IRREDUCIBLE CHARACTERS OF THE METAPLECTIC GROUP II:
FUNCTORIALITY

DAVID A. RENARD AND PETER E. TRAPA

ABsTRACT. We extend our previous work [RT] and establish a complete duality theory
for the (nonalgebraic) real metaplectic group. As a consequence, we obtain an intrinsic
local Langlands conjecture for this group and, in particular, develop a geometric theory
of endoscopic lifting. We also investigate the behavior of this formalism with theta lifting
to equal-size orthogonal groups, and prove that for the kinds of infinitesimal character
for which stability is empty, theta lifting preserves Kazhdan-Lusztig character formulas.
Finally we interpret a character lifting due to Adams as an instance of functoriality for
Mp(2n,R).

1. INTRODUCTION

A fundamental guiding principle in the representation theory of a reductive algebraic
group over a local field F' is the local Langlands conjecture. The conjecture predicts re-
markable relationships (“functorialities”) between groups which ostensibly have nothing to
do with each other. Perhaps surprisingly, this theory interacts in deep and interesting ways
with the representation theory of certain nonalgebraic groups. The most famous example
is the metaplectic double cover of the symplectic group, and its role in the construction of
theta series. Because of this example and others, it is a natural and important problem to
bring nonalgebraic reductive groups into the Langlands formalism. From a purely utilitar-
ian perspective, the functorial relationships that the formalism predicts may offer deeper
insights into the representation theory of nonalgebraic groups.

The original conjectures of Langlands offer little insight into how one might approach non-
algebraic groups, and so we turn to the geometric reformulation of Langlands’ ideas codified
most completely in [V5] (but see the extensive references given there). Very roughly speak-
ing, at least on the level of Grothendieck groups, the category of admissible representations
of the F-points of a reductive algebraic F-group is conjecturally dual to a precisely defined
category of equivariant sheaves. (This is made more precise in the beginning of Section 6.)
The appropriate category of sheaves is especially delicate to define when F' = R [ABV], in
the sense that one must abandon the classical Weil-Deligne group. Yet once this is done,
something miraculous happens at the real place which, at least literally, does not happen
at the non-archimedian places: the geometric category of sheaves itself has an intrinsic
representation-theoretic interpretation!. As a consequence, the duality between representa-
tions and sheaves (on the level of Grothendieck groups) is actually equivalent to a duality
between characters of a real group and those of a reductive subgroup of the Langlands dual
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of its complexification. This is the character duality of [V4], which depends crucially on
the Kazhdan-Lusztig algorithm ([V3]), and hence on the group being algebraic. Roughly
speaking, one concludes that if a nonalgebraic group admits a duality theory like [V4], then
this can be translated into a local Langlands formalism.

The primary purpose of the present paper is to state and prove an analog of the local
Langlands conjecture for Mp(2n,R), the nonalgebraic metaplectic double cover of the sym-
plectic group. This turns out to be closely related to the theory for the indefinite orthogonal
group and although precise statements require some preparation, the qualitative features of
our main result are very easy to understand. The local Langlands conjecture (in the form
of [ABV]) for the indefinite orthogonal group provides a complex algebraic variety X on
which the complex dual group G¢ acts and a duality between the representation theory of
the various inner forms of SO(p, ¢) and the G{ equivariant geometry of X. Our main result
can be interpreted as providing a duality between the representation theory of Mp(2n,R)
and the é(\é equivariant geometry of the same space X; here éé is an algebraic two-fold
central extension of Gy..2

Before discussing this result in more detail, we note that once the formalism of the local
Langlands conjecture is in place, we can immediately exploit some of the functorialities it
predicts. For instance, since G{. is a central extension of G¢., the G{ orbits and G orbits on
X coincide. The theory of [ABV] interprets such orbits as Langlands-Weil parameters®. This
allows us to define L-packets for Mp(2n,R) and since the G¢¢ and é(\é orbits coincide, we ob-
tain a matching of L-packets for Mp(2n,R) and those for the various inner forms of SO(p, q).
(The matching is canonical up to twisting by the outer automorphism of Mp(2n,R), and is
explained in more detail in the discussion before Theorem 5.4.) Each L-packet gives rise to a
stable virtual representation, and all such representations arise this way. Thus matching of
L-packets gives rise to an isomorphism, say 7', from the space of stable virtual representation
of Mp(2n,R) to those of the various SO(p,q). In Theorem 5.5 we prove that 7' coincides
(up to outer automorphism) with the map studied in [A2]. (In fact, the theorem also treats
a microlocalization of the map T obtained from the consideration of micro L-packets.) In
this way, we interpret Adams’ map as a simple functorial consequence of the local Langlands
conjecture for Mp(2n, R).

As another application, we obtain a completely geometric interpretation of endoscopic
lifting for Mp(2n,R). An endoscopic datum for Mp(2n,R) consists of a pair (s, Ggr), with
s an elliptic element of Sp(2n,R) of order two, and Gr the preimage of the centralizer
Zgg(s) in Mp(2n,R). The geometric Langlands formalism for Mp(2n,R) implies that there
is a canonical lifting of genuine virtual representations of Gr to those of M p(2n,R). In
Section 6, we prove that this lifting coincides with the transpose of the transfer of orbital
integrals for Mp(2n,R) and Gg defined in [R2].

