ANNIHILATORS AND ASSOCIATED VARIETIES OF A,(\) MODULES
FOR U(p,q)

PETER E. TRAPA

ABSTRACT. Vogan has conjectured that the cohomologically induced modules Aq()A) in
the weakly fair range exhaust all unitary representations of U(p,q) with certain kinds
of real integral infinitesimal character. To prove a statement like this, it is essential to
identify these modules among the set of all irreducible Harish-Chandra modules. Barbasch
and Vogan have parametrized this latter set in terms of their annihilators and asymptotic
supports (or, equivalently, associated varieties). In this paper, we identify the weakly fair
Aq()) in this parametrization by combining known results about their asymptotic supports
together with an explicit computation of their annihilators. In particular, this determines
all vanishing and coincidences among the Aq(\) in the weakly fair range, and gives the
Langlands parameters of these modules.

1. INTRODUCTION

The cohomologically induced modules A4()) have long been known to play a distinguished
role in the unitary dual of a real reductive Lie group G (see [VZ], for instance). More
recently, Salamanca [Sa2] has shown that they exhaust the unitary representations of G
whose infinitesimal character is real, strongly regular, and integral. The starting point
of Salamanca’s proof is identifying where the A4()\) modules (with regular infinitesimal
character) fit into the admissible dual of G, and the identification depends crucially on the
hypothesis of regular infinitesimal character.

At singular infinitesimal character, the situation is much less well-understood, even for
a relatively uncomplicated group like U(p,q). The Ag(A) modules still provide a long list
of unitary representations: Vogan’s unitarizability theorem applies to certain Aq(A) — the
weakly fair ones of Definition 3.4 — and for U(p, q) they are all irreducible or zero. Vogan
has conjectured that the list is complete.

Conjecture 1.1 (Vogan). The cohomologically induced modules Aq()) in the weakly fair
range exhaust the unitary Harish-Chandra modules for U(p, q) whose infinitesimal character
is a weight-translate of p.

In this paper, we lay the foundation for a proof of the conjecture by identifying the
weakly fair A4(A) modules in the admissible dual of G. The strategy is to reduce to the
(well-understood) regular case by writing a singular Aq(\) module as the image of a compli-
cated wall-crossing translation functor applied to an A4(A) module with regular infinitesimal
character. A serious technical obstacle is that the translation functors are essentially impos-
sible to compute in terms of various standard parametrizations of the admissible dual (like
the Langlands classification, for instance). Said differently, the weakly fair A,(\) modules
do not fit nicely in the Langlands classification.
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We are thus forced to find a parametrization of the admissible dual which does behave well
(or at least tractably) with respect to the relevant translation functors. The parametrization
we use is due to Barbasch and Vogan [BV4], and is based on the structure of Kazhdan-
Lusztig-Vogan cells for U(p,q). Roughly speaking, the Barbasch-Vogan parametrization
identifies Harish-Chandra modules by their annihilators and associated varieties, and so our
task is to compute these invariants for the weakly fair Aq(\) modules. This is the content of
our main result, Theorem 7.9: given A in the mediocre range for q (a range which properly
includes the weakly fair range), the theorem gives an algorithm to determine the annihilator
and associated variety of Aq(\). The techniques used in proving Theorem 7.9 are roughly
a reduction to the case of maximal q, and should be widely applicable to other classical
groups.

Theorem 7.9 determines all coincidences and vanishing among the weakly fair Aq(\) mod-
ules, and provides an algorithm to compute their Langlands parameters. Since many readers
may be interested in this latter computation, we sketch explicit details in Remark 7.11.

The paper is organized as follows. After fixing notation, we discuss some (mostly) well-
known results about the Aq()\) modules in Section 3. Of particular interest to experts are
Theorem 3.1(b)(iv) which gives a larger range of irreducibility for the A4()\) modules than
is typically considered (the so-called mediocre range), and Proposition 3.8 which provides
a description of the unitarily small representations of U(p,q) whose infinitesimal character
is a weight translate of p. In Section 4, we recall the classification of primitive ideals in
gl(n,C) and prove a weak statement describing their behavior under cohomological induc-
tion. In Section 5, we first recall a few deep facts about asymptotic supports and associated
varieties. We describe these invariants abstractly for the modules A4()), and then make
that description explicit for U(p,q). In Section 6, we precisely state the Barbasch-Vogan
parametrization and give an elegant identification of the parameters of the A4()\) modules
in the good range. While Theorem 6.4 and Corollary 6.12 only treat the good range, they
are interesting in their own right. Since their statements are quite clean and the proofs are
relatively lightweight, many readers may find these results easiest to digest. At any rate,
they are prerequisite to tackling the main results which follow.

In Section 7, we extend the algorithms of Section 6 to the mediocre range and state
our main results (Theorem 7.9 and Corollary 7.12). We prove Theorem 7.9 in Section 8 by
carefully understanding the effect of certain wall crossing translation functors from regular to
singular infinitesimal character. In Section 9, we prove that any mediocre A4(\) is isomorphic
to a weakly fair one. (As explained in Remark 3.7, this is a small piece of Conjecture 1.1.)

Many special cases of the main results presented here are treated in Kobayashi’s work [K].
Additional special cases were covered by Friedman [F].

Acknowledgments. I am grateful to David Vogan for innumerable suggestions and correc-
tions, and I also thank Monty McGovern for helpful conversations. Paul Friedman caught a
very important mistake in an early version, and I am grateful to him for his kind assistance
in correcting it. I was partly supported by NSF grant DMS 97-29995.
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2. NOTATION AND STRUCTURE THEORY

Let G = U(p,q) be the group of complex linear transformations of CP*? preserving a
Hermitian form defined by a matrix with p pluses and ¢ minuses on the diagonal. (We will
be a little more precise about the arrangement of the signs below.) Let K = U(p) x U(q)
be the fixed points of the Cartan involution of inverse conjugate transpose. Let 6 be the
differentiated involution and let g, = €, + p, be the corresponding decomposition. Write
g, & p for the corresponding complexifications; for example g = gl(n,C), with n = p + g.

Fix the diagonal torus 7' C K with Lie algebra t,, and set tg = it,. Write A(g,t) for the
roots of t in g and make the standard choice of positive roots,

A+:{6i—6j|’i<j}.

Write p for the half-sum of the positive roots. Let o; = e; — €;41 € A(g,t) denote the ith
simple root, and 3 denote the collection of all simple roots. With these choices, a weight
v=(vi,...,V,) €t is dominant if vy > --- > v,

Let b be the Borel subalgebra corresponding to AT. Write W ~ S, for the Weyl group of
tin g, and let w, denote the long element in W. For a dominant v € t* and w € W define
Verma modules by

My(wv) = indg((wao,,,p),

and denote their unique irreducible quotients by Ly(wr). The definition is arranged so that
Ly(v) = My(v) and Lg(w,v) is finite-dimensional (if v is integral and regular).

We will need a very explicit description of (representatives of K-conjugacy classes of)
f-stable parabolic subalgebras ¢ = [ @ u of g; this is standard and well-known (see, for
example, [V8, Example 4.5] for omitted details). Let {(p1,q1),-..,(pr,qr)} be an ordered
sequence of pair of positive integers (not both zero). Set p = >, pi, ¢ = >, ¢, and n; = pitg;.
Define U(p, q) with respect to the Hermitian form defined by a diagonal matrix consisting
of p; pluses, then g; minuses, then ps pluses, and so on. Let [ denote the block diagonal
subalgebra

g[(nla(c) DD g[(n’ra(c)a

let u denote the strict block upper-triangular subalgebra, and write ¢ = [ & u and p(u) for
the half-sum of the roots in u. Then g is a #-stable parabolic subalgebra of g. As the ordered
sequences of pairs range over all

{(pa1),--- (prra)}s D pi=p, ) ai=4q

the g constructed in this way exhaust the K conjugacy classes of #-stable parabolic subal-
gebras for g.

2.1. Notation for #-stable parabolics. Whenever we speak of (the K-conjugacy class of)
a 0-stable parabolic ¢ = [ & u attached to a sequence {(p1,¢1),---, (pr,qr)}, we shall always
mean the one described above. In the coordinates given above, any unitary one-dimensional
(f, L N K)-module, restricted to 7', has differential

n1=pi1+qi Ny =pr+qr
—N— —— «
)\Z(}\l,...,)\l, ...... ,)\r,...,Ar)EtR,

with each \; € Z.
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2.2. Translation functors, 7-invariants, and primitive ideals. Let F' be a finite-
dimensional irreducible representation of g with extremal weight . For any weight v € t*,
let P, denote the projection, defined on the category of Z(g)-finite U(g) modules, onto
generalized infinitesimal character . Define the translation functor

Py H(X) = Poppo (F®-) o Py(X).

Certain translation functors will arise frequently, and we give them special names. Suppose
v € t is dominant, integral, and regular, and for a simple root «, let y, be an extremal
weight of a finite-dimensional representation so that v, = v + p4 is still dominant but lies
exactly on the a wall: (vo,8) = 0 if and only if 8 = £a. We denote the corresponding
translation functor 9’* by 1,. Given an irreducible U(g) module X with infinitesimal
character v we define its 7-invariant

7(X) = {a € X | $a(X) = 0}.
(Neither p, nor 9, is well-defined, but the 7-invariant definition is.) Next let
Mi = €41+ + €n,

and consider the finite-dimensional representation of g with highest weight w,u;. We will
write T; for ¢,’j+“ *, suppressing the dependence on v (now allowed to be arbitrary). We let
Tik denote the k-fold composition of Tj.

A two-sided ideal in the enveloping algebra U(g) is called a primitive ideal if it is the
annihilator of a simple U(g) module. A primitive ideal is said to have infinitesimal character
v if it contains the maximal ideal in Z(g) corresponding to v. Denote the set of primitive
ideals in U(g) with infinitesimal character v by Prim(U(g)),. If v is dominant, regular, and
integral, we define the 7-invariant of I = Ann(X) € Prim(U(g)), to be the subset of simple
roots consisting of those « for which 9, (X) is zero.

2.3. Tableau notation. Given a partition n = ni + --- + ng with the n; decreasing, we
may attach a left justified arrangement of n boxes with n; boxes in the ith row. Call such an
arrangement a Young diagram of size n. If v = (v1,...,vy,) is an n-tuple of real numbers, a
v-quasitableau is defined to be any arrangement of v, ...,v, in a Young diagram of size n.
The underlying diagram of a quasitableau is called its shape. If a v-quasitableau satisfies the
condition that the entries weakly increase across rows and strictly increase down columns,
it is said to be a v-tableau. A v-tableau whose entries strictly increase across rows is called
standard. If v = (1,2,...,n), then a standard v-tableau is called a Young tableau. Replacing
‘increasing’ by ‘decreasing’ in the definition of a v-tableau defines a r-antitableau.

For technical reasons, we will need to switch between two sets of data: the data of a
Young tableau together with a decreasing n-tuple v = (v > .-+ > 14,); and the data of a
v-antitableau. Given a decreasing n-tuple v and a Young tableau Sy, we get a v-antitableau
by changing the ith entry of Sy to v;. For the converse construction, we need to adopt
the convention that given two occurrences of an identical entry in a v-antitableau, one is
said to be larger than the other if it occurs strictly to the left of the other. Then given
a v-antitableau S, we first order v = (v; > --- > v,), and construct a Young tableau Sy
from S, as follows. Locate the the largest occurrence (in the sense of the convention just
mentioned) of 14 in S, and relabel it ‘1’. If v5 = 11, then locate the next largest occurrence
of 11 in S, and relabel it ‘2’; if 15 < 11, locate the largest occurrence of v, and relabel it ‘2’.
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Continuing in this way, we obtain a Young tableau Sy. For example,

414][3]
3[2]

We call Sy the underlying tableau of S,.

A skew diagram is any diagram obtained by removing a smaller Young diagram from a
larger one that contains it. A skew column is a skew tableau whose shape consists of at
most one box per row and whose entries strictly increase when moving down in the diagram.
A skew column is called difference-one if its consecutive entries (when moving down the
column) decrease by exactly one when moving down the column.

A signed Young tableau of signature (p,q) is an equivalence class of Young diagrams
whose boxes are filled with p pluses and ¢ minuses so that the signs alternate across rows;
two signed Young diagrams are equivalent if they can be made to coincide by interchanging
rows of equal length. (Note that the equivalence relation preserves shapes.) A skew column
of a signed tableau is any arrangement of pluses and minuses in a skew diagram consisting
of at most one box per row.

