+1 to 0.)

2.4. Primitive ideals. Consider the set Prim(4(g)), of primitive ideals in £{(g) which con-
tain the maximal ideal of 3(g) parametrized (via the Harish-Chandra isomorphism) by p. In
case of simple classical g, we now discuss the combinatorial parametrization of Prim((g)),
due to Joseph, Barbasch-Vogan, and Garfinkle.

If g = gl(n, C), then there is a bijection from SYT(n) — Prim((g)), obtained as follows.
Given T € SYT(n), let w be any element of S, such that RS(w) = T. The primitive
ideal I(T') € Prim(4(g)), parametrized by T is the annihilator of the simple highest weight
module L(w) that arises as a quotient of the Verma module induced from ww.p—p. (See [T2,
Section 3], for instance, for the exact details of this parametrization.)

For future reference, we need to record a symmetry property of this parametrization.

Proposition 2.4.1. Let g = gl(n,C), and fir I € Prim(8(g)),. Let I' denote the primitive
ideal obtained from I by applying the diagram automorphism for g. Write T and T' for the
tableauz parametrizing I and I'. Then

T' = ev(T),
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the evacuation of T (Section 2.3).

Sketch. It is essentially built into Joseph’s parametrization of Prim(((g)), that "= RS(w)
if and only if 7' = RS((woww,) ). So Proposition 2.3.1 gives the current proposition. [0

If g = sp(2n,C), then there is a map from SDT(2n) to Prim(l(g)), obtained as follows.
First we include W(C),) C W(Ag,11) = S, as the centralizer of the long word w, € Sy,
i.e. as the fixed points of the diagram automorphism of Ay, ;. Given T € SDT(2n), we
let w € W(C,,) C Sy, be any element whose evacuated right Robinson-Schensted tableaux
coincides with T'; i.e. in the notation of Section 2.3, T = dom(RS(w)) (which makes sense
by Proposition 2.3.1). Then the corresponding primitive ideal is Ann(L(w)). This map is a
bijection when restricted to the subset of SDT¢(2n) consisting of tableau of special shape
in the sense of Garfinkle citeg:i.

If g = s0(2n+1,C), then there is a map from SDT(2n+1) to Prim(&(g)), obtained in the
analogous way. We include W (B,,) C W(Ag,+1) = Son+1 as the fixed point of the diagram
involution. Given T' € SDTg(2n+1), let w € W(B,,) C Sap+1 be any element such that
T = dom(RS(w)). Then the corresponding primitive ideal is Ann(L(w)). This map is a
bijection when restricted to tableaux in SDTp(2n+1) of special shape.

Finally, if g = so(2n, C), there is a map from SDT(2n) to Prim((g)), obtained as follows.
We include W (D,,) in W (B,,) in the obvious way, and then include W (C,,) C Sy, as above.
Given T € W(D,,) C Sy,, let w be any element of W'(D,,) such that T = dom(RS(w)).
Then the corresponding primitive ideal is Ann(L(w)). This map is a bijection when restricted
to tableaux in SDT p(2n) of special shape

2.5. Representation of the hyperoctahedral group. Let ) denote the Young lattice.
This is the lattice poset whose unique minimal element is the empty set, whose elements
consist of Young diagrams (of any size) and whose covering relations are given by the oper-
ation of adding a corner to a Young diagram. Let D denote the even domino lattice, defined
in the analogous way; i.e. the elements are domino shapes of even size and the covering
relations are the addition of domino corners. Let D’ denote the odd domino lattice of type
B; here the minimal element is a single box, and the other elements are domino shapes of
odd size, and the covering relations are the addition of domino corners. It is a standard fact
that as lattice posets, ) x Y ~ D ~ D'. The latter isomorphism is trivial. For the first,
see [S], for instance.

Recall that the irreducible representations of the hyperoctahedral group W (B,,) = W(C},)
are parametrized by pairs of standard Young tableaux whose aggregate size is n, i.e. by
elements of Y x Y; see, for instance, [CMc, Chapter 10] for this standard fact. Note also
that the dimension of such a representation parametrized by (D, D') is the number of paths
from () to (D, D') in Y x Y. Using the isomorphism Y x Y ~ D ~ D’ we obtain the following
parametrization.