We now to turn to a more detailed discussion of the local Langlands formalism for
Mp(2n,R) which, by the initial discussion above, is equivalent to a character multiplic-
ity duality theory for this group. For a group Ug isomorphic to a product of a metaplectic
group and a linear real reductive group and a regular infinitesimal character A, there is no
problem in extending the classical Langlands classification to Ur. Hence there exists a finite

20ne caveat is in order here. While the geometry of [ABV] treats all infinitesimal characters simultane-
ously, our results are formulated one infinitesimal character at a time.

3That is, as dual group orbits on the space of admissible homomorphisms from the Weil-Deligne groups
into an appropriate L-group.



IRREDUCIBLE CHARACTERS OF THE METAPLECTIC GROUP II: FUNCTORIALITY 3

set ’PgR and for each v € ’P)(\]R, we may speak of the standard module stdy, () and its
unique irreducible quotient irrg,(y). (Here and elsewhere, when we deal with representa-
tions of a covering group, we will always implicitly assume everything in sight is a genuine
representation.) The following is proved in Theorem 5.2.

Theorem 1.1. Fiz a block of irreducible genuine representation B for Gg = Mp(2n,R)
at regular infinitesimal character X. Then there ezists a group G which is a product of a
metaplectic group and a linear real reductive group, an infinitesimal character X' for G, a
block of genuine irreducible representations B', and bijection B — B' (denoted v — v ) such
that

(1.2) [stdae (V)] = Y maslirr (6)]
seB

if and only if

(L.3) lirray, (6V)] = ) eysmaslstda, (V)];
/-)/V EB’

here ez = £1 and is explicitly computable.

We now describe the dual group G and the dual infinitesimal character X'. If we identify
the long roots in g := sp(2n,C) with the short roots for so(2n+1,C), then we obtain
an infinitesimal character Agp for so corresponding to A. (In coordinates, the assignment
A = Ago is the identity; see Section 2.3 for more details.) Adams and Barbasch proved (see
Section 2.4) that the Howe correspondence may be interpreted as a bijection

6: Py — [[PI0w?,

where the disjoint union on the right-hand side is over all p+q = 2n + 1 with the parity of p
fixed. Now fix a block B as in Theorem 1.1, and choose 7w € B. Let Bso denote the block for
SO(p, q) at infinitesimal character Ago containing #(7). (In general Bso and even the inner
form SO(p,q) will depend on the choice of 7, and we comment on this below.) Given Bgo,
we can apply the construction of [V4] to obtain a dual group Hy, a block of representation
(Bso)' with trivial infinitesimal character for Hg, and a bijection Bso — (Bso)' so that the
duality of (1.2)—(1.3) holds. Here Hy is a real form of g()), the centralizer in sp(2n,C) of
exp(2midso). More precisely, Hf is a product of a factor of the form Sp(2k,R), a factor of
the form Sp(a,b), and a number of U(r,s) factors. Recall that the block Bso and (hence
apparently H}) depended on a choice of © € B. Yet it turns out that Hp does not depend on
the choice. The dual group of Theorem 1.1 is given by covering the Sp(2k,R) factor of Hp
with the metaplectic double cover, and leaving the other factors unchanged. Finally X is the
infinitesimal character of the representation of G obtained by taking the external tensor
product of the metaplectic representation on the Mp factor, and the trivial representation
on the remaining linear factors.

Thus, roughly speaking, the relevant dual group G for a representation of Mp(2n,R) is
obtained by taking a metaplectic cover of the dual group for 6(r), and the dual infinitesimal
character ) is the infinitesimal character of the smallest genuine unitary representation of
Gg.

Before proceeding further, we make a few comments on the proof of the Theorem 1.1
which is given in Section 5 below. (It is worth pointing out that the bijection of the the-
orem is constructed explicitly there.) Ultimately we reduce the theorem to two extreme
cases: when all the coordinates of A are half-integers (i.e. infinitesimal characters for which
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genuine discrete series exist); and when none of them are. In the former case, unwinding
the construction of the dual group shows that the theorem gives a duality of Mp(2n,R) at
infinitesimal character A to Mp(2n,R) at infinitesimal character equal to that of the meta-
plectic representation. Using a translation principle, we can move back to A and interpret
the theorem as a self-duality. This is the content of the main result of [RT].

It remains to treat the non-half-integral case, i.e. when none of the coordinates of A are
half-integers. (In this case, only the quasisplit form of SO(2n + 1) admits any representa-
tions at infinitesimal character Agp.) Here the metaplectic factor of G disappears, so G
coincides with H} for SO(n,n + 1). This suggests that the representation theory (at least
on the level of characters) of Mp is closely related to that of SO. In fact, the two theories
are identical and the Howe correspondence implements the identification. A more precise
version of the following theorem is proved in Theorem 4.1 below.

Theorem 1.4. Fizx non-half-integral infinitesimal character \, and set Aso = 0ic(\) (nota-
tion as in Section 2.8). Then there is a bijection between the genuine standard representa-
tions of Mp(2n,R) with infinitesimal character A and those of SO(n,n+1) with infinitesimal
character A\so which preserves composition series. More precisely, the Howe correspondence
gives a bijection

R L
such that

[stdnp(N] = Y nslirrary ()],
sep?
if and only if
[stdso(0(v)] = > mslirrso(8(6))]-

sePy?

Hence, in the non-half-integral case, Theorem 1.1 follows from the duality of [V4] for
SO(n,n + 1). For general reductive dual pairs, it is worth remarking that the Howe corre-
spondence behaves intractably with respect to composition series of standard modules. Yet
the present result seems to extend to arbitrary equal-rank dual pairs, as long as the infin-
itesimal character is suitably far from that of a discrete series (though still not necessarily
generic).