1]2]4]

Sa = 305

SY:

3. THE MODULES Agq()

In this section, we recall the definition and properties of the modules Aq()). Most of the
material in this section is standard, but part of Theorem 3.1b(iv) is new (see Remark 3.3).

We adopt the notation of [KV] for our cohomological induction functors, and return for the
moment to the setting of an arbitrary reductive g. Let h = t® a be the complexification of a
maximally compact #-stable Cartan subalgebra h,. Choose a #-stable system of positive roots
A™(g,h) and let g = [du be a f-stable parabolic q = [®u containing h with A(u) C A*(g,b).
A one-dimensional unitary (I, L N K)-module C, is determined by A € h*, its differential
restricted to h. Define C¥ = C, ®¢ AP u viewed as a (g, L N K) module and form

L£;i(C)) = (g5 (ind 70K (C)));

here II; is the derived Bernstein functor. For S = dim(uN¢), write Aq(X) = Lg(Cy).
Here are the main properties of these modules:

Theorem 3.1. Let q = [®u be a §-stable parabolic and let Cy be a one-dimensional unitary
(I, LN K) module; set S = dim(unt).
(a) L£;(Cy) has infinitesimal character X + p.

(b) Suppose indg(Cf:_tp(u)) is irreducible for all t > 0; then:

(i) £i(C\) =0 forj #S.
(i) Aq(A) = Ls(Cy) is a unitarizable (g, K) module.
(iii) If the infinitesimal character X+ p is regular, then Aq(X) is nonzero and irre-
ducible.
(iv) Suppose further that G = Ul(p, q); then Aq(X) is either irreducible unitary or
zero.

Remark 3.2. Part (a) says that (for G linear and rank(G) = rank(K)) the infinitesimal
character of an Ay(\) module is always a translate of p by a weight of a finite dimensional
representation of g. This explains the infinitesimal character condition in Conjecture 1.1.
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Remark 3.3. Assertion (iv) is a special feature of the U(p, q) setting; in general such an
A4(X) need not be irreducible or zero. In the case of general G, Chapter 8 of [KV] provides
sufficient conditions from which to conclude (iv). More precisely, under

Hypothesis 1:
Aq(X') is irreducible; and
A ) )
w)\:_pp(mdg(@ff)) = 1ndg((Cf); and
Hypothesis 2:

The Kostant problem for indg (Cj\#) has a positive solution;

one can conclude Aq(A) is irreducible or zero. (For a definition of the Kostant problem,
see [Jo] for example.) The second hypothesis is subtle in general, but it certainly holds if the
closure of the (complex) Richardson orbit ind}(O,e;,) is normal and equivariantly simply
connected. Of course this is always the case for gl(n,C), and hence we obtain (iv) when
G =U(p,q) and X in the weakly fair range. For general G, the relevant orbit closures can
fail to be normal and simply connected and we see, at least morally, why the irreducibility
result can fail in general.

Under the assumptions of Theorem 3.1b(iv), Hypothesis 1 can be verified by taking \'+p is
dominant and regular (so that Theorem 3.1(b) (iii) implies A4()\’) is irreducible) and applying
Lemma 3.13. When X is in the weakly fair range of Definition 3.4, Lemma 3.13 holds for
general G, as a consequence of [KV, Lemma 8.39]. Outside the weakly fair range, the lemma
(and hence Theorem 3.1b(iv)) are apparently new, although the proof is surprisingly simple.

Perhaps more importantly for us is that the work of Sections 6-8 allows us to deduce
Theorem 3.1b(iv) from Theorem 3.1b(iii), without referring to Chapter 8 in [KV]. (To be
fair, our proof is extremely complicated and far from conceptual.) However, it is reasonable
to expect that the arguments of Sections 6-8 can be used to detect reducibility of singular
A4(A) modules for classical groups other than U(p, q).

We set aside the definition of certain ranges of positivity for A and g.

Definition 3.4. A one-dimensional unitary (I, L N K)-module A said to be in the mediocre
range for ¢ = [ @ u if indg ((Ct_tp(u)) is irreducible for all £ > 0. We say that A is in the
(weakly) good range if A\ 4 p is (weakly) dominant; and say that X is in the (weakly) fair
range if A + p(u) is (weakly) dominant.

A module A4()) is said to be good, or in the good range, if A is in the good range for g.
Similar terminology applies for weakly good, fair, weakly fair, and mediocre.

The fair range is easily seen to contain the good range, and it’s not too hard to see that the
mediocre range contains the fair range (see [KV, Theorem 5.105]). The next lemma makes
these ranges explicit in the U(p, q) setting (from which the containments become obvious).

Lemma 3.5. Recall Notation 2.1, and let q correspond to {(p1,q1),---,(pr,qr)}, and set
n; = p; + ¢;. Fiz a one-dimensional unitary (I, L N K)-module
n1=p1+q1 Ny =pr+qr
D VRS W D).
(a) A is in the good range for q if and only if
Ai — Aig1 > —1, for all 4.
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(b) X is in the fair range for q if and only if
n; + Njy1
2 9
(¢) A is in the mediocre range for q if and only if
Xi —Aj > —max(n;,nj) — Z Nk, for all i < j.
i<k<j

Ai — Aip1 > — for all 1.

Remark 3.6. The weakly good and fair ranges are characterized by relaxing the strict
inequalities in (a) and (b) to weak ones. Parts (a) and (b) follow directly from the definitions.
Part (c) is deeper; it is proved in Satz 4 and Corollar 4 of [Ja]. Finally note that the condition
in (c) isn’t transitive, so we need to consider all pairs i < j.

Remark 3.7. Since the fair range is properly contained in the mediocre range, Theorem 3.1
suggests that we are perhaps excluding some unitary representations by restricting our at-
tention to the weakly fair range. Conjecture 1.1 says that this should not be the case and,
in fact, in Theorem 9.1, we prove that any mediocre A4(\) is isomorphic to a weakly fair
one; so we obtain no new unitary representations inside the mediocre range (but outside the
fair range).

Before turning to more detailed matters about the A4(\) modules below, we discuss which
ones have their infinitesimal character in a central translate of Wp, the convex hull of the
Weyl group orbit of p. (The irreducible unitary ones with this property are unitarily small
in the sense of [SaV].) For general ), the condition is complicated, but in the weakly fair
range, the complications magically disappear.

Proposition 3.8. Retain the notations of Lemma 3.5. L
(a) Choose o € Sy so that Ay(1y > +++ > Ay(py. Then A € Wp (modulo the center of g)
if and only if

o(@) T Mo (i .
Ao(i) — Aa(it1) < G0 2n (+1)), for all 1.

(b) If X is in the weakly fair range for q, \+p € Wp (modulo the center of g) if and
only if
(A ) <0, foralla € AT,
or, explicitly, if and only if \i—Xix1 <0 for all 1.

Said differently, given the Salamanca-Vogan conjecture and Conjecture 1.1, the Aq()) mod-
ules with

—(p(u),a) S <A’ a) S 0

exhaust the unitarily small representations of U (p, ¢) whose infinitesimal character is a weight
translate of p.

Sketch. For part (a), we can clearly assume that \ is dominant and o is the identity. We can
also assume (by modifying A\ by a central element) that the sum of the entries of \ is zero;
i.e. that A lives in the dual of the semisimple piece of the diagonal Cartan subalgebra. (We no
longer are assuming that the entries of A are integers, of course.) In order for this kind of A
to live in Wp, it must be inside each codimension-one face of Wp which contains the point p.
We can characterize such faces as follows. Given a simple reflection s;, let S(7) ~ S;_1 X Sp—;
be the subgroup of S,, generated by the simple reflections other than s;. (That is, S(i) is the
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Weyl group of the levi factor of a maximal parabolic subgroup.) Then the codimension-one
faces containing p are precisely the convex hulls S(i)p. The condition that A lie inside the
ith such face is exactly the ith condition given in part (a), thus completing the sketch of the
first part. (The reader is encouraged to draw the rank two picture.)

For part (b), apply (a) to A+p. O

Returning to more immediate questions, the good Aq()) with infinitesimal character p are
(almost) parametrized by the set of #-stable parabolics, but there is some repetition. In our
U(p, q) setting, for instance, a simple induction in stages argument shows that coincidences
arise from adjacent compact factors (of the same signature) in I,.

Lemma 3.9. Suppose that q' corresponds to {(p},q}),--.,(Pr41,49.41)} (as in Notation 2.1)
and that for somei <r, q; = q;.1 = 0. Let q correspond to the sequence {(p1,q1),...,(pr,q)}
obtained by combining the ith and (i + 1)st entries:

(P q;) if j <4,
(Pi_1,q5_1)  if 5>
Then Aq(Ciriv) =~ Aq(Ciriv). The analogous statement holds if p; = pj,; = 0.

These are the only coincidences that can arise, however.

Proposition 3.10. The good Aq(X) for U(p, q) with infinitesimal character p are parametrized
by ordered sequences of pairs of integers

{(p1,1)s---» (Prr @)} with > pi=p, Y ai=gq,

so that no adjacent pairs are of the form (p;,0), (pi+1,0) or (0,4¢;),(0,q+1). The correspon-
dence takes a sequence to Aq(Cyiy) where q is defined as in Notation 2.1.

Example 3.11. In the case of U(p, 1), the parameters appearing in the proposition are all
of the form

{(’i,O),(p—’i—j,l),(j,O)}, OSZ,]SP,’L‘F]SP,
here if the pair (0,0) appears we ignore it. For future reference, we denote the above set of
pairs by [i,j] and the corresponding Aq(Cyrip) as X[s, j].

We now record a few results, specific to the U(p, q) setting, describing the effect of trans-
lation functors on the Ag(X).

Lemma 3.12. Let q correspond to an ordered sequence {(p1,4q1),---,(pr,qr)}, let X be in
the good range for q, and set n; = p; + q;. Consider a simple root o = e, — ex11 and write

(uniquely)
k=Y nj+1, with0<1<nj.
1<j

Then o € T(Aq(X)) (Notation 2.2) if and only if one of the following conditions holds

(a) 1 >1; or

(b) Ifl =0, the consecutive entries (p;, q;), (Pj+1,¢j+1) are of the form (p;j,0), (pj+1,0)

or of the form (0,4;), (0, 5+1):

In particular, if the sequence {(p1,q1),--.,(Pr,qr)} is of the kind described in Proposi-
tion 3.10, case (b) can never occur, and T(Aq(X)) consists of the simple roots of t in L.
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Pf. One can certainly prove the lemma by understanding the Langlands parameters of the
good A4(A) (as is done in [VZ]) and then applying Vogan’s 7 invariant calculation of [V3].
This requires some fairly serious bookkeeping, so we sketch an alternative proof.

The ideas given below together with induction in stages reduce the Lemma to the case
when ¢ is maximal and of the form of Proposition 3.10. So let q be associated to the sequence
{(p1,q1), (p2,92)} with neither both p’s nor both ¢’s zero. The roots of the form specified
by condition (a) in the lemma are exactly the ay = e — exy1 with & # p1+¢1. Now
the translation functor 1, commutes with the derived Bernstein functor, so the composition
factors of 1 (Aq())) are of the form I15(Z) where Z is a composition factor of 1, (indg(Cy)).
By a Mackey isomorphism, this latter module admits a generalized Verma flag which can be
explicitly examined to conclude that if condition (a) is satisfied, 1, (Aq(N)) is zero.

To finish the sketch we need to show that for & = p1+qi, o ¢ 7(Aq(N)). If this were
the case, the 7 invariant would consist of all simple roots. Lemma 4.2 then implies that
the shape of the annihilator of A4()) is a single column, which (by the ‘same-shape’ result
of [BV1]) in turn implies that the asymptotic support of Ag4()) is zero. Since we have
assumed that q is associated to {(p1,q1), (p2,492)}, Proposition 5.4 and Lemma 5.6 imply
that either p;1 = p2 = 0 or ¢1 = g2 = 0, which contradicts our original assumption on the p’s
and ¢’s. O

The next lemma will be the basis of moving from good to worse ranges. The first assertion
is Lemma 8.1 below; the second follows from the first using the ideas of the preceding proof.

Lemma 3.13. Let X' be in the good range for q, let A C X — 7(Aq(X')), and recall Nota-
tion 2.2. Suppose
A=)\ + Zkiﬂi (with each k; > 0)
i€EA
is in the mediocre range for q, and set v = X + p. Let T be any translation functor of the

form
T =[]

with the factors of the product being taken in any order. Then
T(ind§(C})) = indd(CY),
and T(Aq(XN)) = Aq(N).