Proposition 2.5.1. The irreducible representation of the hyperoctahedral group Sy, x (Z/2)"
are parametrized by domino shapes of size 2n (or 2n+1). Moreover, if we write w(D) for the
representation corresponding to a given domino shape, the dimension of w(D) is the number
of standard domino tableauz of shape w(D).

Remark 2.5.2. The identical argument shows that the irreducible representations of the
group of r colored permutations, G(r,n) := S, x(Z/r)", are parametrized by Young diagrams
of size nr that can be tiled by rim hooks of size r; for the definition of rim hook, see [Sa,
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Chapter 4.10]. Here we are using that the rim hook lattice is isomorphic to r copies of the
Young lattice, which follows by exactly the same argument used to establish the domino
case. In the context of G(r,n), the corresponding dimension formula counts the number
of standard rim hook tilings. Either by using the decomposition of the group algebra of
G(r,n) into irreducibles or an argument from [S], it follows that the number of elements
in G(r,n) is equal to the number of same-shape standard r-rim hook tableaux of size rn.
A constructive bijection (for all r) was constructed in [SW], but when r = 2 it does not
reduce to the bijection defined in the first paragraph of the introduction. This suggests
that there should exist an algorithm from G(r,n) to same-shape pairs of standard rim hook
tableau generalizing the bijection of the introduction. It is this bijection that should have
applications to the (as of yet nonexistent) theory of cells for G(r,n); see [Br].

2.6. A framework for generalized Robinson-Schensted algorithms. Fix Gr as in
Section 2.1. Recall that the set of K orbit on N (p) is finite, and write {Ny, Ny, ..., Ny} for
a set of representatives of such orbits. Let A; denote the component group of the centralizer
of N; in K. Given QQ € K\'B, let Ng € {Ny, Ny, ..., Ny} denote the representative whose
K orbit is dense in the moment map image of T} (B).

Proposition 2.6.1. The map
Q = (Ng,n™ ' (Ng) NT(B))

1$ a bijection
(2.1) K\B — {(N;,C) | C € A\Irr(BN), i =1,.. .k}

Sketch. Using Spaltenstein’s dimension formula ([Spal]), one can check that the K sat-
uration of (N;,C) (viewed as a subvariety of the conormal variety T} B) is irreducible of
dimension equal to the dimension of 8. Since the conormal variety is pure of dimension
dim(®B) and since its irreducible components are exactly the closures of the conormal bundles
to K orbits on B, we conclude that there is some @) such that Té% is dense in K - (N;,C).
This gives the bijection of the proposition. More details can be found in [T1, Proposition
3.1]. (In that paper, it was attributed to Springer, but it appears to have been observed
independently by a number of people.) [l

Because the sets appearing in Equation (2.1) each admit a combinatorial parametriza-
tion, Proposition 2.6.1 gives rise to an interesting family of combinatorial algorithms. (The
Robinson-Schensted terminology is explained by Example 2.7.1.)

2.7. Irr(B") for G = GL(n,C). Let g = gl(n,C), and fix a nilpotent element N € g. Then
Irr(B") is parametrized by SYT(n) as follows. If a flag (Fy C F} C --- C F},) is an element
of B, then the restriction of N to Fj is a nilpotent endomorphism, and hence specifies
a Young diagram D; of size i. We define a tableau T'(F') € SYT(n) by requiring that the
shape of the first ¢ boxes of T'(F') coincide with D;, for all i. The assignment F' — T(F)
is constant on an open piece of each component of BV, and defines the parametrization of

Irr(BY) by SYT(n) ([St], [Spa2]).

Example 2.7.1. Consider the case of Gg = GL(n,C) in Proposition 2.6.1. Then G iden-
tifies with two copies of GL(n,C), K with the diagonal GL(n,C), and B consists of two
copies of the flag variety for GL(n,C). The Bruhat decomposition implies that the K orbits
on ‘B are parametrized by the symmetric group S,,. The N; are parametrized by partitions
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of n according to the above discussion Irr(8%) is parametrized by SYT(n). Hence Propo-
sition 2.6.1 asserts the existence of a bijection from S, to same-shape triples consisting of
a partition of n and a pair of standard Young tableaux of the corresponding shape. (The
first datum is redundant.) Steinberg ([St]) proved that this coincides with the Robinson-
Schensted algorithm.