Next recall the matching of L-packets for Mp and SO mentioned above. In Theorem 5.4,
we prove that (up to possibly twisting by the outer automorphism of Mp(2n,R)), the map
¢ implements the matching. More precisely, if we fix an orbit @ of G{ (equivalently é(\é)
on X, then the image under 8 of the L-packet for SO parameterized by @ is the L-packet
for Mp parameterized by . Said differently, the Langlands-Weil parameters of a genuine
irreducible representation of Mp(2n,R) may simply be taken to be those of #(7). When no
coordinate of the infinitesimal character is a half-integer, this follow easily of Theorem 1.4,
and as a consequence it is not difficult to reduce Theorem 5.4 to the half-integral case.
In turn, this case follows from a deep and intricate geometric reformulation of the main
result of [RT] which we now describe. Given a representation 7w of Mp(2n,R) with half-
integral infinitesimal character A, we can attach two GL(n,C) orbits on the flag variety X
for sp(2n,C) as follows. The support of the appropriate D-module localization provides one
orbit Q(m). To get the other, we pass to (w) and then its dual in the sense of [V4]; this is a
representation of Sp(2n,R) and hence we can take its support to get the other GL(n,C) orbit



IRREDUCIBLE CHARACTERS OF THE METAPLECTIC GROUP II: FUNCTORIALITY 5

Q'(m). In Section 3.1, we prove this map is injective and that its image is closed under the
operation of swapping (Q, Q') with (Q’, Q). In this way we obtain an involution on the set
of irreducible representations of Mp(2n,R) with infinitesimal character A. In Theorem 3.16
we prove that this involution implements the character multiplicity duality of Theorem 1.1.
It is this formulation of the duality at half-integral infinitesimal character that allows one
to check that § implements the matching of L-packets.

In the interest of mathematical honesty, we remark that the above discussion belies the
importance of a very delicate balancing of certain choices. For instance, there is a choice of
oscillator defining 6; a more serious problem is the 2" choices of the duality for the various
inner forms SO(p,q). This latter issue is buried in Definition 3.2 and Lemma 3.6 whose
proof may charitably be described as dense. In a sense, it is remarkable that the choices can
be juggled successfully and, in the end, they amount (at most) to twisting the representation
theory of Mp(2n,R) by an outer automorphism. We overlooked this serious subtlety in an
earlier version, and thank the referee for bringing it to our attention.

We conclude by remarking that the results proved here likely extend to a much larger
class of nonalgebraic reductive Lie groups. (It may appear that the ubiquitous use of 6 in
the above discussion severely limits any generalization, but in actuality € is used only to
make certain statements (like Theorem 1.4 and the definition of G) cleaner.) For instance,
in a future joint paper we develop a local Langlands conjecture for the metaplectic cover
of GL(n,R). The picture again is very similar: if the representation theory of GL(n,R) is
dual (in the sense of [ABV]) to the G{ equivariant geometry of some space X, we show that
the representation theory of ZT'\Z(n, R) is dual to the é(\é equivariant geometry of X for some

algebraic central extension of G§. Again the orbits of G, and é(\é on X coincide, so we obtain
an analog of the functoriality 7" described above. Since stability is empty for GL(n,R), this
amounts to a lifting of representations from GL(n,R) to GL(n,R) which we subsequently
prove is simply the lifting defined by Kazhdan and Patterson in [KP]. In this sense the
liftings of Kazhdan-Patterson [KP] and Adams [A2], while superficially very different, are
really vestiges of the same general kind of functoriality.

2. NOTATION AND BACKGROUND

2.1. Generalities. In this section Gr denotes an arbitrary connected real reductive group
in the Harish-Chandra class, Kg denotes a maximal compact subgroup of Gr with corre-
sponding Cartan involution ¢, and K denotes the complexification of Kr. Furthermore,
we assume that rk(Gr) = rk(Kg), i.e. Gr admits discrete series representations, and that
all Cartan subgroups of Gr are abelian. (Of course these hypotheses are too restrictive in
general, but all of the groups we consider below satisfy them.) We fix a compact Cartan
subgroup Tk of Gr contained in Kg and a positive root system A™(g,t) of tin g.

Recall that a complex reductive Lie algebra such as g is canonically endowed with an
“abstract Cartan algebra” b, and a positive root system A (see [ABV], Chapter 16, for
details), and that the data of a Cartan subalgebra f of g and a positive root system AT (g, )
give a canonical isomorphism between § and f,.

We let HC(g, K) denote the category of Harish-Chandra modules for Gg. For any in-
finitesimal character A € b}, HC(g, K)y is the full subcategory of modules having infini-
tesimal character A. The Grothendieck groups of these categories are denoted respectively
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by KHC(g, K) and KHC(g, K)), and we write Irr(Gr) and Irr(GR), for the irreducible ob-
jects in each category. We will write [n] for the image of a Harish-Chandra module 7 in
KHC(g, K).