4. PRIMITIVE IDEALS IN gl(n,C)

We begin with a convenient choice of Joseph’s parametrization of primitive ideals in
gl(n,C).

Theorem 4.1. For a dominant integral v = (v1 > --- > v,,) € t*, the set Prim(U(g)), is in
bijection with the set of v-antitableau (Notations 2.2, 2.3).

We now describe how we want the parametrization of the theorem to work. Duflo’s
theorem asserts that the map from (the involutions of) W to Prim(U(g)), sending w to
Anngg)(L(wv)) is surjective. Assume now that v is non-singular, dominant, and integral;
we treat the singular case in a moment. Joseph proved that

Anny(g) (Lp(wr)) = Anngg)(Le(w'v))
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if and only if RS(w) = RS(w'); here RS(w) denotes the the ‘counting’ tableau of the
Robinson-Schensted algorithm (see [Sag]). We obtain a v-antitableau by changing the ith
entry to v;, thus describing the parametrization of the theorem in the regular case. (At
first glance the ‘antitableau’ parametrization appears like a ridiculous complication. It does,
however, have the advantage of making the statements of our main theorems much cleaner.)

The singular case follows from the translation principle as discussed after Theorem 4.4
below. In order to state that theorem, we need to first consider 7-invariants on the level of
tableaux. Jantzen first showed that, for v regular and integral, 7(Ly(wr)) coincides with
the combinatorial definition of 7(w) coming from the Bruhat order. Combined with an easy
observation about the Robinson-Schensted algorithm, this implies that one can read off the 7
invariant of a primitive ideal (with regular integral infinitesimal character) from its tableau:

Lemma 4.2. Let v be dominant, integral, and regular, and fir I € Prim(U(g)),. Then
o = e; — e;y1 is in the T-invariant of I if and only if v;11 is strictly below v; in the tableau
corresponding to I (by the procedure of the previous paragraph).

The tableau condition comes up sufficiently often that we set it aside in a definition.

Definition 4.3. Let v be dominant, regular, and integral. The simple root o = e; — €;41 is
said to be in the 7-invariant of a v-standard tableau S if and only if v; 1 is strictly below v;
in S; or, equivalently, if and only if 7 + 1 is strictly below ¢ in the underlying tableau of S.

Now we isolate the relevant version of the translation principle. (See [KV, Chapter 7] and
the references given there.)

Theorem 4.4. Let v be regular, integral, and dominant, and recall Notation 2.2. Suppose
there is a finite-dimensional representation with extremal weight i so that V' = v+ is again
dominant (but potentially singular). Let A ={a € B | (V',a) = 0}.
(a) The translation functor 1" establishes a bijection between irreducible U(g) modules
with infinitesimal character v whose T invariants are contained in the complement
of A and irreducible U(g) modules with infinitesimal character v'.
(b) szl is well-defined on the level of primitive ideals and defines a bijection between
primitive ideals with infinitesimal character v whose T-invariants are contained in
the complement of A and primitive ideals with infinitesimal character v'.

To complete the description of the parameterization of Theorem 4.1, consider a primitive
ideal I' of dominant (but potentially singular) infinitesimal character v'. Let v be as in Theo-
rem 4.4; then there is a unique primitive ideal I of infinitesimal character v with qu’ (I)=T.
We have already described a standard v-antitableau parametrizing I. Under Theorem 4.1, I’
is parameterized by the unique standard »/-antitableau whose underlying tableau coincides
with that of 1. Notice that in terms of the parameterization of Theorem 4.1, the tableau of
I = ¢,’j’ (I) is obtained by changing the coordinates of the antitableau corresponding to I
from v to v/. We shall see in Lemma 8.12 that much more complicated translation functors
can be described in this way.

To be absolutely explicit, we summarize how to go from a v-antitableau S, to the highest
weight module whose annihilator it parametrizes. Take v = (v1 > --- > vy,), and construct
the underlying Young tableau Sy using the procedure described in Notation 2.3. Consider
the set of elements of S, whose Robinson-Schensted counting tableau is Sy. For a given
one of these elements, say w, S, parametrizes the annihilator of the highest weight module
Ly (wv).



ANNIHILATORS AND ASSOCIATED VARIETIES OF Aq(A) MODULES FOR U(p, q) 11

In Section 6, we will need some weak information about how annihilators behave under
cohomological induction. The next lemma is that kind of statement.

Lemma 4.5. Let q = [ @ u be a mazimal 0-stable parabolic for U(p,q) with I, = u(p1,q1) &
w(po, q2); set n; = p;+q;. Let X' @ X" be an irreducible (I, LN K)-module with infinitesimal
character v satisfying

v+ p(u),a) >0 for all o € A(u).
Set

X = ﬁg(X' ® X").

Then X is irreducible and the first ny bozes of the underlying tableau of Ann(X) coincide
with the underlying tableau of Ann(X') (Notation 2.3, Theorem 4.1).

Sketch. By [KV, Theorem 8.2], X is irreducible. The results of [V1] imply that the first
n1 boxes of the underlying tableau of Ann(X) are characterized by applying sequences of
wall-crossing translation functors to X. The walls in question correspond to the first n; — 1
simple roots of g. Using the ideas of the proof of Lemma 3.12, it follows that the wall
crossing information is identical for X and X’. The lemma follows. O

We isolate the precise statement that we will need in a corollary, which follows by induction
using an easy induction in stages argument taking X' = Ay()\') and X" an appropriate one-
dimensional representation.

Corollary 4.6. Let q C g = gl(n,C) be the 0-stable parabolic corresponding to the ordered
set {(p1,q1)s---+(Pr,qr)}. Let v > s and let ¢ C gl(n',C) be the 6-stable parabolic corre-
sponding to {(p1,q1),---, (Ps,qs)}. Suppose Cy is a one-dimensional (I, LN K)-module in the
good range for q, and let Cyr denote the (', L' K') module obtained by restriction. Then the
first n' bozes of the underlying tableau of Ann(Aq())) coincide with the underlying tableau
of Ann(Aq (X)).

5. ASYMPTOTIC SUPPORTS AND ASSOCIATED VARIETIES FOR THE Ag()\)

For the moment we return to the general setting of an arbitrary reductive group G.
Given an irreducible Harish-Chandra module X, one is led to the study of singularities of its
distribution characters at the identity. The relevant notion is due to Barbasch and Vogan
([BV1]); roughly speaking, the distribution character of X has an asymptotic expansion
whose leading term is a real linear combination of (Fourier transforms of canonical measures
on) real nilpotent orbits, all of the same dimension. This linear combination, denoted
AS(X), is called the asymptotic cycle of X; the closure of the union of the orbits appearing
in AS(X) is called the asymptotic support of X and is denoted AS(X).

Nilpotent orbits also arise naturally through Vogan’s construction of the associated variety
of X ([V2], [V7]). Using a good filtration on X, one forms the associated graded object
which turns out to be a finitely generated module over S(g/€) and therefore corresponds to
an algebraic cycle in (g/€)*. This cycle is called the associated variety of X and is denoted
AV(X); it is an integral linear combination of nilpotent K¢ orbits on p. The union of terms
appearing in AV(X) is denoted AV(X).

Although the asymptotic support is a purely analytic invariant, and the associated variety
is a purely algebraic one, the next result indicates the formal possibility that the two may
be related.
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Proposition 5.1 (The Kostant-Sekiguchi bijection; see [CMc]). The set of nilpotent coad-
joint orbits of K¢ on p* is in bijection with the set of real nilpotent coadjoint orbits of G on
8o-

Let ® denote the bijection of the theorem (taking G orbits to K¢ ones), and extend

® in the obvious way to linear combinations and unions of orbits. Barbasch and Vogan
conjectured the following result; a proof has been announced by Schmid and Vilonen [ScVi].

Theorem 5.2. ®(AS(X)) = AV(X).

In particular, note that the coefficients appearing in AS(X) are all integers, and that
B(AS(X)) = AV(X).

A natural question to ask is how asymptotic supports behave under cohomological induc-
tion. In particular, we can ask for the asymptotic support of an Aq()). Since the asymptotic
support of a finite-dimensional representation is zero, one expects AS(A4(A)) to be (some-
how) induced from the zero orbit. A precise statement appears in Proposition 5.4, but first
we need to define a notion of induction for real orbits.

Definition 5.3. Let O be a real nilpotent coadjoint orbit for L in [}. Suppose L is a Levi
subgroup of G and q is a f-stable parabolic of g with [, = qNq. Let O g9 = ®(O() be the
corresponding (K N L)c orbit in p* N [* (Proposition 5.1). Then K¢ - (Org + (w* Np*)) has
a unique open K¢ orbit Og 9. We define

indd(0r) = @ (O p).
(Note that the induced orbit depends on g and not just [.)

The following proposition was conjectured in [BV4]; for U(p, ¢), Barbasch and Vogan knew
a proof based on explicit computation. The general statement given below is well-known to
experts.

Proposition 5.4. Let X be in the good range for q. Then AS(Aq(X)) is the closure of the
Richardson orbit indg((’)zem).

Pf. Let X = Ag()), let Q C G¢ be the subgroup corresponding to ¢, and consider the
closed K¢ orbit O of the identity coset of the partial flag variety G¢/Q. Let A(X) denote
the (partial flag) D-module localization of X at dominant regular infinitesimal character
A+ p. Then [BoBr, Corollary 1.9] implies that AV(X) is the image under the moment map
of the support of the characteristic cycle of A(X). Since A is dominant, it is not difficult
to see that the support of the characteristic cycle is the conormal bundle of O (see [Ch,
Lemma 1.4], for instance). The image of the conormal bundle is the K¢ saturation of u*Np*
which is just the closure of the orbit é_l(indg(ozem)) appearing in Definition 5.3. Since
AV(X) = ®(AS(X)) (Theorem 5.2), the proposition is proved.

Now we return to the u(p, q) setting to record some explicit results.

Lemma 5.5 (see [CMc], 9.3.3). Nilpotent orbits in u(p,q) are parametrized by signed Young
diagrams of signature (p,q) (Notation 2.3).

We conclude this section with a lemma that gives the results of certain orbit inductions
on the level of tableaux. In its statement, an empty row is to be interpreted as ending with
both plus and minus signs.



ANNIHILATORS AND ASSOCIATED VARIETIES OF Aq(A) MODULES FOR U(p, q) 13

Lemma 5.6. Let O be a nilpotent orbit in u(p1,q1) corresponding to the signed tableau T .
Let O,ero be the zero orbit in u(pe,qe). Let ¢ C g = gl(p+ q,C) be associated to the sequence
{(p1,q1), (P2,92)}- Then the signed tableauz of signature (p,q) corresponding to the induced
orbit
indg((’)l X Ozero)

is obtained by adding r pluses and s minuses, from top to bottom, to the row-ends of T1 so
that

(a) at most one sign is added to each row-end; and

(b) the signs of the resulting diagram must alternate across rows.

(The resulting diagram may not necessarily have rows of decreasing length, but one can
choose a tableau equivalent to Ty so that the result does have rows of decreasing length.)

Sketch. One may prove Lemma 5.6 as follows. First note that O is itself Richardson so
we can write O] = indg,1 (OLero); then an appropriate induction in stages argument shows
1

that the lemma computes indﬁ,(Ozem) for some ¢’ (possibly) different than q. Hence the
lemma reduces to the computation of Richardson orbits. As remarked at the end of the
proof of Proposition 5.4, this computation amounts to composing the Kostant-Sekiguchi
bijection with the computation of the moment map image of a certain conormal bundle. A.
Yamamoto [Ya] has given an algorithm to perform this latter computation in terms of signed
tableau. Tracking through these steps gives the algorithm of the lemma. O

Remark 5.7. At best, this sketch again requires substantial bookkeeping. In particular,
one needs to understand the K¢ orbits on G¢/B which parametrize the A4(A) modules.
This by itself is rather involved — it follows from Vogan and Zuckerman’s description of the
A4()) Langlands parameters [VZ] and an application of the Matsuki correspondence. As an
alternative, it is a relatively straightforward exercise to compute indg((’)zem) directly from
the definitions. We leave the details to the interested reader.

Remark 5.8. Garfinkle ([G]) has given a map taking Langlands parameters of Harish-
Chandra modules for U (p, ¢) with trivial infinitesimal character to signed tableaux. A num-
ber of people have conjectured that her algorithm in fact computes associated varieties, and
McGovern ([Mc2]) has independently checked that this is indeed the case. In any event,
we have given enough details above to give an explicit proof: the algorithm of Lemma 5.6
coincides with Garfinkle’s algorithm for Aq(A) modules, and the general case is reduced to
this by the Harish-Chandra cell structure described in the beginning of Section 6.