2.8. K orbits on N(p) for Sp(2n,R) and O(p,q). The following result is well-known;
see [CMc, Chapter 9], for instance.

Proposition 2.8.1. Recall the notation of 2.2.

(1) For Gr =U(p,q), K\N (p*) is parametrized by YT+ (p,q). (As a matter of notation,
we set YT+ (SU(p,q)) = YT+(p,q).)
(2) For Gg = Sp(2n,R), K\N(p*) is parametrized by the subset

YT (Sp(2n,R)) C YT4(n,n)

of elements such that for each fized odd part, the number of rows beginning with +
coincides with the number beginning with —.
(3) For Gg = O(p,q), K\N (p*) is parametrized by the subset

YT+(O(p,q)) C YT4(p,q)

consisting of signed tableaux such that for each fixed even part, the number of rows
beginning with 4+ equals the number beginning with —.

2.9. The conormal variety and Weyl group representations. Write 7 (*B) for the
union (over K orbits @ on B) of the conormal bundles T}5(%8). Clearly T} (B) is pure
of dimension dim(8) and its irreducible components are just the closures of the conormal
bundles 7¢) (). In particular the fundamental classes [1¢)(%)] of the conormal bundle
closures are a basis for the top Borel-Moore homology group Hyop,(T%(%8),7Z). A standard
convolution construction defines a module structure on Hyop (T} (98), Z) for the convolution
algebra Hyqp, (Té‘iag(G)(% x 9B),Z) which, according to a theorem of Kazhdan-Lusztig, is the
group algebra Z[W]. It is an easy consequence of the definition that this action is suitably
graded in the sense that for a fixed K orbit on N (p) (say Ok),

> [T5(B))

Q st u(15(B)COK

is W-invariant, and hence

MO = Y [T / Y o)

Q st u(TH(B))COK Q st. u(TH(B)CO0K

is a representation of W. In particular, the orbits @ such that u(75(%8)) = O index a
basis of a Weyl group representation.

Fix N € N(p), and recall the W x Ag(N) representations on Hiop(BY) defined by
Springer. As a matter of notation, we write sp(Q) for the Ag(N) invariants of this repre-
sentations; here O = G - N. In any event, since Ax(N) maps to Ag(/N), we can consider
the Ag (N) invariants in Hyop(B?). The following result is taken from [Ro].
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Theorem 2.9.1 (Rossmann). Fiz N € N(p) and let Ox = K - N. Then as a W represen-
tation,

M(Of) = Hiop (BN) A5V,
The isomorphism maps the fundamental class of closure of T(y(B) (where pu(T5(B)) = Ok)

to the fundamental class of p='(N) N 15 (%) (compare Proposition 2.6.1).

Lemma 2.9.2. If Gg = Sp(2n,R) or O(p,q), and N € N(p), then the natural map
Ak (N) — Ag(N) is surjective. In particular, the Ax(N) and Ag(N) orbits on Irr(SBN)
coincide.

Proof. This follows from explicit centralizer calculations. We omit the details. O

Corollary 2.9.3. Let Gr = Sp(2n,R) or O(p,q), and let Ok be parametrized by a signed
tableau S (Proposition 2.8.1). Write w(S) for the representation of W corresponding to the
shape of S by Proposition 2.5.1. Then M(Ok) ~ w(S), and

Hoo(T5(B),2) >~ @ «(S).
SEYTL(Gg)

In particular, if we write d(S) for the number of standard domino tableauz whose shape
coincides with that of S. Then

#{Q | u(T5(B)) = Ok} = d(S),
and

(2.2) #K\B= > dS).

SEYT4(GR)

Proof. Proposition 2.5.1 reduces the corollary to establishing M(Og) ~ n(S). By The-
orem 2.9.1 and Lemma 2.9.2, this amounts to showing sp(Q) = n(S), where O is the G
saturation of the orbit O parametrized by S. This follows from Lusztig’s computation of
the Springer correspondence for classical groups in terms of symbols, together with Propo-
sition 2.5.1; cf. [Mc2, Section 2-3]. O

The corollary thus gives the existence a bijection from K\*8 to the same-shape subset of
pairs consisting of an element of YT (Gr) and a standard domino tableaux. This will be
constructed in Proposition 3.2.2 below as a Robinson-Schensted algorithm in the sense of
Section 2.6.