2.1.1. Langlands classification without L-groups. Recall that a pseudocharacter of G is a
pair (Hg,7y) where Hp is a o-stable Cartan subgroup of Gg, and v = (I',7) consists of
an irreducible representation I' of Hr and an element 7 € bh*, with certain compatibility
conditions. (We refer to [Vgr], Chapter 6, for details.) Fix A\ € hi. We say that v is a
A-pseudocharacter if ¥ and A define the same infinitesimal character. The group Ky acts
on the set of A-pseudocharacters by conjugation, and we denote the set of orbits by Pjy.
Given a (K conjugacy class of) A-pseudocharacter (Hg,) one can define a standard module
std(~y, Hr) (std(7y) for short) which admits a unique irreducible submodule irr(vy, Hr) (again
irr(y) for short), and each element of Irr(Gg), arises (uniquely) in this way. Finally, if
m = irr(vy, Hg), we say that = is attached to Hp.

Next recall that the following two sets are bases of the Grothendieck group KHC(g, K)x:

(2.1) { irr(y)] }yepy and  {[std(7)] }yep,-

The change of basis matrix defines integers M (y,d) and m(vy,d) as follows
(2.2) [irr(8)] = D M(7,8)[std(v)], [std(8)] = > m(y,8)[irr(7)]-

YEPA YEP

2.1.2. Hecke modules. Write H(W (X)) = H(X) for the Hecke algebra of the integral Weyl
group W (\); this is an algebra over Z[g,q '], the ring of Laurent polynomials in the inde-
terminant g. Recall that

M, = Z[g,q" "] ®2 KHC (g, K)»

is a representation of H()\). When the infinitesimal character is integral, the definition of
this representation is well-known ([V3], Definition 6.4). In the nonintegral case, when simple
integral roots may be not be simple in the entire root system, the definition is slightly more
intricate: one must cross a series of nonintegral walls (each of which is an equivalence of
categories) to move the simple integral root into a position where it is actually simple;
then apply the formulas of [V3], Definition 6.4; and finally return to the original category of
interest by another series of nonintegral wall crosses. This procedure is especially unpleasant
since different sequences of wall crosses are generally required for different nonsimple integral
roots. (In the cases we consider in Section 4, this unpleasantness can be avoided.)

The representation of H(A) on M) places a number of explicitly computable constraints
on the the matrix m(vy,d) of Equation (2.2). If G is linear, one of the main consequences
of the argument reproduced in [ABV], Chapter 17, is that the Hecke algebra representation
M, entirely specifies m(y,d). (One can think of the Bruhat G-order and Verdier duality
as being axiomatically and uniquely characterized by the Hecke algebra action.) If Gg is
nonlinear, one can expect the Hecke algebra representation to specify m(vy, ) only in special
cases; this will be the case in Section 4 below. In general, however, one needs to keep track of
more refined information about the nonintegral wall-crosses. (In the case of the metaplectic
groups at half-integral infinitesimal character, for instance, this is captured by extending
the action of Hecke algebra to a slightly larger algebra [RT]. This action then completely
determines the multiplicity matrix.)
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2.1.3. The support of a Harish-Chandra module. Fix A € b dominant and write D, for
the corresponding twisted sheaf of differential operators on X, the flag variety of g. Let
7 be a Harish-Chandra module of infinitesimal character A and set Ay(7) = Dy ®4(x) T;
here A() is the quotient of the enveloping algebra of g by the minimal primitive ideal with
infinitesimal character \ (i.e. A(A) consists of the global sections of Dy). We write supp()
for the support of Ay(w); this is a K-equivariant closed subvariety of X. If 7 is in fact
irreducible then supp(w) is also irreducible, and hence is the closure of a single orbit of K on
X. We denote this orbit by supp, (7). Finally, for v € Py, we write supp(y) for supp(irr(vy))
and likewise for supp, (7).

2.2. The metaplectic group. Let Mp(2n,R) be the metaplectic group of rank n. It is a
nontrivial central extension of order two of of Sp(2n,R), defined by an explicit cocycle (see
for example [Tor]).

We denote the projection Mp(2n,R) — Sp(2n,R) by pr , and write z for the nontrivial
element of Mp(2n,R) in pr=!({Idy,}), and by x, y the elements in pr=!({—1Idg,}). The
center Z(Mp(2n,R)) of Mp(2n,R) consists in the four elements {e,z,x,y}. We will adopt
the notational convention that preimages (in Mp(2n,R)) of subgroups of Sp(2n,R) will be
denoted by adding a tilde. We refer to [RT], Section 2 for structure theory, notations and
conventions concerning Mp(2n,R). A number of explicit choices are made there, such as
representatives of conjugacy classes of Cartan subgroups, positive root systems, etc. Here
we simply recall the notation

Ay ={xe;te;, 1 <i<j<n;+2e,1<i<n}

This is a root system of type Cy,, and ey, ..., e, is a basis of ;. We also fix a maximal com-
pact subgroup Kg =~ U(n) of Sp(2n, R). Its preimage Kg is a maximal compact subgroup
of Mp(2n,R). We denote the respective complexifications by K and K.

Recall that a Harish-Chandra module for Gg is called genuine if z acts by —1 (so that
the module does not factor to the linear group Gp). We denote the full subcategory of
HC(sp(2n,C), K ) of genuine modules by HC(sp(2n,C), )gen, its Grothendieck group by
KHC(sp(2n,C), K)&", and its irreducible objects by Irr(Mp(2n,R))&". Now let Hyg be a
o-stable Cartan subgroup of G and let (Hg,v) = (T',7) be a A-pseudocharacter. We say
that 7 is genuine if I'(z) = —1. It is essentially obvious that 7 is genuine if and only if std(vy)
(or irr(vy)) is.