Example 5.9. We continue the example of U(p, 1) initiated in 3.11. If p > 2, there are four
nilpotent orbits in u(p, 1). They are parametrized by the signed tableaux

e
It |+ I+
HumE B B
+] + +]

and we will abbreviate these tableaux by their top row. We can apply the algorithm of
Lemma 5.6 to the compute the Richardson orbits corresponding to the asymptotic support
of the good Aq(A) with infinitesimal character p parametrized in Example 3.11. Using the
notation established there we get

AS(X10,0) =[] ;
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AS(X[i,0]) =+]—]|, i#0;
AS(X0,4]) = . J#0;
AS(XTi, j]) = , 4,5 #0.

This concludes the example.

We will need the following technical lemma for applications below.

Lemma 5.10. Let q be attached to the sequence {(p1,q1)s---,(Pr,qr)}. For j < r, let
q(j) be the O-stable parabolic of 9(j) = ol(X;<;(pi+ai),C) attached to the subsequence
{(p1,91),---,(pj,q5)}. Let S be the (equivalence class of) signature (p,q) tableau corre-
sponding to ind3(Oyero). For any representative S of S, write S =[] S; for the partition of
S into disjoint skew columns (Notation 2.83) obtained by requiring

shape(H 5’1) = Shape(lndﬁgjg(ozero))'
1<j

Then for any S, we have the following conclusion:

H S; = 1ndg(J) (Ozero)-

i<j

In particular, the number of plus (or minus) signs in each S'j is independent of the choice
of S.

Sketch. The first assertion is not as obvious as it may seem. The main point is that in the
lemma S is fixed, yet at each stage the algorithm of Lemma 5.6 potentially requires rows
to be interchanged (cf. the parenthetic comment concluding the statement of Lemma 5.6).
The reason this introduces no complications is as follows. Write 77 for any representative
of 1ndgg g((’)zem). Suppose 79 has several rows of length m, with at least one length m row

ending + and at least one ending in —. Then the corresponding rows of 791 either all have
length m—1 or all have length m. Given this observation, the first assertion follows. The
final assertion is clear. O

6. THE BARBASCH-VOGAN PARAMETRIZATION AND THE GOOD RANGE.

In [V6] and [BV4], the definition of Kazhdan-Lusztig cells is adapted to the real case giving
an equivalence relation on the set of Harish-Chandra modules with infinitesimal character p.
Equivalence classes contain modules with the same asymptotic support and, for U (p, g) each
class contains a canonically defined Aq(X). Thus, by Proposition 5.4, the asymptotic support
of any Harish-Chandra module for U(p, q) with trivial infinitesimal character is irreducible.
In fact, Barbasch and Vogan proved that cells are completely characterized by the signed
tableau corresponding to the asymptotic support of any element in the cell. Moreover, all
such tableaux arise in this way.

As in the complex case, the elements of a Harish-Chandra cell parametrize an integral basis
for a subquotient of the coherent continuation representation. (The subquotient is minimal
with respect to the property of being spanned by irreducible characters.) By a counting
argument, Barbasch and Vogan showed that all subquotients in question are irreducible, a
phenomenon which McGovern [Mcl] has subsequently shown is a consequence of the fact
that all irreducible representations of S,, are special. In any case, Barbasch and Vogan
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proved that the subquotient corresponding to the cell parametrized by a signed tableau T
is simply the irreducible representation of S, given (in Young’s notation) as shape(7), and
as a consequence deduce the following theorem for infinitesimal character v = p. The general
case follows from a translation principle (cf. Theorem 4.4).

Theorem 6.1 ([BV4]). Suppose that v € p+7Z" is a weight lattice translate of the infinitesi-
mal character of the trivial representation. The map assigning an irreducible Harish- Chandra
module for U(p,q) with infinitesimal character v to the pair consisting of its annihilator and
its asymptotic support is an injection. On the level of tableaux (Section 4 and 5), the map
assigns a v-antitableau and a signature (p,q) signed tableau (of the same shape) to each
irreducible module of infinitesimal character v, and any such pair arises in this way.

Remark 6.2. When v = p, the map described in the theorem is formally analogous to
the Robinson-Schensted algorithm arising in the computation of Kazhdan-Lusztig cells for
sl(n,C). This analogy can be made precise in terms of the geometry of the generalized
Steinberg variety; see [Tr] for details.

The main goal of this paper is to identify the parameters of the weakly fair Aq()), and we
need to start by identifying the good Aq(A). For a fixed regular integral infinitesimal char-
acter v, Garfinkle described an algorithm taking Langlands parameters to pairs of tableaux
and proved that the algorithm computes annihilators by a very detailed and complicated
combinatorial calculation with the generalized 7-invariant [G]. Moreover, [VZ] explicitly
gives the Langlands parameters of the good A4()), so combining these results one obtains
a tableau characterization of the good Aq()). This is entirely tractable, but we choose to
avoid these relatively ponderous references and side-step the issue of Langlands parameters
by a simple application of the results of Sections 4 and 5. We take that up now.

The idea is to build up the tableaux parameters of an A4(\) step-by-step from the simple
factors of [,. The inductive proof is quite simple but the notation for the general case is
a little overwhelming. We indicate the inductive procedure in the following example, and
leave it to the reader to formulate the general proof of the theorem which follows.

Example 6.3. Let q C gl(8,C) correspond to {(2,2),(1,3)}, and let
A= (Ala"'aAla)\Za"'aAQ)

be in the good range for q. Let A() = (\1,..., A1) be the indicated character of gl(4,C),
and similarly for X&), Set v = A+ p and p = X + p(gl(4,C)). We compute the tableau
parameters (S, S+) giving the annihilator and associated variety of Aq()). To illustrate the
induction, we write

4,(0) = L(Cyn) 8 Cy)) = L(A,0) AY) ® Cy2));

here (") = gl(4,C). Now A AWy = C,), so its tableau parameters are

ERENEES
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Proposition 5.4 abstractly computes AS(A4())), and Lemma 5.6 does so explicitly. Using
the algorithm of the lemma, we obtain

+
|

Sy =AS(4,()) = 1.

[+][+] |

Now S must have the same shape as S+, and Corollary 4.6 tells us the first four coordinates
of S; so far, then, we know that S looks like

V1
V2
S =\
V4

Finally 7-invariant considerations (Lemma 3.12 and Lemma 4.2) imply that the remaining
coordinates vs,...,vs must be sequentially entered moving strictly down S; there is only
one way to do this:

V1|Vs
V2\lVg
S =|v3|vr
vy

Vg

This completes the inductive computation of_(S, Sy ) for Aq(N).

Theorem 6.4. Let q = [® u corresponds to {(p1,q1),---,(Pr,qr)} (Notation 2.1), let Cy be
a one-dimensional (I, L N K)-module in the good range for q (Definition 3.4), and let

1 1 T T
I/:(I/g),...,l/zgll_ql, ...... ,l/p,...,l/z(,ra_qr):)\—i—p.

The tableau parameters (Theorem 6.1) of Aq(A) are obtained inductively as follows. Start
with the empty pair of tableauz and assume that the (s — 1) step has been completed giving a

pair (5(5—1)’ S:(f*l)). S:(ts) is obtained by adding ps pluses and qs minuses to S:(tsfl) according

to the algorithm of Lemma 5.6; S®) is the tableau of the same shape of Sis) obtained by adding

the coordinates V£S), o sequentially from top to bottom in the remaining unspecified

»Upstqs
bozes.

Remark 6.5. Because of the good range condition on A, the algorithm of Theorem 6.4
automatically produces a v-antitableau S. But even if A isn’t good, the algorithm still
produces a v-quasitableau. Theorem 7.9 describes how to straighten this quasitableau into
a v-antitableau which corresponds to the annihilator of A4(X).

Remark 6.6. The proof of Theorem 6.4 generalizes far beyond U(p, ¢) and, in the case of
a classical real Lie groups GR, essentially reduces the computation of annihilators of Aq(\)
modules to the relatively elementary issue of computing real Richardson orbits. When
the cell structure of G is particularly simple (for instance, if each cell contains an Aq(\)
module), then the argument is powerful enough to compute annihilators of any Harish-
Chandra module for Gg. Precise details will appear elsewhere.
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Example 6.7. Consider again U(p,1) and recall Examples 3.11 and 5.9. Recall the A4())
modules X[i,j] of infinitesimal character p = (p1,...,pn). Using Theorem 6.4, we can
compute annihilators of these modules.

Ann(X][0,0]) =
P1Pk;
Ann(X[3,0]) =|: | , ki=i+1;0#0
P1 Plj|
Am(X[0,j]) =|:] , L=n+l-jj=1
plpkiplj|
Ann(XTi, j]) =] : | ) ki=i+1Llj=n+1-j5i,7 #0.

An easy count of Langlands parameters shows that the modules X[i, j| exhaust the irre-
ducible Harish-Chandra modules with infinitesimal character p. By Theorem 3.1, the XT3, j]
are all unitary, and so we have verified Conjecture 1.1 explicitly for infinitesimal character
p. (This case was handled originally by Baldoni-Barbasch [BaBa].) The interested reader
can explicitly prove Theorem 6.1 in this case by using the description of the coherent con-
tinutation representation given in [C].

In terms of the program described in the introduction, the more important kind of result
is determining when a pair of tableaux actually parametrizes an Ag()). Such a statement
follows by formally examining the algorithm of Theorem 6.4. (Corollary 6.8 is restated a
little more cleanly in Corollary 6.12).

Corollary 6.8. Let v = (v1,...,v,) € t* be dominant, integral, and regular. Consider a
pair (S+,S) consisting of a signature (p,q) signed tableau and a v-antitableau. Partition S
into disjoint union of difference-one skew columns (Notation 2.3) S1,...Sm ordered by their
mazimal entry, and let S’i,j denote the corresponding skew columns of a representative Sy
of Si. Set Sk = ;< Si and similarly define S:kt Assume that each S* is itself a tableau.
Then (S+,S) parametrizes a good Aq(X) for U(p, q) if and only if there is a representative Sy
of St such that the following condition holds for all j: if a row is skipped in the arrangement
of S in S, then all rows in S’i below (and including) the first skipped row and above (and
including) the last row of S; end in the same sign.

Moreover, q and X\ can be read off from the S; as follows: q corresponds to the ordered
sequence of pairs of integers obtained from the number of plus and minus signs in S’i,j; and
A =v — p. (The data of q and X is independent of the choice of representative Si.)

Sketch. Suppose (S,S+) = (Ann(A4(N)), AV(A4(N))), for some X in the good range for g.
We are to find a partition of S and a representative Sy of Sy satisfying the requirements
of the corollary. Theorem 6.4 gives a partition of S =[] S; into disjoint difference-one skew
columns, and Lemmas 5.6 and 5.10 imply that the corresponding partition of S, (for any
choice of representative S’i) satisfies the required conditions.
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Conversely, if such a partition and representative of (S, S1) are given, Theorem 6.4 clearly
implies (S,S5+) = (Ann(A44(A)),AV(A44(A))), where g and X are defined as in the second
paragraph of the corollary. The final parenthetical assertion follows from the concluding
assertion in the statement of Lemma 5.10. O

Remark 6.9. The partition in the corollary may not be unique; the failures of uniqueness
correspond exactly to the adjacent pairs condition in Lemma 3.9.

Now we introduce a little more notation designed to rewrite the statement of Corollary 6.8
in a more compact form which generalizes.

Definition 6.10. Let Si,...,S, be a set of disjoint difference-one skew columns of a v-
quasitableau S, and suppose S = [ S;. Then we say that the S; form a partition of S into

difference-one skew columns if S/ =[], <;j Si is a quasitableau for each j =1,...,7.

If §y is a representative of a signed tableau S1 of the same shape of S, any partition of
S into skew columns induces a partition Sy = 11 S’i,i of S; into skew columns. Let (pi, @)
denote the number of plus and minus signs in S'i,i, and let ¢/ be the §-stable parabolic
corresponding to the ordered sequence {(p1,q1),...,(pj,qj)} (as in Notation 2.3) of the
appropriate g/ = gl(n?,C). We say that the partition S = [][S; is consistent with (the
representative) S if

H Si i 1nd Ozew), for all j.
1<J

Using Lemma 5.6, we obtain an explicit condition for S = [] S; to be consistent with Syt if
a row is skipped in the arrangement of S; in S, then all rows in SJ below (and including)
the first skipped row and above (and 1nclud1ng) the last row of S must end in the same
sign.