2.10. Involutions with signed fixed points. Write 3(n) for the set of involutions in the
symmetric group S,,. Let
Yi(n) ={(o,¢e) € ¥ x {+,—,0}" | ¢, =0 if and only if o(j) # j},

which we view as the set of involutions in S, with signed fixed points. We write X4 [U(p, q)]
for the subset of ¥4 (p+¢q) consisting of element (o, €) such that

p=#{jle =+ + (1/2)3{j | o(4) #j}
qg=#{jle=—} + (1/2)3{j | o(4) #J}-
Define ¥[Sp(2n)] to be the subset of elements (0,¢€) in ¥ [U(n,n)] such that
1. (Antisymmetry of signs) ez, 11-j = —€;j;
2. (Symmetry of involution) o(2n+1—j) =2n+1—o(j).
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Similarly define ¥4 [O(p, q)] to be the subset of elements (o, €) in X4 [U(p, q)] such that

1. (Symmetry of signs) €2(piq)+1—j = TEj;
2. (Symmetry of involution) o(2(p+¢q) +1—j) =2n+1—o(j).

Note that the symmetric group S, acts on X4 (n) in the obvious way: w - (o,€) = (o', €),
where 0 = wow ™!, and €,-1; = ¢;. Let w, denote the long word in the symmetric group.
Observe that

(2.3) Y4+[O(p,q)] = the fixed points of w, on X1 [U(p,q)].

The same statement is almost true for X1 [Sp(2n)], but we must introduce an additional
twist. Define s : X1 [U(p,q)] = 2+[U(q,p)] via s(o,€) = (0, —€). Then

(2.4) Y1[Sp(2n)] = the fixed points of s o w, on X1 [U(p, q)].

2.11. K orbits on B. Fix, once and for all, a signature (p,q) Hermitian form on CPT9,
write Gg = U(p, q) for its isometry group, and fix a Cartan involution 6 for G. Recall the
notation of Section 2.10. It is well known that ¥4 [U(p, q)] parametrizes the K orbits on
B. (Formulas are given in [Yal], for instance.) Given § € X [U(p, ¢)], we write Q5 for the
corresponding orbit.

For a choice of nondegenerate symplectic form on C2", let B8/, denote the set of Borel
subalgebras in sp(C?",w). Then B, embeds in B, the set of Borels in gl(2n,C). Set
p = q = n. Then there exists a choice of w such that

Q5:=Qs NV, #£0 <= 6 € 24[Sp(2n)].

Write Gf, = Sp(C*",w)NU(n,n) ~ Sp(2n,R). Then Q} is an orbit for K’ on B, where K’
is the complexification of the fixed points of 6 (the Cartan involution for U(n,n)) on G. As

an example of the choices involved, fix a basis ey,..., ey, for C*", and define U(n,n) with
respect to
2n 2n n 2n
<Z aie;, Zbi6i> = aibi— Y aiby,
i=1 i=1 i=1 i=n-+1

then we take
w=-e;Ney, +eaNeyp_1+ -+eyNeptr.
More details of this parametrization can be found in [Yal].
Similarly, a choice of nondegenerate symmetric form R on C2P+%) induces an inclusion of

B (the variety of Borels in so(C2(P+9) R)) into 9B, the variety of Borels in gl(2(p+q), C).
There exists a choice of R such that

Qi =QsNBL #0 <0 € 3:[0(p,q)]-

Write G := O(C2P+9 R)NU(2p,2q) ~ O(p,q). Then QY is an orbit for K" on By, where
again K" is the complexification of the fixed points of § on Gj. Explicit details of these
choices may be found in [Ya2].

When we speak of Sp(2n,R) and U(n,n) in the same context, we will always assume they
are defined compatibly as above. A similar remark applies to O(p,q) and U(p,q). These
choices are analogous to the inclusion of W (C),) into W (A, 1) as the centralizer of w, made
in Section 2.4.
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2.12. A Robinson-Schensted algorithm for U(p,q). We now describe a bijection from
Y4+[U(p,q)] to the set of same-shape pairs consisting of a standard Young tableau and a
signature (p, q) signed tableau (Section 2.2).

Given (o,€) € X1[U(p, q)], form a sequence of pairs of the form

(i,€) if o(i) = 7; and
(1,0(i)) if i < o(i).