Because we will only be interested in genuine representations of the metaplectic group we
will let Py MP denote the (KR conjugacy classes of) genuine A-pseudocharacters for Gr.

2.3. Notations for SO(2n+1). For each pair of positive integers p, ¢ such that p+qg = 2n+
1, fix a real 2n 4 1 dimensional vector space VP equipped with a non-degenerate symmetric
bilinear form (-,-), 4 of signature (p,q) and let V7 be its complexification (endowed with
the induced bilinear form). We let SO(p,q) denote the special isometry group of (-,-)p.q-
Let SO(2n + 1,C) be the special isometry group of the usual bilinear form (X,Y) — XY
on C?"*1 and fix isomorphisms ¢, , : V& — C?*1 of orthogonal spaces. This induces an
embeddmg
tpq: SO(p,q) = SO(2n +1,C)

the image being a real form of SO(2n + 1,C). All real forms obtained in such a way are
inner to the split form SO(n + 1,n), and if we fix a parity 6 = +1, the image of the various
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VP4 with (—1)? = ¢ form a system of representatives of conjugacy classes of real forms of
SO(2n + 1,C). We identify SO(p,q) with its image in SO(2n + 1,C). Notice that since
SO(2n + 1,C) is adjoint, the notion of real forms and strong real forms ([ABV], Chapter
2) coincide. Thus the definitions and results of [ABV] will apply to []' SO(p, q), where the
prime indicates that the union is taken over all p and g withp+ ¢ =2n+1 and (—1)? = 4.

Let h59 be an abstract Cartan subalgebra of s0(2n + 1,C), let
Agoz{e;—eg, e;;1<i<j<n}

be the root system of bgo in s0(2n 4+ 1,C) and let W(fo be its Weyl group.

Recall the abstract Cartan subalgebra b, of sp(2n,C) and the basis {e;}1<i<n of ;. Let
A € b and write (A1, ... ),) for its coordinates in the basis {e;}1<i<n- Let 0ic(N) € (H59)*
be the element with coordinates (A1,...),) in the basis {€/};1<j<,. This defines a map
Oic = by — (H39)".
Remark 2.3. Notice that A is half-integral if and only if 8;c()) is integral. (For instance,
if A is the infinitesimal character of the oscillator for Mp(2n,R), then 6;.(A) = pso.) Also
note that if « is a short root in A, then o/ = i.(c) is a root in A2 and if « is long then
o = %Oic(a) is a root in AY9. This gives a bijection a <+ o/ from A, to AS?. When ) has
half-integral coordinates, the integral root systems for A and X’ are not in bijection.

2.4. Adams-Barbasch correspondence. Consider the dual pair
(O(p,q), Sp(2n,R)),  p+q=2n+1,

in $p(2n(2n+1),R), and denote their preimages in Mp(2n(2n+1), R) by (O(p, q), Mp(2n, R)).
Fix a choice of an oscillator representation for Mp(2n(2n + 1),R) (there are two non-
equivalent such choices). The theta correspondence then gives a bijection between subsets
of irreducible genuine representations of O(p,q) and Mp(2n,R). It is relatively easy to see
that every genuine representations of Mp(2n,R) occurs in the correspondence, and that
exactly half of those for 6(;0, q) do. This can be quantified more precisely as follows. Let
7 be a representation of SO(p,q) with p+q = 2n+1, and let ¢ denote a genuine charac-
ter of 6(;0, q) which is trivial on the identity component. (The structure of the covering
dictates that exactly two such characters exist.) There are two representations of O(p,q)
which restrict to m, and after tensoring with £, exactly one of them occurs in the theta
correspondence. This gives a map from irreducible representations of the various SO(p, q)’s
to genuine representations of Mp(2n,R), and one in fact obtains a bijection

(2.4) 0 : Trr(Mp(2n,R)5™ = [ 'Tre(SO(p, ), (n):

where the prime in the disjoint union means that we take only pairs of positive integers (p, q)
such that p4+q =2n+1, (—1)? = § (§ as in Section 2.3), and 6;.(A) is defined in Section 2.3.
This bijection has been explicitly computed by Adams and Barbasch ([AB1], Theorem 5.1).

Let P30 = [T ’Pf,o(p D be the set of Langlands parameters for the various SO(p,q)’s
(p+qg=2n+1, (—1)7 =§) at infinitesimal character X' = 6;.(\). We denote again by 0 the
bijection obtained from 2.4 on the level of Langlands parameters :

(2.5) 9: PP AT

Notice that there were four choices involved in the definition of #: two from the choice of
oscillator representation and two from the choice of genuine character £&. The effect of these
choices can be extracted from [AB1].
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Proposition 2.6. Retain the notation introduced above, and let ( denote the nontrivial
character of each noncompact SO(p, q) which is trivial on the identity component. (If pg =0
adopt the convention that ¢ is the trivial representation.)

(1) Let 0 be defined with respect to a fized choice of oscillator and character £. Let 6 be

defined with respect to the other oscillator and (the same) character &. Then 8~ 1o’
coincides with twisting by an outer automorphism of Mp(2n,R).

(2) Let 6 be defined with respect to a fized choice of oscillator and character &. Let €'

be defined with respect to the same oscillator and a character £ # & which coincides

with & on the identity component of 5(}), q). Then 8' 0 0~ coincides with tensoring
with .