Suppose we are given a partition of a v-antitableau S into difference-one skew columns,
S = []5}, consistent with S, = ]_[S’iz To this data, we may attach a 6-stable parabolic
g = [ & u to the sequence {(p1,41),---,(pr,qr)} as above; and we obtain a unitary one-
dimensional representation, C,, of [ as follows. Set [v] equal to the n-tuple of numbers
obtained by concatenating the entries appearing in the skew columns Si,...,S,, and view
[v] as a functional on t; then set A = [v] — p. Note that q and A constructed in this way are
independent of the choice of representative S.. (Clearly A is independent of the choice; the
last sentence of Lemma 5.10 implies that g is too.) We say that q and A are associated to
the partition of S = [ S; consistent with S,.

Finally, we translate the ranges of positivity of Definition 3.4 to the level of tableaux.
(The point is that if X is in the, say, mediocre range for g, and A and g are associated to
some partition S = [[S;, we want to define the columns S; to be mediocre.) If i < j, two
difference-one skew columns, S; and S; in a partition of S are said to be in mediocre position
if either of the following conditions is satisfied: the smallest entry in S; is greater than or
equal to the smallest entry in S;; or the largest entry in S; is greater than or equal to the
largest entry of S;. The skew columns are said to be in (weakly) fair position if the average
of the entries in S; is (weakly) greater than the average of the entries in S;. Similarly, S;
and S; are said to be in (weakly) good position if the smallest entry in the S; is (weakly)
larger than the largest entry in S;. Finally, we say that S; and S; are in nice position if both
the smallest entry in S; is greater than or equal to the smallest entry in S;, and the largest
entry in S; is greater than or equal to the largest entry of S;. (We have not encountered
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the nice condition before, but it will be important in the combinatorics of Section 8.) The
entire partition is called mediocre, fair, good, or nice if all pairs of its skew columns are in
the specified position.

Remark 6.11. We have the following implications on the ranges defined above:

good == fajr == mediocre

N

nice

With the above definitions, Corollary 6.8 becomes:

Corollary 6.12. Let v = (v1,...,v,) € t* be dominant, integral, and regular. Let X be
an irreducible Harish Chandra module for U(p,q) of infinitesimal character v and consider
(S,5+) = (Ann(X),AS(X)) (Theorem 6.1). Then X = Aq(\) if and only if there is a
partition of S into difference-one skew columns consistent with a representative of S+ so
that q and X\ are associated to this partition (Definition 6.10).

We will generalize this in Corollary 7.12 below.

7. STATEMENT OF MAIN THEOREMS

As mentioned in Remark 6.5, the algorithm of Theorem 6.4 has an obvious analog outside
the good range. But when Ag(\) is no longer good, there is nothing to guarantee that the
quasitableau produced is in fact an antitableau. Sometimes it is, and in these cases, the
algorithm of Theorem 6.4 does produce the annihilator of Aq()) (this has to be proved,
of course). But sometimes the quasitableau is not an antitableau, and we need a way to
convert it into the one parametrizing the corresponding annihilator. In order to do this,
we must move outside the class of Aq()\) modules to a larger class of representations that
still retains most of the nice translation properties of the A4(\)’s. Combinatorially, this
procedure introduces an equivalence relation on the the set of partitions of v-quasitableaux
into difference-one skew columns. Then given X, we can conclude that X is isomorphic to
a weakly fair Aq(\) if and only if there exists a suitably consistent representative in the
equivalence class of some nice partition of Ann(X). Moreover, the equivalence relation will
keep track of all coincidences and vanishing among the weakly fair (and, in fact, mediocre)
Ag(N).

Now we make these matters more precise, and begin to describe the equivalence relation.
As a first step we need to define a rough measure of the size and singularity of two adjacent
columns in a partition of S into difference-one skew columns. (The manner in which ‘size’
is to be interpreted is discussed in the remark following the definition.)

Definition 7.1. Given two adjacent columns C = S; and D = S, of a partition of S
into difference-one skew columns (Definition 6.10), we first define an integer depending only
on the shape of C and D in the following way. Label the entries of C and D (moving
sequentially down each skew column) as cj,..., ¢, and di,...,d;. For 1 < m < min(k,[)
define a condition

condition m : cg_my; is strictly left of d; in S
for 1 <43 <m.
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Define the overlap of C' and D, denoted overlap(C, D) to be the largest m < min(k,l) so
that condition m holds. (If condition m never holds, define overlap(C, D) = 0.)

The singularity of C' and D, denoted sing(C, D), is defined to be the number of pairs of
identical entries among the ¢; and d;. This is an integer which depends on the entries of C
and D (and is independent of shape of C' and D).

Remark 7.2. When S = C'[] D consists of only two skew columns, then it is easy to see
that the overlap is simply the number of rows of length two in S, and hence is precisely
related to the size of the variety associated to the primitive ideal corresponding to S. In the
general case, an analogous interpretation of overlap(C, D) exists, but since we do not need
the precise statement, we leave it to the reader to formulate.

Example 7.3. Consider

5 5 5|
4 4
3
C =] D =13 E =] 4
2 3
2] B 2
L1 L

Then overlap(B, C) = sing(B, C) = 3; overlap(C, D) = sing(C, D) = 4; and overlap(C, E) =
3 < sing(C, E) = 4.

With these definitions in hand, we can now define the equivalence relation. The reader is
encouraged to read Example 7.6 concurrently with the definition.

Definition 7.4. We define an equivalence relation on the set consisting of mediocre par-
titions of v-quasitableau into difference-one skew columns (Notation 2.3, Definition 6.10)
together with the formal quasitableau 0. Suppose S = [[S; is a mediocre partition of a
v-quasitableau into difference-one skew columns. The equivalence relation will be generated
by replacing adjacent skew columns S;, S;;1 in weakly mediocre position with Sj, S, ; in

nice position (Definition 6.10); here R = S; ][] S;y1 and R' = S; ][ S;; have identical shape
and the entries of R’ are a permutation of those of R. The resulting equivalence is given by
s=11s ~ s =1ISTIS115%: I s
J J<i J>i+l
We now describe R' = S{]]S;, ;. Since we will constantly refer to this procedure, we set it
aside.

Procedure 7.5. Suppose that S; and S;;; have lengths r and s respectively, and recall
Definition 7.1.
(a) If

overlap(S;, Si41) > sing(S;, Si+1),
or
overlap(S;, S;+1) = sing(S;, Si+1) < min(r, s),
Then R' = R.
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(b) T
overlap(S;, Si41) < sing(S;, Si+1),

then S is defined to be equivalent to 0, the (formal) zero tableau.
(c) Assume
overlap(S;, S;+1) = sing(S;, Si+1) = min(r, s).
We begin by describing a rearrangement, R’ of the coordinates of R = S; [] Si+1-
Let a1, ...,a, denote the sequential entries of S; and b;,...,bs likewise for S; 1.
Assume that the b’s are a subset of the a’s (the opposite case is described below),
and write them as

A1,---50]415---,0]45,---,0r, al—|—’i:bi

bi, ..., bs.

If bs = a,, then define R’ = R. Otherwise let S;;1(—1) denote the column obtained
from S;1; by subtracting one from each entry. Set R(—1) = S;]] Si+1(—1). By
induction (the case bs; = a, is the base case), we can assume that [R(—1)]’ (i.e. the
procedure applied to R(—1)) has been defined. We will construct R’ by changing
one member of each of the duplicate labels b; — 1(1 < i < s) in [R(-1)]" to b;.
Begin by considering the unique entry a; 1 in [R(—1)]’. There is at most one box
labeled by — 1 strictly to the right of a; ;1 in [R(—1)]’. If such a box exists, then
add one to its entry. If no such box exists, then add one to the entry in the left-
most box labeled b; — 1 in [R(—1)]". In either case call the resulting skew-tableau
[R(—1)]}.- Now construct [R(—1)], by the same procedure applied to [R(—1)]}, but
instead considering the entries ;419 and by — 1. Continue in this way, and define
R’ = [R(-1)l;.
(d) Keep the assumption on overlap and singularity as in the previous case, but suppose
that the a’s are a subset of the b’s. Write them as

a1y -..50p
bi, .. biv1, by, bs i = by

Informally, we compose the algorithm of the previous case with an automorphism
of g coming from the Dynkin diagram. If [ = 0, define R’ = R. Otherwise, set
R(+1) = Si(+1) ]] Si+1, where S;(+1) is obtained by adding 1 to each entry of
S;. Consider the unique entry by, in [R(1)]’ (the skew tableau obtained by the
inductive hypothesis applied to R(1)). Then at most one box a, + 1 is strictly left
of by, in [R(1)]'. If such a box exists, change its label to a,. If no such box exists,
change the label of the right-most occurrence of a, + 1 to a,. Let [R(1)]] denote
the resulting skew tableau. Continue as in (c), and define R’ = [R(1)]..

S

To finish the definition, we must give a partition R’ = S] ][5, into difference-one skew
columns in nice position. We construct S;,; as follows. Its last entry consists of the the
smallest entry, say ¢, in R’. (Recall if two entries appear in a skew tableau, the smaller
one is the one that occurs strictly right of the other). Its next to last entry consist of the
smallest occurrence of ¢ — 1 which is strictly above and weakly to the right of the last entry
of S}, ;. We continue in this way until we reach the last duplicate entry of R’ (i.e. the entry
b1 in case (c) or a; in case (d)). This defines S ; and S is defined to be what remains. It
is not hard to see that the resulting R’ = S;[[ Sj,, is actually a nice partition of R’ into
difference-one skew columns.
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Example 7.6. Recall the difference-one skew columns C, D, E of Example 7.3. Consider
the partitions

ot

:BHCHD;and

N[O ||| Ot

n
I
|r—l|tooa..l>cncm\1

= B ][ ¢ I E

DN [QO [ [ [ | Ot

N
Il
=i ||~

(a) Referring to Example 7.3, we know overlap(B, C) = sing(B, C) < min(5,5). Hence
Procedure 7.5(a) applies to R = B[] C to give R’ = R. Moreover, the partition
described in the last paragraph of Definition 7.4 is R’ = B]] C.

(b) Again referring to Example 7.3, we see that Procedure 7.5(b) appliesto R=C[[ E
to give zero. Hence T is equivalent to the zero tableau.

(c) Finally consider R = C' [[ D. Applying Procedure 7.5(c) and the definition of the
partition of R', we obtain

5 5
4 4
3
R':C'HD’ = [ H 2
1
13 L
12 L
We thus obtain
715]5 7155
644 644
5|3 513
BI[c]IDp =[4]3 ~ 42| =BJ[C']]DP -
3|2 31
12 13
L1 12

Now applying Procedure 7.5(a) to B[] C’ shows that S ~ 0, since overlap(B, C’) =
2 < sing(B,C") = 3.

The next lemma will be used frequently. Its proof amounts to the fact that the mediocre
condition was defined not only for adjacent pairs of columns, but all pairs (see Definition 6.10
and Remark 3.6).
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Lemma 7.7. Let S = [[S; be a mediocre partition of a v-quasitableau into difference-one
skew columns. If S ~ S' =[] S}, then the partition of S' is again mediocre.

The following very technical lemma will be useful below. (The reader is encouraged to
skip it, and refer back when necessary.)

Lemma 7.8. Let T = T, [[T2[[T3 be a partition of a v-antitableau into difference-one
skew columns. Assume Ty and To are in nice position, Ty and T3 are in mediocre position,

and that T1 contains the largest entry of T while T3 contains the smallest. Suppose that
Procedure 7.5 applied to To [ | T3 gives Ty [[T5. Then Ty [[T5 [ T3 is nice.

Sketch. By hypothesis T, and T3 are in nice position, and since T contains the largest entry
of T' by hypothesis, we need only verify that the smallest entry of T} is greater than or equal
to the smallest entry of T;. Write ¢; for the smallest entry of T;, and similarly for ¢;. The
nice hypothesis on 77 and 75 implies t; > 9, so it is enough to verify the following claim: o
occurs in T4. Since t3 is the smallest entry in T' (by hypothesis), we know t2 > t3. So either
t9 is larger than every entry in T3, or to occurs in T3. In the former case, Procedure 7.5(a)
applies to give Ty = Ty, and we conclude t2 occurs in T as claimed. In the latter case, to
occurs twice in T3 [ | T3. We conclude ¢ must occur in T4, thus proving the claim and hence
the lemma. g

We can now state our main results.