Arrange the pairs in order by their largest entry, with the convention that a sign has numer-
ical size zero. Write 7y, ..., w, for the resulting ordered sequence. From such a sequence, we
now describe how to build a same-shape pair of tableaux

(RSu,+(6), RSu(8)) € YT+ (p,q) x SYT(p+q).

Each tableau is constructed by inductively adding the pairs 7;. So suppose that we have
added 7y,...,mj_1 to get a (smaller) same-shape pair of tableau (7%,T). If m; = (k,¢€),
then we first add the sign € to the topmost row of (a signed tableau in the equivalence class
of) Ty so that the resulting tableau has signs alternating across rows. Then add the index
7 to T in the unique position so that the two new tableaux have the have the same shape.
If m; = (k,o(k)) we first add k& to T' using the Robinson-Schensted bumping algorithm to
get a a new tableau T', and then add a sign € (either + or — as needed) to Ty so that the
result is a signed tableau T, of the same shape as T'. We then add the pair (o(k), —€) (by
the recipe of the first case) to the first row strictly below the row to which € was added. We
continue inductively to get (RS, +(d),RS,) € YT4(p,q) x SYT(p+¢q). (For a more formal
definition, the reader is referred to [G].)

The first statement in the next theorem explains why this algorithm is a generalized
Robinson-Schensted algorithm in the sense of Section 2.6. The concluding statement indi-
cates its representation theoretic significance.

Theorem 2.12.1. Let Gg = U(p,q), fizr 6 € X1[U(p,q)], and let Qs be the corresponding
K orbit on B. In terms of the parametrizations of Proposition 2.8.1(1) and Section 2.7, the
map

Qs — (N, u~ ' (Ng) NTp,B)
of Proposition 2.6.1 coincides with
6 (RSu+(8), RSu(6)).

Let X(Qg) be the Harish-Chandra module with trivial infinitesimal character attached via
the Beilinson-Bernstein parametrization to the trivial local system on Qg, and recall the
parametrizations of Section 2.4 and Proposition 2.8.1(1). Then RS,(6)) parametrizes Ann(X (6))
and the closure of the orbit parametrized by RS, +(9) is the associated variety of X (Qs).

Proof. The annihilator statement is the main result in [G]. The remainder is proved in [T1,
Theorem 5.6]. O

3. MAIN RESULTS

3.1. Symmetry properties of the Robinson-Schensted algorithm for U(p,q). We
need to examine how the algorithm of Section 2.12 behaves under the action of w, and s
introduced at the end of Section 2.10. Recall the evacuation operation ev introduced in
Section 2.3.
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Proposition 3.1.1. Fiz 6 € ¥4[U(p,q)] and write (RS, +(6),RS,(0)) = (S,T). Then
RSu,:I:(wo : 5) = Srev RSu(wo : 6)) = ev(T);

and

RSy +(sd) = =S RS, (sd)) =T}
where Syey 15 obtained from S by reversing each row of S, and —S is the tableau obtained by
inverting all signs in S.

Proof. The only part of the proposition which is not obvious from the definitions is
the assertion that RS,(ws - d)) = ev(T'). One can probably prove this directly without
too much difficulty, but we opt for a slightly more abstract argument. Let g = gl(n, C).
It is clear that the ${(g)-modules X (d) and X (w, - ) differ by the diagram automorphism
of gl(n,C) (say 7). So their annihilators Ann(X(4)) and Ann(X (w, - 0)) also differ by 7.
Proposition 2.4.1 implies that the tableaux parametrizing Ann(X(4)) and Ann(X (w, - 9))
differ by evacuation. But the last assertion in Theorem 2.12.1 implies that these tableaux
are RSy, (0) and RS, (ws - 0), so the current proposition follows. O

3.2. A Robinson-Schensted algorithm for Sp(2n,R) and O(p,q). We begin by noting
a simple corollary to Proposition 3.1.1.

Corollary 3.2.1. Recall the inclusions ¥ [0(p, q)], X+ [Sp(2n)] C X4 [U(p,q)].