For future reference, we need to record some qualitative features of the computation
of [AB1]. Informally speaking, the bijection € is the identity on the level of Langlands
parameters. When one considers more refined representation theoretic information, the
way in which @ differs from the identity is confined only to the genuine discrete series of
Mp(2n,R). If we avoid the kind of infinitesimal character where such discrete series can
infiltrate pseudocharacters (by requiring none of the coordinates to be half-integers), these
differences disappear. This will be of crucial importance in Section 4.

Theorem 2.7. Let w, 71, and my be irreducible genuine representations of Mp(2n,R). The
following statements hold independent of the choices (Proposition 2.6) defining 6.

(1)

0 behaves well with respect to the pseudocharacter parameterization of Section 2.1.

More precisely, if © is attached to a Cartan subgroup whose image under pr (Nota-

tion 2.2) is isomorphic to (R*)™ x (C*)" x (S1)*, then O(w) is attached to a Cartan

subgroup isomorphic to (R*)™ x (C*)" x (S')%. In particular,

(a) 7 is a discrete series representation if and only if 6(r) is.

(b) 7 is an irreducible Langlands quotient of a principal series if and only if 6(r)
is.

0 behaves well with respect to supports. More precisely,

supp, (1) = supp,(m2) <= supp,(0(m1)) = supp,(f(r2))

0 behaves well with respect to T-invariants. More precisely, suppose © has infinites-
imal character X\, and that « is a simple integral root for X such that o is a simple
integral root for X' (see remark 2.8). Then

a € 7(1) < o € 7(0(n)).

Moreover, suppose that either A\ has no coordinates which are half-integers, or X is
arbitrary but « is short. Then o is a type II noncompact imaginary for w if and only
if & s type II noncompact imaginary for O(w). The same conclusion holds for type
I noncompact imaginary roots, compact imaginary roots, complex roots, and type I
and type II roots satisfying (or not satisfying) the parity condition.

Suppose that either no coordinate of X\ is a half-integer and « is a simple integral
root; or that A arbitrary and « is short, simple, and integral. Then 0 behaves well
with respect to Cayley transforms and the cross action in a. More precisely, retain
the assumption on X and «, write o as in Remark 2.3, and fix v € P;\V"p (notation
as in Section 2.1.1). Write 0(irrpp(y)) = irrso(0(y)) for some 6(v) € ’Pgico()\). Then
(a) We have

0(sq X 7) = 8o X (7).
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(b) If « is type II noncompact imaginary for v, write co(y) = {v$,7*} for the
Cayley transform of y through X\, and likewise for co(6(7)). Then

ca (0(7)) = {0(75),0(v2)}-

The obvious statement holds for type I noncompact imaginary roots, and for real
roots and inverse Cayley transforms.

We refer to [Vgr] or [RT] for material concerning Cayley transforms and cross action.

3. L-PACKETS, MICROLOCAL L-PACKETS, AND STABILITY: THE HALF-INTEGRAL CASE

In this section, we fix \ € (h,fp )* regular, half-integral and dominant. (The reduction of
singular case to the regular case is discussed in Remark 3.20 below.) Write X for the flag
manifold of sp(2n,C), and recall the complexified maximal compact subgroups K and K of
Section 2.2. Note that since the action of K on sp(2n,C) factors through K, the orbits of

K on X coincide with those of K. It is very important to note that supp,(7) € K\X for 7
in either Irr(Mp(2n,R)) or Irr(Sp(2n, R)).

3.1. Geometric reformulation of [RT]. In this section, we give a clean geometric defi-
nition of the duality of [RT]. (This does not circumvent [RT]: to prove that the definition
given below has the crucial representation theoretic properties of Theorem 3.16 requires the
full development given in [RT].)

Let X = 6;c(\) € b9 (notation as in Section 2.3). The hypothesis on A above imply
that A’ is a regular integral dominant weight. According to [V4] (applied to the case under
consideration), there is a bijection:

Dgo : P}?/O—)'pr, "}’i—>")’v.
such that the multiplicity matrices are essentially inverse transposes of each other:

[er(6)] = Y M(y,0)std(y)] iff [std(y")]= D enM(y,8)[irr(6")];

'YEPS?/O Jvengp
here €(7,8) = (—1)%79) with
d(v,6) = dim Supp(irr(é)) — dim Supp(irr(7y)).

As a matter of notation, we will also write 7 — 7 for the corresponding map between
[1'Irr(SO(p, q))» and Irr(Sp(2n,R)),, and refer to m¥ as the dual of 7. We write D, ; for
the restriction of Dgp to P:\q,O(p ),

It will be important for us to pin down the choices involved in defining Dgp. Each
noncompact SO(p,q) has two connected components and hence two one-dimensional rep-
resentations with trivial infinitesimal character, the trivial representations and another one
we denote by (4 (or just ¢ if the context is clear). For notational convenience fix an outer
automorphism of Sp(2n,R), say A, and also write A for the induced action on K\X and
Irr(Sp(2n, R)).

Lemma 3.1. There are two possibilities for the restriction of Dgo to each 'PS,O(p’q) with

pq # 0. Denote them by D, 4 and D:'D,q. Then D{SO(p,q) o Dgé(p,q) - A.
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Proof. This follows easily from [V4]. O

Since there are n noncompact inner forms of SO of a fixed signature, there are 2" possible
choices for Dgp. There is a more sophisticated approach to the duality of [V4] which reduces
the number of choices of Dgo to just two. This is explained in [ABV], but since it is difficult
to extract our particular example from that reference, we recall a few concrete details.
Choose a large discrete series, say 7, of Sp(2n,R); there are two such choices, namely 7,
and 7} := A(ng). They are completely distinguished by their associated varieties. More
precisely, there are two GL(n,C) principal orbits (i.e. orbits of maximal dimension) on the
nilpotent cone in the complexified Cartan p for Sp(2n R), say O and /. We may arrange
the labeling so that AV(7z) = Q and AV (7)) = O.