Theorem 7.9. Let q be a 0-stable parabolic and Cy be a one-dimensional (I, LN K)-module
in the mediocre range for q. Let v =X+ p = (v1,...,V,), and construct a v-quasitableau
S, together with a partition into difference-one skew columns S =[] S;, as in Theorem 6.4.
Then there is a algorithm (described below) to locate a distinguished S' = [ S} equivalent
(in the sense of Definition 7.4) to S = ] S; such that either: S' = 0; or S is actually a
v-antitableau and [[ S} is a nice partition into difference-one skew columns (Definition 6.10)
with
overlap(S;, Si, 1) > sing(S;, Si,1) for all i (Definition 7.1).
The module Aq()) is nonzero if and only if the latter case holds and in this case,
Ann(44())) = S".

We describe the algorithm of the theorem. Let q be associated to the sequence of pairs of
positive integers {(p1,q1),-- -, (Pr, gr)}, let A be in the mediocre range for q, and let v = A+p.
The algorithm is defined inductively in terms of r; we consider the cases r < 3, leaving the
general statement to the reader. When r = 1, Ag(\) = C,, and the theorem is trivial.
If r = 2, Theorem 6.4 gives a mediocre partition S = S;[[S2 of a v-quasitableau into
difference-one skew columns. Using Procedure 7.5, we obtain S ~ §' = S][[ S, or S ~ 0. In
the former case S’ is actually a v-antitableau and S’ = S{ ][] S5 is a nice partition of S’ into
difference-one skew columns whose singularity does not exceed their overlap, as required in
the theorem.

Next suppose 7 = 3. Again Theorem 6.4 gives a mediocre partition S = S1 [[ S2 ][ S3 of
a v-quasitableau into difference-one skew columns. By the r = 2 case and Lemma 7.7, we
may assume S; and Sy are in nice position. Applying Procedure 7.5 to R = So [ S3, we
obtain either S ~ 0 or S ~ S = 5, []S5]] S5, the partition being mediocre by Lemma 7.7.
In the latter case, S5 and S4 are in nice position and their singularity does not exceed their
overlap; but S; and S are only mediocre. So apply Procedure 7.5 to R = S]] S} which
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gives S ~ S" = SV ]S4 1] S5 Again if S” is nonzero, then Si and S§ are in nice position
(with the correct overlap condition), but S5 and S are only mediocre, so we can again apply
Procedure 7.5 as before, and continue in this way.

We claim that the see-saw algorithm must eventually produce either zero or a nice par-
tition (with the correct overlap conditions) of a v-antitableau equivalent to S. To see this
notice that when two mediocre columns T; [[T;;1 are exchanged for nice ones T; [ T}, ; by
Procedure 7.5, the largest entry of T; [ [ T;+1 always resides in 7] and the smallest entry in
Tj,;- (This follows immediately from the definition.) So after two see-saws, either S ~ 0
or S ~ Ty [[T2]]T5 with the largest entry of S contained in 77 and the smallest entry in
T3. We can assume 77 and Ty are in nice position, and then Lemma 7.8 implies that S is
equivalent to a nice parition (or zero) as claimed. The algorithm of the theorem in the r = 3
case is complete.

It is clear how the algorithm works for r > 3. (Convergence follows by induction and the
r = 3 case.)

Remark 7.10. When X is in the weakly good range for ¢, Theorem 4.4 and Lemma 3.13
imply that the annihilator of A4(A) can be computed from Theorem 6.4 and T-invariant
considerations. Theorem 7.9 reduces to such considerations since the overlap requirement
on the nice partition is nothing but a 7-invariant condition in this case.

Remark 7.11. We discuss how to read off the Langlands parameters of a nonzero weakly
fair Aq(\), say X. Theorem 7.9 computes Ann(X) and Proposition 5.4 gives AV(X). Using
the translation principle (Theorem 4.4), we can find X’ with infinitesimal character p (say)
with 9(X’) = X. Moreover, that theorem allows us to easily read off Ann(X’), and of
course we know that AV(X) = AV(X’'). Since 9 doesn’t cross any walls, its effect on
Langlands parameters is easy to understand. So writing down the Langlands parameters
of X = Ag()\) amounts to writing down those of X'. Given X' of trivial infinitesimal
character and (Ann(X’),AV(X')), Garfinkle ([G]) gives an algorithm to write down the
Z/2-datum of X'. Then it is a simple matter to relate this to the usual cuspidal Langlands
parameters (see [V4]). Among other things, the paper [Tr] gives the explicit relationship
between Z/2-data and K¢ orbits on the flag variety, which is relevant to the Beilinson-
Berstein classification.

Formally inverting the statement of Theorem 7.9, we obtain:

Corollary 7.12. Let v = (v1,...,vy,) € t be dominant and integral. Suppose (S,S+) is
a pair consisting of a v-antitableau and a signature (p,q) tableau of the same shape (Nota-
tion 2.3). Then (S,S+) = (Ann(X),AV(X)) for a mediocre X = Aq(X) if and only if the
following condition holds: there exists a nice partition S = [[S; into difference-one skew
columns with

overlap(S;, S;y+1) > sing(S;, Si+1) for all i

such that the partition S =[] S; is equivalent (in the sense of Definition 7.4) to a mediocre
partition S' =[] S, so that the partition of S’ is consistent with S+ and so that q and X are
associated to this partition of S’ (Definition 6.10).

Remark 7.13. When v is dominant and regular Theorem 7.9 and Corollary 7.12 reduce to
Theorem 6.4 and Corollary 6.12.
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Example 7.14. Consider the following pair of tableau for SU(p,p — 1), p > 3,

1[1]1]-]1 +[-[+]-
oF1 - . [
-1 +

By Corollary 7.12, these tableaux do not parametrize a mediocre A4()), and so Conjec-
ture 1.1 predicts that the corresponding Harish-Chandra module X is nonunitary. Using
Garfinkle’s algorithm [G] and the Vogan-Knapp minimal K type formula ([K]), one can
again verify that X is a spherical representation. An unpublished result of Barbasch asserts
that any unitary spherical representation is a weakly fair A4()); so we conclude that X is
nonunitary, as predicted. Note that for p > 3, the Dirac operator inequality (a traditional
means to detect nonunitarity) is necessarily inconclusive.

8. PROOF OF THEOREM 7.9

In this section, we prove Theorem 7.9. To compute the annihilators of the mediocre A4()\),
we will use the following strategy. Given such an Aq()), we can pull apart the overlaps of
A to obtain a good ), and then use Lemma 3.13 to move from the good Aq(X") (where we
have complete information about its annihilator and asymptotic support) to our module of
interest, Aq(A). On the surface, the program seems hopeless. The translation functor, T,
defined in the lemma is complicated; it is a sequence of multiple wall crossing functors, so
it appears as though we need very detailed information about the coherent continuation
representation in order to understand 7. But Lemma 3.13 says that T'(Aq(\)) = Aq())
which implies that whatever intermediate complications involved in computing T'(A4(X"))
must all disappear in the final answer.

We are going to compute T by inductively applying the T;’s (of Notation 2.2) to Ag(X'),
and we first need to describe the effect of the translations 7; on generalized Verma modules
inside the mediocre range.

Lemma 8.1. Let q=1® u be the block upper triangular parabolic subgroup of gi(n,C) with
[= EB;?:lgI(nj,(C). Let i be of the form i =3, n;, and let

Mi = €iy1 + -+ en.

Suppose that C, is a character of | with n and n + p; in the mediocre range for q (Defini-
tion 3.4). Set v =n+p and V' = n+p;+p, and consider the translation functor T; = zﬁzl as
in Notation 2.2. Let M(n) denote the (normalized) generalized Verma module

M(n) = ind2(Cy © N\ (w)).
Then
Ti(M(n) = M(n + ).

Pf. The proof is an induction on k, the number of factors of . We describe the base case
when [ = gl(n1,C) & gl(ng,C), giving enough details so that the reader can complete the
induction. In this case, i = n1, and without loss of generality (by, say, Theorem 4.4) we may
take
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the mediocre hypothesis on 1 + u; implying ¢ < max(ni,n2). As outlined in the proof of
Lemma 4.2, T,,, (M (n)) admits a filtration with generalized Verma quotients M (k) charac-
terized by
(a)  is of the form 7+ X where A is a highest weight (for t N [ in [) of an irreducible
constituent of the finite-dimensional g module F*i of extremal weight yu; restricted to
[; and
(b) s+p € W(n+tuitp).
Concretely, FHi is nothing but A\"?(C"), so the restriction in (a) is easy to compute: the
highest weights A are exactly

ni n2
N =(1,...,1,0,...,0,1,...,1,0,...,0), with l+m = n;.
S—— N——
l m

Now, using the mediocre assumption on ¢, one can check directly that A = Ag,, = p; is
the unique highest weight satisfying the requirements (a) and (b) above (hence giving the
conclusion that T'(M(n)) = M (n+pu;), and completing the k£ = 2 case). Since this is the crux
of the matter, we give the argument in detail.
Write
n—25+1

7]+p:(pla"'apn17t+pn1+1a"'7t+pn)7 pjzf
First assume that ny > no; together with the mediocre assumption on ¢ + u;, this implies
that

p1 >t + pny41-

Hence the value p; + 1 does not appear as a coordinate of n+u;+p. Thus if n+X ,,+p €
W (n+pi+p), we must have that the first coordinate of 7 + A, + p is p1+1. Hence the first
coordinate of \; ,,, is 0. This implies A ,;, = Ag,,, as claimed.

On the other hand, if n; < mo, then the mediocre hypothesis on 7+ pu; implies that

Pny >+ pn.

Thus the value t+p,, does not appear as an entry of n+p;+p. So if n+X; +p € W(n+pi+p),
the last coordinate of A;,, must be 1. Hence A, = Ag p,, as claimed.

The general case follows by using the k = 2 arguments on adjacent Levi factors of [ and
proceeding inductively. O

Corollary 8.2. Retain the notations of the previous lemma, and for 1 <1 <m <mn, let
r= an, s = Z n;j
i<l j<m
Suppose 1, N+ r, N+ s, and N+ pr+ps are in the mediocre range for q. Then
T, Ts(M(n)) = M(n+pr+ps) = TsTr(M(n))

The previous lemma and corollary complete the proof of Lemma, 3.13. We will, however,
need a strengthened version of Corollary 8.2.

Lemma 8.3. Retain the notations and assumptions of the previous lemma and corollary,
and let F" and F’ denote the irreducible representations of g with extremal weights p, and
ps. Then the translation functors T, (Ts(M(n))) = Ts(T(M(n))) can be computed as

P(M(n) @ F" @ F*),
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where P denotes the projection on infinitesimal character n+p+u,+us (as in Notation 2.2).

Pf. All of the ideas of the general setting are captured in the case when [ is the sum of three
blocks. So assume [ = @?_;gl(n1,C), with r = ny and s = ny+ng. Write T,5(M (n)) instead
of P(M(n) ® F" ® F*). As in the proof of Lemma 8.1, T;s(M (7)) admits a filtration with
generalized Verma quotients M (k) characterized by

(a) k is of the form n+ A where X is a highest weight (for t N[ in [) of an irreducible
constituent of F" ® F® restricted to [; and
(b) kt+p € W(n+purtus+p)

Using the fact that F7 = A"*""3(C") and F* = A\"*(C"), it is not difficult to see that
Fr @ F* =P Fh1m),

where the sum is over all pairs [ and m with 2]4+m = 2ny+n3 and 0 <[ < no; here F[Zkll]
is the finite dimensional representation of gl(n,C) with highest weight

2(e1 +---ex) + (ept1 + - €kr1)-
We thus see that the [ highest weights of F'" ® F'® restricted to [ are all of the form

ni na n3
A=(2,...,2,1,...,1,0,...,0 | (2,...,2,1,...,1,0,...,0 | (2,...,2,1,...,1,0,...,0),
S—— —— S—— —— Se—— ——
I mi lo m2 I3 mg3

with
2(ly + lo + 13) + (m1 +mg + m3) = 2ns + n3.

Arguing as in Lemma 8.1 (and using the mediocre hypothesis crucially), we conclude that
the only A of the above form which satisfies the requirements of (a) and (b) above is

ny na n3
P —
A=(0,...,0,1,...,1,2,....2).

Hence the lemma amounts to proving that the [ representation F' with highest weight A
occurs exactly once in the restriction of F" ® F® to [. To see this, note that X is an extremel
weight for F" ® F®, and hence F' occurs at most once. Clearly A is extremel for I, and so we
conclude F' occurs exactly once. O

We then obtain the following corollary which is absolutely essential in what follows.
Corollary 8.4. Retain the notations and assumptions of Corollary 8.2, and suppose that Y
s an irreducible Harish-Chandra module with

Ann(M(n)) C Ann(Y).
Then
T, T,(Y) = T,T.(Y).