(1) If § € ¥4[Sp(2n)], then RS, +(0) € YT (Sp(2n)).
(2) If 6 € X4[O(p, q)], then RSy +(6) € YT+(O(p,q)).-

Proof.  Consider the statement for Sp(2n,R), and fix § € X4[Sp(2n)]. From Proposi-
tion 3.1.1 and Equation (2.4), one concludes that if we reverse each row of RS, +(d) and
subsequently invert all signs in the resulting tableau, we must again obtain RS, +(d). This
can be achieved if and only if the number of odd rows of RS,, 4 (§) of a fixed length beginning
with a plus sign coincides with the number of such rows beginning with a minus sign. Thus
RSy +(6) € YT1(Sp(2n)). A similar argument establishes the corollary for O(p, q). O

Proposition 3.2.2. There are bijective maps
(RSsp,+,RSsp) : X4[Sp(2n)] — same-shape subset of YT+ (Sp(2n)) x SDT(2n)
(RSo,+.RSs) : E4[O(p,q)] = same-shape subset of YT1(O(p,q)) x SDT(p + q),

obtained as follows. The maps RSqp + and RS, + are the restriction of the RS, +, the signed
tableau part of the Robinson-Schensted algorithm for U(p,q) (Section 2.12). The maps
RSep,+ and RS, + are obtained by composing RS, with the domino evacuation algorithm
dom of Section 2.8.

Proof. Equations (2.3) and (2.4) and Proposition 3.1.1 (together with Corollary 3.2.1)
imply that the maps described in the Proposition are indeed well-defined. The maps
(RSsp,+, RSgp) and (RS, +, RS,) are clearly injective, since (RS, +,RS,) and dom are injec-
tive. On the other hand, X1 [Sp(2n)] parametrizes K orbits on the flag variety for Sp(2n, R)
(Section 2.11), so Equation (2.2) in Corollary 2.9.3 implies (RSg, +, RSg;) is surjective (and
hence bijective). A similar argument implies (RS, +,RS,) is bijective. O

Remark 3.2.3. Without resorting to Section 2.9, it is easy to give a purely combinatorial
proof that the maps in Proposition 3.2.2 are surjective (and hence bijective). For instance,
suppose (S, T) is an element of the same-shape subset of YT (Sp(2n)) x SDT(2n). We are to
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find 6 € ¥4[Sp(2n)] such that (RS, +(d),domoRS,(d)) = (S,T). By Theorem 2.12.1, there
exists sucha é € ¥ [U(p, ¢)], and we need only show that sow,(d) = d. Suppose not, i.e. sup-
pose 1 := 8 o w,(§) # d. But since (RS, +(d), RSy (d)) = (S,dom ' (7)) and dom™'(T)
is self-evacuating, Proposition 3.1.1 implies (RS, +(n),RSu(n)) = (S,dom™'(T)). Since
(RSy,+,RS,) is injective (Theorem 2.12.1) we conclude n = ¢, contradiction. An identical
argument works for O(p,q). This gives a combinatorial proof of Proposition 3.2.2. We have
included the argument relying on Section 2.9 to highlight the connection with Weyl group
representations.

3.3. Moment map images of conormal bundles for Sp(2n,R) and O(p,q). The next
result shows that the algorithms in Proposition 3.2.2 fit the generalized Robinson-Schensted
framework of Section 2.6.

Proposition 3.3.1. Fiz Gg = Sp(2n,R) or O(p,q). Recall the parametrizations of K\B
(Section 2.11) and the algorithm RS, + of Section 2.12. For 6 € ¥4 (Gr), the orbit parametrized
by RSy, +(0) (Section 2.8) is dense in the moment map image p(T, (B)).

Proof. Embed Ggr compatibly into G5 = U(n,n) or U(p,q) as in Section 2.11. (Here we
are inverting the notational role of Gr and G§, but this should cause little confusion.) For
d € X1 (GRr) C 24[U(p,q)], let Q5 denote the corresponding K orbit on the flag variety B
for Gr, and let Q) denote the corresponding orbit on B’ for G;. Given a signed tableau
S € YT4(Gr) C YT4(U(p,q)), write Og for the corresponding K orbit on N (p) for Gg,
and adopt the analogous notation for Og. Write (0) for the dense orbit in (77, (8)), and
write p'(0) for the dense orbit in :“I(Tég(%l))' We also let u(0) denote the corresponding
element of ¥4 (GR).