Fix a choice of D, 4, and let 1, , denote the trivial representation of SO(p,q). From

the general principles of [V4], 1) := D, (1,,,) has maximal GK-dimension, and hence its
associated variety is either @, O, or OUQ. In fact, this latter possibility occurs if and only if
pq = 0. This is probably an instance of a general kind of coinduction statement, but here we
indicate a direct argument. It is not difficult to see that lvq is cohomologlcally induced (in
the good range) from the external tensor product of a large discrete series of a (quasisplit)
U(r,s) and the irreducible principal series of a smaller Sp(2m,R); here r+s+m = n, and
r+s = min{p, ¢}, the real rank of SO(p,q). The irreducible principal series has a reducible
associated variety (equal to the union of the closure of the two principal orbits for the smaller
symplectic group). By localizing, it is easy to see that associated varieties of cohomologically
induced modules are induced in an appropriate sense. In the current context, we conclude
that AV(1) ) is induced from the product of a principal orbit in a quasisplit U(r, s) and
the union of the two principal orbits for Sp(2m,R). Using, for instance, the orbit induction
computations of [T2], it is easy to see that AV(1, ) is irreducible exactly when 745 # 0
(equivalently, pg # 0).
Definition 3.2. Fix a choice of large discrete series 71, as above. We say that a choice of
D, , is of type 7 if AV(D,4(1,4)) = AV(7). We say that Dgo is pure of type 7y, if its
restriction to each SO(p,q), pg # 0, is of type 7. By the above considerations, there are
exactly two pure choices of Dgp corresponding to the two choices of 77,. From Lemma 3.1,
it is not difficult to verify that the two choices differ by A.

The pure choices of D g have nice properties that we shall exploit below. For now consider
the map

(3.3) A : TIrr(Mp(2n,R))5™" — K\X x K\X
defined by
7 > (supp, (), suppy(8(m)Y))-

Note that all together there are 2”2 different choices in the definition of A : four from the
choices defining 6 (see Proposition 2.6) and 2" from the choice of Dgp. (One should also be

reminded of the choice of § in Section 2.3. This is fixed once and for all, and is not relevant
here.) Write ¢ for the involution of K\X x K\X that switches factors: +(Q, Q") = (Q’, Q).

Proposition 3.4. The map A is injective. Moreover, t(im(A)) = im(A).

Sketch. One can prove the proposition by an explicit and more or less straightforward
calculation. This is messy of course, so we sketch a slightly more abstract approach.
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We first prove injectivity. By Theorem 2.7(2), injectivity is equivalent to the following
assertion for 71, m9 € [[' Irr(SO(p, q))x,

(supp (1), 5upp(7y)) = (Suppy (m2), Suppo(73)) = m = ma.

But (supp,(71),supp, (7)) is simply a geometric reformulation of what Adams-Barbasch-
Vogan ([A1], Definition 2.9) call a set of L-data for SO. Hence [A1], Theorem 2.12, implies
the indicated injectivity statement.

To prove the final assertion of the proposition, we first observe that ¢ is a bijection between

Im(A;ds) := A({r | 7 is a discrete series})

and
Im(A;ps) := A({m | 7 is a quotient of a principal series}).

More precisely, if we denote the open orbit of K on X by @,, it is easy to check from
Theorem 2.7(1a-b), and the fact that Dgo interchanges discrete and principal series repre-
sentations, that

Im(A;ds) = {(Qo, Q") | Q" is closed},
and likewise that

Im(A;ps) = {(Q', Qo) | Q" is closed}.
Hence the observation above follows.

Next suppose n = 2k and define Im(A; C*) to be the image of A applied to all represen-
tations which attached to a Cartan subgroup whose image under pr is isomorphic to (C*)*.
Now 6 is a bijection between such representations for Mp(2n,R) and such representations
for SO (Theorem 2.7(1)); and Dgp is a bijection between such representations for SO and
those for Sp. Hence we conclude that

t(Im(A; C*)) = Im(A; C*).

The previous two paragraphs prove that ¢ preserves the image of A restricted to those
representations attached to Cartan subgroups whose image under pr is either (R*)", (C*)*,
or (S1)". The general case of the final assertion of the proposition follows by combining
these three cases. We omit the details. O

As a consequence of Proposition 3.4, we obtain an involution
(3.5) Dup:=AtoroA : Ir(Mp(2n,R))§" — Irr(Mp(2n,R)){"
On the level of pseudocharacters, we also write
M M
Again there are 2”2 buried in the definition of Djz,, but as the second part of the next
lemma indicates, only the pure choices have good representation theoretic applications.

Lemma 3.6. Fiz v € Piwp , and recall that \ is reqular and half-integral. Fiz a choice of 0
and Dso defining Dyzp.