Now we describe how to compute the T;(Y") in terms of the coherent continuation represen-

tation. The computation in part (b) can be envisioned as first passing to regular infinitesimal

character, then crossing a sequence of walls, and finally pushing to a different sequence of
walls.
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Lemma 8.5. Let Y be an irreducible Harish-Chandra module with dominant infinitesimal
character v. Let V' denote the dominant weight conjugate to v + u;, write WY for the
stabilizer in W of v ,and similarly for W"'. Let W, denote any choice of representatives for
the cosets WY /(WY N W"'). Finally let © be a coherent family with ©(v) =Y. Then

T,(Y)= > O(w).

weW,

In particular, if Yreq is an irreducible Harish-Chandra module of (dominant) regular infini-
tesimal character vyeq with 1y, (Yreg) =Y (as in Theorem 4.4(a)), then

T(Y) = Y o, (w' - O(Yreg))-

weW,

Pf. Let F' denote the finite dimensional representation with extremal weight v/—v, i.e. F* =
A" *C" . From the definition of a coherent family, we have

T,(Y) =) 0 +7),

where 7 is a weight of F* and v+vy = wi/ for some w € W. Hence we are to determine when
wr' — v is a weight of F'. Obviously this is the case if w € W*', and it is easy to see that
the same is true if w € W". On the other hand, one can check directly that if w ¢ WYwY,
then wy' — v cannot be a weight of F*. Finally notice that {wv' | w € W,} coincides with
{wv' | w € WYW"'}. The first assertion of the lemma, follows. The second assertion is clear.

O

Since v/ is typically very singular, many terms of the form 'lﬁ,lf;eg (w™!-O(Y;e)) will vanish
in the expression for T;(Y"). In fact, in practice we will only need to compute the action of
a single w1 on ©(Y,,), so the computation becomes tractable. In any event, Lemma 8.5
suggests that we need to know something about the coherent continuation representation,
and the next lemma provides that kind of information.

Lemma 8.6. Let a and B be consecutive adjacent simple roots spanning a subroot system
Ay C A, 1. Let X be an irreducible Harish-Chandra module with nonsingular integral
infinitesimal character, and suppose € 7(X) while a ¢ 7(X). Then s,©(X) contains a
unique irreducible constituent X' such that B ¢ 7(X) and a € 7(X). Moreover, in this
setting, we have the following conclusions:

(a) The tableau S parametrizing Ann(X') is explicitly computable as a ‘hook exchange’
of the tableau S parametrizing Ann(X). More precisely, write 8 = ex_1 — ey and
o= e —egr1- Assume X has (dominant) infinitesimal character v = (v1,...,vy).
The 7 invariant assumptions on X imply (cf. the comments preceding Defini-
tion 4.3) that the coordinates vg_1,Vg, Vg1 are arranged in one of two relative
configurations:

Then S’ coincides with S except that in the first case, the coordinates vi_1 and vy

are interchanged; and in the second case, the coordinates vy and viy1 are inter-
changed.
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(b) In particular, if v is a simple root orthogonal to « and B, then v € 7(X) if and
only if v € 7(X').

Pf. The first statement is Theorem 3.10(b) in [V3]. Part (a) is explained very carefully
in the statement of [V1, Theorem 3.2]. Part (b) is elementary (though it obviously follows
from part (a) and Lemma 4.2). O

As the equivalence relation of Section 7 suggests, we are going to essentially reduce to the
case of two columuns; this is the setting of the next lemma.

Lemma 8.7. Let X be an irreducible Harish-Chandra module whose infinitesimal charac-
ter v is a weight translate of p. Suppose S = Ann(X) has a partition S = S [[S2 into
difference-one skew columns of size ny and ns in good position (Definition 6.10). Let i = nq
and T = T; (Notation 2.2 or as in Lemma 8.1). Set

v(k) = v+ ku;

and consider the v(k)-quasitableau S(k) = S1 ][] S2(k) where So(k) denotes the skew column
obtained by adding k to each entry of So. Suppose that the partition of S(k) is mediocre.
Then T*(X) is nonzero if and only if overlap(Sy, So) > sing(S1, So(k)). In this case, T*(X)
is irreducible and the annihilator Ann(T*(X)) is obtained from S(k) by Procedure 7.5.

Pf. By the translation principle (Theorem 4.4), it is enough to treat the case when v = p.
(In this case the condition that S(k) = S1]]S2(k) be mediocre is equivalent to requiring
k < max(ni,mn2).) The proof of the lemma follows from a complicated induction on k. The
case k = 1 is essentially treated by Theorem 4.1 (see especially the comments following
Theorem 4.4). In a little more detail, if overlap(Si,S2) = 0, then from Definition 7.1
and Lemma 4.2, we conclude that the simple root e,, —ep,+1 is in the 7-invariant of X.
Hence T'(X) is zero, and this is exactly what Procedure 7.5(b) gives. On the other hand, if
overlap(Si, S2) > 0, then e,, —en; +1 ¢ 7(X), and the paragraph following Theorem 4.4
implies that Ann(7'(X)) = S1 [] S2(1); this agrees with Procedure 7.5(a).

We will describe the k = 2 case and sketch how to reduce the k = 3 case to the k = 2 one.
The formidable details of the general induction are left to the reader. For future reference,
we write p(k) for the dominant weight in the Weyl group orbit of p(k) and we let A(k)
denote the set of simple roots on which p(k) is singular. Then sing(S1, S2(k)) = #A(k).

We describe the k = 2 case now. We apply Lemma 8.5 to compute T?(X); to apply the
lemma, we take Y = T(X), Y,y = X, and W, = {e,s,} where s, is the reflection in the
simple root v = ey, —ey,+1. Hence

(1) T(Y) = ¢ (s, - O(X) + O(X)) = 95 (s, - O(X)),

with the last equality following because A(2) N 7(X) is nonempty by hypothesis. Hence we
are interested in locating constituents X' of s, - ©(X) so that 7(X') N A(2) is empty.
Label the simple roots near 7y as follows:

a B 8l B €

(Of course, some of these vertices need not exist on the Dynkin diagram, so ignore them if
they don’t.) There are several possibilities for A(2); either A(2) = {3}, {4}, or {5,d}.
Assume A(2) = {8} (the A(2) = {4} case being identical by symmetry, i.e. by composing
with an outer A4, automorphism coming from the Dynkin diagram). Then Lemma 8.6(a)
implies that there is a unique constituent X’ of s, - ©(X) with 8 ¢ 7(X'), i.e. with 7(X') N
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A(2) empty; moreover the underlying tableau of Ann(X') is obtained by a hook exchange
also described in Lemma 8.6(d). The remarks following Theorem 4.4 and Equation (1) imply
that the underlying tableau of Ann(7?(X)) coincides with that of Ann(X’), and hence we
have computed the annihilator of X’. On the other hand, in this case necessarily n; = 1,
so Procedure 7.5(c) applies and gives non-zero p(2)-tableau. A direct check shows that this
tableau is indeed Ann(X").

Now assume A(2) = {f3,6}. By the above, we know that there is a unique constituent
X' of s, - O(X) with § ¢ 7(X’), and we know its underlying tableau. There are two
possibilities here: either § € 7(X'), in which case T%(X) is zero (by Equation (1) and 7-
invariant considerations); or § ¢ 7(X'), in which case the underlying tableau of Ann(X')
coincides with that of Ann(7?(X)). We can distinguish between these two case by explicitly
examining the hook exchange giving Ann(X").

There are two possibilities for the relative positions of the coordinates n; — 1,n1,n1 + 1,
and n1 + 2 in the underlying tableau of X; either

ni—1{ny+1
ni—1{n1+1
or ni
n1 ny1 + 2
ny + 2

In the first case overlap(Si, S2) > 2, and in the second overlap(Si,S2) = 1. The hook ex-

change of Lemma 8.6(d) interchanges the coordinates n1 and n1+1. Thus, by Lemma 4.2, § ¢

7(X) if and only if we are in the first case. Hence T?(X) # 0 if and only if overlap(S, S2) >

2 = k, and in this case one may verify that the hook-exchanged underlying tableau of

Ann(X') coincides with the one given in Procedure 7.5. The k = 2 case is thus completed.
Now consider the k = 3 case. There are five possibilities for A(3):

AB) ={a} {e}, {7}, {7, €}, or {a,7,€}.
The first case is handled exactly as the the first case treated in the k = 2 case. If A(3) = {a},
then since k = 3 < max(n1,ng), necessarily A(2) = {8}. Using Lemma 8.5 to compute T(Y")
withY = T2%(X), we can take Y,y = X' as defined in the k = 2 case above, and W, = {e, sg}.
By 7-invariant considerations,

T(Y) = 45 (s5 - 0(X)),

and so we are to locate constituents of sg- ©(X) that do not contain ¢ in their 7-invariants.
Again using Lemma 8.6, there is a unique such constituent of sg - ©(X’) with a ¢ 7(X");
the underlying tableau of X" is computed by a hook exchange from that of X', and one can
check explicitly that the underlying tableau of X" is the one described by Procedure 7.5.
The case A(3) = {e} is handled in exactly the same way (or by symmetry).

Next note that by symmetry, the case of A(3) = {«,~} is identical to the case of A(3) =
{7, €}, so assume now that A(3) = {a,7} or {«a,7,€}. In both of these cases, necessarily we
have A(2) = {#,0}. Hence, using Lemma 8.5 to compute T(Y),Y = T?(X), we can take
Y;eg = X' (as defined in the k = 2 case above) and W, = {e,sg, 55,5553}. We are thus
interested in constituents X" of w - ©(X'), w € W,, with 7(X") N A(3) empty.
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Now in either case at hand, a € A(3). Hence if a constituent Z of w - ©(X’) is to survive

the translation ¢£(3), we must have a ¢ 7(Z). Since o € 7(X’) and « is orthogonal to s,
Lemma 8.6(b) implies that either w = sg or sssg. In any event, Lemma 8.6 implies that
there is a unique constituent Z of s30(X) with o ¢ 7(Z); a hook exchange on Ann(X’)
computes the underlying tableau of Z. Either by explicitly examining the underlying tableau
of Z or by an elementary calculation with the coherent continuation representation (along
the lines of the proofs of Lemma 8.6(b),(c) in [V3]) one sees that v ¢ 7(Z). Since v € A(3),
we conclude that w,’,’(3) (sg-O(X)) =0.

Thus it remains to find constituents X" of s;s5 - ©(X'), with 7(X") N A(3) empty. By
the above, all such constituents arise in s5 - ©(Z). In fact, we are exactly in the setting of
the k = 2 case with Z taking the place of T'(X) and the root § taking the place of . This
is essentially the inductive step.

In the case that A(3) = {«,7}, Lemma 8.6(a) says that there is always a constituent X"
of s§(Z) with 7(X") N A(3) empty; its underlying tableau is computable in terms of a hook
exchange on the underlying tableau of Z (i.e. two hook exchanges on the underlying tableau
of X'). The underlying tableau of X" coincides with the underlying tableau of 7%(X) and
one may verify directly that this is the underlying tableau of the p(3)-tableau produced by
Procedure 7.5.

In the case that A(3) = {a,7,€}, then T3(X) = 0 if and only if the X" described in
the previous paragraph has € € 7(X"). A direct inspection of tableaux reveals that this is
equivalent to requiring overlap(Si, S2) = 2. In the case that overlap(Si,S2) > 3, € ¢ 7(X")
and T3(X) # 0. Tts underlying tableau is that of Ann(X") and hence may be computed as
in the previous paragraph and can be seen to coincide with Procedure 7.5. O

Remark 8.8. Consider a particular example of the lemma. Let g be a maximal parabolic,
and let X = A4(Cyriy ). The root «y is the unique simple root not contained in [, and the as-
sumption on k implies that A = ku; is in the mediocre range for q. The lemma gives a sharp
condition on k guaranteeing that 7%(X) is nonzero irreducible, and it computes its annihi-
lator. By Lemma 3.13, A4(A\) = T%(X), and we thus obtain a special case of Theorem 7.9.
Closer inspection reveals that we have proved more: we have, in fact, deduced a special case
of Theorem 3.1b(iv) using only irreducibility in the good range (Theorem 3.1b(iii)).

We need to extend this two column case to the case of adjacent skew columns in a partition
of §. The arguments given above carry over to this case, so long as the adjacent columns
do not interact with the rest of the tableau.