We first establish that u(d) C ORs,, +(5): by using the equivariance of the moment map,
and the known moment map image computation for U(p,q) (Theorem 2.12.1). It is clear
that

K'-T5.(B) C T*g(%').
The equivariance of the moment map, together with the fact that Oig 5 = ¢'(d) (Theo-
rem 2.12.1), we conclude that ’
K'-u(d) C O/RSu,i({s)'
By intersecting with A/(p) (and noting that the parametrizations of Proposition 2.8.1 are
suitably compatible), we conclude that u(d) C Ogg, | (), as claimed.

Now suppose that there is some ¢ for which p(d) # RS, +(0), i.e. for which

1(8) € ORs, 1 (5)-

We may assume that J is chosen so that Ogg, , () has the minimal possible dimension (say
d) among all § for which p(0) # RSy +(6). We now simply count the number of elements in

A(6) :={n € B+[Gr] | n(n) = n(0)}-

Because d was assumed to be minimal,

RS, L (u(3)) C A(9).
By hypothesis § € A(d) but § ¢ RS;li(u(é)). So we conclude that
(3.1) #A(0) > #RS, | (1(9)).
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Corollary 2.9.3 says that the number of elements in A(d) is the number of standard domino
tableau of shape equal to that of RS, +(0). Proposition 3.2.2 say that RS;;(M((S)) has the
same number of elements. So Equation (3.1) gives a contradiction, and the proposition is
proved. O

3.4. A domino tableau parametrization of Ag(N) orbits on Irr(BY). Let Gg =
Sp(2n,R) or O(p,q). Fix a K orbit Ok on N(p), fix N € Ok, and let S be the signed
tableau parametrizing O (Proposition 2.8.1). We now describe a bijection

(3.2) {T € SDT(n) whose shape is that of N} — Ag(N) orbits on Irr(B")

obtained as follows. Given a domino tableau S whose shape is that of N, using Proposi-
tion 3.2.2 we obtain an element § € ¥4 [GRr| by requiring

(RSy,+(d), dom o RS, (d)) = (S, 7).

Let Qy € K\'B be the K orbit corresponding to § (Section 2.11). Recall that the orbits
of Ax(N) and Ag(N) on Irr(BY) coincide (Lemma 2.9.2). So Propositions 2.6.1 and 3.3.1
imply that

uH(N) 1 T, ()
is an element of the right-hand side of Equation (3.2). This defines the map in Equation
(3.2). Tracing through each step, one sees that this map is bijective.

We thus we conclude that the Ag(N) orbits on Irr($8V) are parametrized by standard
domino tableau of shape equal to the Jordan form of N. It is important to note that the
definition of this parametrization involved a choice of Ok € Irr[(G - N) Np], and it is not
immediately clear that different choices lead to the same parametrization.

Proposition 3.4.1. Let Gg = Sp(2n,R) or O(p,q), and fiz N € N(p). The bijection
{T € SDT(n) whose shape is that of N} — Ag(N) orbits on Irr(BY)
defined in Equation (3.2) is independent of the choice of Ok .

Proof.  We give the argument for Gg = Sp(2n, R). (The case of O(p, q) is identical except
in notation.) Fix Ny, Ny € N(p) with Ny € G- Ny but Ny ¢ K - Ny. Let S* denote the
signed tableau parametrizing K - N;. Fix a domino tableau T" whose shape coincides with
that of Ny (or Ny). Let

(3.3) Qi = (RSsp x RSyp,4) (1. 57);

here (and below), we are identifying elements of ¥4 [Sp(2n)] with the K orbit on B that
they parametrized (Section 2.11). The proposition amounts to showing that

(3.4) T3, 08) N (V1) = T, (B) e (Vo).

Recall the inclusion Gg C G = U(n,n) (Section 2.11 — we have inverted the notational
role of Gr and Gf), and let Q) denote the K’ saturation of @Q; in B’. Suppose Equation
(3.4) fails. Then the corresponding statement fails for G,

Tgy, (B) N '™ (N) # T, (B7) N0 '~ (Vo).

By Theorem 2.12.1, this implies that RS, (Q}) # RS, (Q5). Since RSs,(Q1) = dom(RS,(Q%)),
we conclude that RSg,(Q1) # RSsp(Q2). But this contradicts Equation (3.3). O
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Remark 3.4.2. Recently McGovern ([Mc1]) and Pietraho ([P]) gave two independent parametriza-
tions of the Ag(N) orbits on Irr(8") by domino tableau. It is expected (but still not
known) that their parametrizations coincide and, moreover, that they coincide with the one

in Proposition 3.4.1.