Definition 8.9. Suppose S is a v-antitableau of size n and S = [[S; is a partition into
skew columns. The adjacent columns S; and S;; are said to be isolated if:

(a) the entries of S;, ¢ < j, are strictly greater than the entries of S; [ S;41; and

(b) the entries of S;, i > j+1, are strictly smaller than the entries of S; ][ S;41-

Here is the more general two column result.

Proposition 8.10. Let X be an irreducible Harish-Chandra module whose infinitesimal
character v is a weight translate of p, and let S be the v-tableau corresponding to Ann(X)
(Theorem 4.1). Suppose S has a partition into skew columns S =[] S; and that S; and S; 1
are difference-one and in good position (Definition 6.10). Let the column S; have length n;
and set

Y =€t — e, t:Zni-
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For any integer k, let Sj;1(k) be the skew column obtained by adding k to every entry
of Sj+1. Assume that S; and Sji1(k) are isolated (in the sense of Definition 8.9) in

Ii<j SiIlisjs1 Si(k). Let
V(k) =v+ k/j’la

set R(k) = S; [1Sj+1(k) be the indicated skew v(k)-quasitableau, and assume S; and S;1(k)
are in mediocre position. Then Tf(X ) is nonzero if and only if

overlap(Sj, Sj+1) > sing(Sj, Sj+1(k)).

In this case, TAf(X) is irreducible and the tableau S(k) which parametrizes Ann(TF(X)) is

given by ?
Sk)=JI s:J[IR® J] Sik),

i<j-1 i>j+2
where R'(k) is skew tableau obtained from R(k) using Procedure 7.5.

Sketch. Again the translation principle reduces the lemma to the case of v = p. The
arguments of Lemma 8.7 extend to this setting, but not immediately so, since the geometry
of the adjacent columns S; and S;1 is more complicated. To prove the proposition one needs
to understand the computation of Ann(Tf(X )) of the previous lemma in terms of explicit
hook exchanges. These are precisely the hook exchanges that appear in the computation
of Ann(TAf(X )) in the more general setting of the proposition. Since hook exchanges only
depend on the relative position of the entries in the tableau, and since the relative positions
are essentially the same in both the two column and adjacent column setting, the proof goes
through. We leave the details to the reader. O

We have thus completed a description of the two column case. To pass to the general
case, we need to prove a statement describing how to combine more than two columns and,
in order to do so, we need to gain control over the formula in Lemma 8.5. In the case of
Lemma 8.7, we were able to do this using Lemma 8.6. Here is the generalization that we
need.

Lemma 8.11. Let a1 = e;—e,...,qp = e;—ep1 span a root subsystem A; C Ap_1, and
write W () for the corresponding Weyl subgroup. Let X be an irreducible Harish-Chandra
module with nonsingular integral infinitesimal character, and suppose

..., oq-1 ¢ T(X), but oy € T(X).
Then there is a unique constituent X' of Ywew () W+ O(X) such that
ag,...,oq ¢ 7(X), but a; € 7(X).

Moreover, X' is actually a constituent of sq, - -~ Sq,_, - O(X), and:
(a) The underlying tableau of X' can be explicitly computed by iterating hook exchanges
through the coordinates

€1—2—is €l—1—i, €l—i, i1=0,...,0-3,

on the underlying tableau of X.
(b) If 7y is orthogonal to aq, ..., o, then v € 7(X) if and only if v € 7(X').
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Pf. The statement follows by induction on [, the base case [ = 2 being treated by Lemma, 8.6.
The induction is complicated to write down, but all the ideas are contained in the proof of
the [ = 2 case. We refer the reader to the details of Theorem 3.10(b) in [V3]. O

Now we can prove a statement about ‘nice’ multi-column translations. On level of
tableaux, these translations are easy to compute: one simply changes the coordinates of
the infinitesimal character. (This generalizes the comments following Theorem 4.4.)

Lemma 8.12. Suppose X is an irreducible Harish- Chandra module whose infinitesimal
character v is a weight translate of p, and let S be the v-antitableau corresponding to Ann(X).
Suppose S = ]_[Zfl'l S; is a good partition of S into m~+1 difference-one skew columns S; of
length n;. Fori=1,...,m set

Yi = €y — €441, t; = E n;.
§<i

Consider integers k1, ..., kn, and define

v(ki,....km) =v+ Z ki(et+1+ -+ + en).
i<m
As usual, for any integer k, let S;(k) denote the skew column obtained from S; by adding k
to every entry, and consider the v(ky, ..., kpy)-tableau

Sk, km) = [[Sil), L= _k;.
J<i
Suppose that this partition is nice (Definition 6.10). Then Ann(T,fT’: o-- -oT,fl1 (X)) is nonzero
if and only if

overlap(S;, Si+1) > sing(Si(l;), Si+1(liv1))  for all 4
in this case,
Ann(Tf:; 0-::0 Tnfll(X)) = S(k1,...,km)-

Pf. Again the lemma reduced to the case v = p. (In this case the nice hypothesis is equivalent
to k; < min(n;_1,n) for all 4, and the condition for nonvanishing of the translation functor
is that overlap(S;, S;+1) < k;, for all 4.) The proof is an extremely complicated double
induction on m and k,, using the ideas in the proof of Lemma 8.7. The idea is to use
Lemma 8.5 to compute successive application of 7', . By using using Lemma 8.11, we can
reduce matters to locating the constituents of a single w - ©(Y) that have the correct 7-
invariants. The ‘nice’ assumption of the lemma guarantees that we may proceed exactly
as in the proof of Lemma 8.7 to locate a unique such constituent. The annihilator of this
constituent can be explicitly computed by hook exchanges, the result of which is given in
the statement of the lemma. We omit the horrendous details. O

Remark 8.13. By Theorem 6.4, the previous lemma applies with X = A4(Ciriy), and
(using Lemma 3.13) we recover another special case of Theorem 7.9. (When there are
only two columns, this is subsumed by Lemma 8.7.) Moreover, we have deduced from
Theorem 3.1(b)(iii) that any nice Aq()) is nonzero and irreducible.

Now we have amassed all the tools to prove Theorem 7.9 for the weakly fair range. The
proof is an induction on r; the 7 = 1 case is trivial, and the r = 2 case is Lemma 8.7 (see
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Remark 8.8). So consider the r = 3 case; we are trying to compute Ann(A4(X)) for X in the
mediocre range. Taking X = A4(\') for an appropriate A’ (in the good range) of the form

A=N+ kl/'l"Yl + k2N72>

we are to compute lelTQIc2 (X), where T; = T,,. (By changing X', we can assume both k; and
ko are positive.) Use Theorem 6.4 to compute Ann(X) = S;[[S2]]S3. Lemma 8.7 (that
is, the 7 = 2 case) computes

Ann(T32(X)) = 51 [[ 85T 85

where S), and S} are in nice position and obtained by applying Procedure 7.5 and the rest
of the definition of the equivalence relation to S]] Sa2(k2). By Lemma 8.12, we can write

T¥2(X) as S7"2(X') for an appropriate Sy = Tj,, where
Ann XI 31H52HS3 ’ITLQ

(It is important to note that X' may not be an Aq(\) module — this is the sense in which
we must move outside the class of Aq(\) modules.) Taking mg large enough, we can assume
S1 and S} are isolated in the sense of Definition 8.9.

Now we are interested in computing the annihilator of TII“TQIC2 (X). By the above this
is TF S72(X"), and by Corollary 8.4, this is S72TF (X"). Since the columns S; and S} of
Ann(X’) are isolated, we can use Proposition 8.10 to compute lel (X"); the result is

Ann(Tf T2 (X)) = Ann(S32(X")),
where
Ann(X") = ST T S5 T Sa(—ma+ki);

here S| []SY is obtained by applying Procedure 7.5 to S; [ S5(k1). Now the second two
columns are in nice position, so we can isolate them using Lemma 8.12, interchange the
order of translation, and use Lemma 8.7 on the first two columns, and so on.

It is clear that we are obtaining the see-saw algorithm described after Theorem 7.9. As
remarked there, the algorithm must eventually either produce zero or a nice partition (which
we know how to put together using Lemma 8.12). This finishes the r = 3 case. It is clear
that the arguments just described suffice to handle the general case, and thus the proof of
Theorem 7.9 is complete. We have also deduced Theorem 3.1b(iv) from Theorem 3.1b(iii).

9. EVIDENCE FOR CONJECTURE 1.1

In this section, we prove a small piece of Conjecture 1.1 (see Remark 3.7).

Theorem 9.1. Let A be in the mediocre range for q (Definition 3.4). Then there exists X'
in the weakly fair range for some ', so that

Ag(N) = Ag (V).

As one might expect, we are going to reduce the theorem to the case of maximal g.
This case turns out to follow from a simple application of Lemma 8.7, as the next example
illustrates.



ANNIHILATORS AND ASSOCIATED VARIETIES OF Aq(A) MODULES FOR U(p, q) 35

Example 9.2. Let (p,q) = (5,2), let q be attached to {(3,2),(2,0)} andlet A = (1,...,1,5,5),
which is outside the weakly fair range, but inside the mediocre range for q. Theorem 6.4
attaches the following partition to Aq(A),

3
2

|c>|»—x|ww o~
[l

and Lemma 8.7 guarantees that this is the annihilator of A4(\). On the other hand, we can
compute the associated variety directly from Proposition 5.4 and Lemma 5.6, giving

+
+

[+][+][+] 1]

Thus we are looking for a weakly fair Ay (\) with the above tableau parameters.

The idea is to move the first column of the above partition past the second one, in order
to move from the mediocre range to the fair range. To make this precise, we notice that the
previous partition is equivalent (in the sense of Definition 7.4) to the following one

4 4
3 3
_ 3]

—H .

Now the partition (x) is weakly fair, and if it is to correspond to some Ay (X') with AV(A4(X)) =
AV(Aq()')), Lemma 5.6 implies that ¢’ must be attached to {(0,2),(5,0)}. The data of ¢’
and the infinitesimal character imply that X' = (0,0,3,...,3), which is in the weakly fair
range for q. In fact, one can check directly that this partition is the one that Theorem 6.4
attaches to the weakly fair Ay ()\'). Hence we conclude that Aq(X) = Ay ()'), as desired.

()

[ol=]r

The argument given in the example easily leads to a general two column result.

Lemma 9.3. Let q be the mazimal parabolic attached to {(p1,q1), (p2,492)}, set n; = p; + q;.
Suppose

ni no
e ~  r—
A=, A A2, A2)

is inside the mediocre range (but outside the weakly fair range) for q and that Aq(X\) # 0;
explicitly (using Definition 3.4 and Lemma 8.7) these conditions become

—maz(ni,n2) <A — A < —g;

if p1+q1 > pa+qo then p1 > g9 and q1 > po; and

if pr+q1 < pa+qo then p1 < g2 and q1 < pa.
Set

n2 ni no n1
-

N = (Ag,...,)\g,/\l,...,/\D+(—nl,...,—nl,ng,...,ng),

and
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() if p1+q1 > p2+ qo, let q' be attached to

{(q2,p2),(P1 + P2 — 2,01 + @2 — p2) };
(b) if p1 + q1 > p2 + g2, let q' be attached to

{(pr+p2—qi, 01 + 2 = p1), (q1,p1) }5
Then X is in the weakly fair range for q' and Aq(X) = Ay (N).

(Note that the hypothesis on the range of A\ and the non-vanishing of Aq()) imply that
the sequence to which ¢’ is attached consists of pairs of nonnegative integers, as it must.)

An inductive argument using induction in stages now completes the proof of Theorem 9.1.
The induction is not as trivial as it may first seem; in the multicolumn case, the application
of Lemma 9.3 to two columns changes the relative position of other columns with respect to
the original two. We leave the details to the reader.

Example 9.4. Let g be attached to the sequence {(1,0),(p — 1,¢)}, assume ¢ > 1, and let

prg—1
——
A= (A1, A2,...,A2)
with
n
—(p+tqg-1) SA - A< -3

The lemma shows that Aq(\) ~ Ay ()\') where ¢ is attached to the sequence {(p,¢—1), (0,1)},
and

pt+q—1 p+q—1
— ———
N=M2...c; M)+ (=1,...,—1,p+q—1).

Now uNp is an irreducible as a representation of L N K, and similarly for q’. Hence the
Blattner formula implies that both modules A4(X) and Ay ()\') are ladder representations
whose (multiplicity-free) K type spectrums can be explicitly computed. The result of the
computation shows the K types of both modules coincide, and hence one verifies directly
that Aq(\) >~ Ay (X).
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