3.5. Connection with annihilators. For Gg = Sp(2n,R) or O(p, q), the maps RSy, and
RS, attach a domino tableau to each K orbit @ on B. According to [G1] [G4], such a
tableaux parametrizes a primitive ideal in the enveloping algebra of g. By analogy with
Theorem 2.12.1, it is natural to ask whether this primitive ideal has anything to do with
Harish-Chandra modules for Gg supported on the closure of Q). By contrast with the U(p, q)
case, this question is complicated enormously by the existence of nontrivial K equivariant
local systems on @), as well as the presence of nonspecial shapes. Nonetheless the Robinson-
Schensted algorithms of Section 3.2 compute annihilators and associated varieties of derived
functor modules.

Proposition 3.5.1. Fiz Gg = Sp(2n,R) or O(p,q) and write RS for RSy, or RS, (Sec-
tion 3.2). Let q be a 0-stable parabolic of g containing a fized 0-stable Borel b, and let Q'
denote the K orbit of ¢ on G/ P (where P is the parabolic subgroup of G corresponding to q).
Let @ be the dense K orbit in the preimage of Q' under the projection of 8 = G/B — G/ P,
and write Q = Qs for § € ¥4 (Gr) (Section 2.11). Write Aq for the Harish-Chandra module
for Gr with trivial infinitesimal character attached via the Beilinson-Bernstein parametriza-
tion to the trivial local system on Q. Then RS(J) has special shape and (in the parametriza-
tion of Section 2.4),

Ann(A,) = RS(9).

Moreover the closure of the K orbit parametrized by RS (0) is the associated variety of Ag.

Proof. The Harish-Chandra modules Ay are derived functor modules induced from the
trivial representation of the Levi factor [ of q; see [T3] for more details. Since AV(4,) =
u(T5(B)) (see the introduction of [T3], for instance), Proposition 3.3.1 implies that RS (d)
parametrizes the dense orbit in AV(A44). So to establish Proposition 3.5.1 we need only
treat the annihilator statement. Since we have computed the annihilators of A; modules
n [T3, Section 8], and we can compute § directly from q directly (cf. [VZ]), this amounts
to a combinatorial check. A better, less combinatorial approach would be to proceed by an
induction on the number of simple components type A in the Levi factor [, in a manner
exactly analogous to the computation of annihilators given in Section 8 of [T3]. In either
case, the assertion is not terribly difficult, and we omit the details. [l

Proposition 3.5.1 and Theorem 2.12.1 suggest the following more general questions:

() Suppose X is a Harish-Chandra module for G with trivial infinitesimal character
attached to the trivial local system on a K orbit Q5. Suppose further RS4 (d) has
special shape. Then does RS (d) compute a component of the associated variety of
X? Does RS(0) compute the annihilator of X?

Unfortunately this is false, as the next example indicates.

Example 3.5.2. Let Gr = Sp(8,R). Consider the orbit Q5 parametrized by ¢ = (o, €) with
o = (36) (the transposition interchanging 3 and 6) and ¢ = (+,+,0,—,4+,0,—,—). One
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computes RS4(0) as

]

and RS, (0) as

Let X be the Harish-Chandra module attached to the trivial local system on Q5. (More
precisely, X is cohomologically induced from a one-dimensional representation of U(2,0)
tensored with a nonunitary highest weight module for Sp(4,R).) Then one can check that X
is in the same Harish-Chandra cell as the A; module induced from the trivial representation
on a levi factor of the form u(2,0) ® u(0,2) and, moreover, that AV(X) is

+[-T+]-
+ -]+

while Ann(X) is

1 3
4

So RS(9) (which has special shape) does not compute Ann(X).

It is of considerable interest to note that ()5 in the example admits a unique nontrivial K
equivariant local system, and the annihilator and associated variety of the Harish-Chandra
module attached to it are indeed given by RSg,(0) and RS+ (d). This immediately suggests
a way to modify (x) by allowing X to be attached to nontrivial local systems. Even though
we have no counterexample to this modification, it still seems ambitious. Instead it seems
plausible that if we further modify (%) by placing further restrictions on RS (d), then the
question admits a positive answer. We hope to return to this elsewhere.
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