(1) Let « be a short root in A5?P (and hence « is integral for \). Then, independent of
the choices defining Dy,
(a) Dap commutes with cross action in a,

Sa X Darp(77) = Dap(sa X 7).
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(b) If @ is noncompact imaginary for vy, then « is real and satisfies the parity condi-
tion for Dprp(y). Moreover Dy, intertwines Cayley and inverse Cayley trans-
forms,

DMp(’Ya) = [DMp(7)]a-
(2) Let a be a long imaginary or real root for v (hence half-integral), and let T, de-

note the (infinitesimal character preserving) nonintegral wall cross in . Then Dy
commutes with Ty,

(Ta © Darp) (7) = (Dmp 0 Ta ) (7),
if and only if the choice of Dgo defining Dy is pure in the sense of Definition 3.2.

Proof. We first consider (1a). Retaining the hypothesis and notation of the current lemma,
Proposition 3.4 implies that it is enough to establish

(3.7) supp, (sa X Dap(v)) = supp, (Darp(se X 7)); and
(3.8) supp, (Dso(0(sa X Darp(7)))) = supp, (Dso(0(Darp(sa X 7))))-
Consider (3.7). We have

supp, (Darp(8a X 7)) = supp, (Dso(0(sa X 7)) by definition of Dy,
= supp, (Dso (s x 0(7))) by Theorem 2.7(4)
= supp, (s¢ X Dso(6(7))) by the general properties of [V4].

Recall that, by definition, supp,(Dap(7)) = supp,(Dso(6(7))). It is a general property of
the cross action that if 7 and 7’ have the same support, then so do s, X m and s, X 7'; s0
(3.7) follows from the previous sentence and the previous displayed equation. The proof of
(3.8) and the statement in (1b) is entirely similar. We omit the details.

It is important to point out that purity was not needed in the above argument. The reason
is that if () is a (conjugacy class of) pseudocharacter of SO(p, q), then 0(sq X7y) = sos X0(7Y)
is a pseudocharacter of the same inner form, SO(p, q), so there is no issue of the compatibility
of the restriction of Dgp to the various inner forms. This is not the case if the cross action
is replaced by T, as in (2), and purity necessarily plays a role. Definition 3.2 is difficult to
apply, and we need an alternative characterization of purity in the course of the proof of (2).
This requires some auxiliary ideas.

Given an orbit Q € K\X, let QQ, denote the image of @ under the projection of X to
the partial flag variety defined by a long root «. Since « defines a subgroup of Sp(2n,C)
isomorphic to Sp(2,C), it gives rise to an inclusion v, of P! into X. Let Q% denote the
intersection of () with the image of 1,. If « is an imaginary root for orbits @ and @Q’, then
Q = @' if and only if Q, = @, and Q* = (Q')®. The same conclusion holds if « is a real
root for both @ and Q'. (In the real case, if Q, = Q.,, one always has Q% = (Q')%, so this
condition is vacuous.)

Let T,, denote the involution of Piw P corresponding to the infinitesimal character preserv-
ing translation functor that crosses the o wall. We thus obtain an involution 7%, := §oT, 00~!
of 735,0. We claim that the choice of Dgp is pure if and only if for any v € 735?,0 for which
o' is a real (short) root,

(3.9) supp,(Dso(Y))a = supp, (DSO(T&(’)’)))Q-

The important point to notice is that v and T}, () generally live on different real forms.
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The proof of (3.9) is sketched below. For now, let us assume it holds and deduce (2) from
it. The first step is to establish (2) directly for Mp(2,R) and for the eight possible choices
of @ and Dgp. (In rank one, every choice of Dgp is pure.) This is lengthy but entirely
elementary, and we omit the details. Return to the general case and fix a pure choice of
Dgo defining Djsp. Let 71 be a genuine irreducible representation of Mp(2n,R) for which o
is real root. (The argument for o imaginary is identical to this case and we make no further
mention of it.) Set my = Dpsp(m1). Unwinding the definitions, this means that

(3.10) supp, (1) = supp, (Dso(f(2))); and
(3.11) supp, () = supp, (Dso(0(m1)))-

We are trying to prove

(3.12) supp,(Ta(m1)) = supp, [Dso (0(Ta(72)))]; and
(3.13) P, (Ta(12)) = supp, [Diso (8(Ta(m))) |-

Because « is real for 71, the proof of Proposition 3.4 shows « is imaginary for w9 and hence the
general properties of D g¢ together with Theorem 2.7 imply « is real for supp, (Dso (0(Tw(72))))-

We first treat (3.12). By the above comments, to establish (3.12), it suffices to prove
(3.14) supp, (Tw(m1))* = supp, [Dgo (9(Ta(7r2)))]a; and
(3.15) supp, (T (m1))a = supp, [Dgo (G(Ta(ﬂg)))]a.

Because of the explicit computation of T, given in [V4], Corollary 4.8 and Lemma 4.9,
(3.14) reduces to the Mp(2,R) case already treated. (Of course one must use (3.10) and
(3.11) in the argument.) Consider now the left-hand side of (3.15). Again by the explicit
computation of T, in [V4], it is easy to check that supp,(7Ta(71)))a = SUppy(71)q. Turning
to the right-hand side of (3.15),

supp, [Dso (H(Ta(ﬂ'z)))]a = supp, [Dso (T4 (0(#2)))]a by definition of T},
= supp, [Dso (0(#2))]a by (3.9).
Thus (3.15) is equivalent to

suppo(ﬂl)a = Supp, [DSO (9(71-2))] o’

But this is guaranteed by (3.10). This completes the proof of (3.12). The proof of (3.13) is
identical.

Thus it remains to establish that (3.9) holds if and only if D¢ is pure. This is extremely
complicated, and we give only a rough sketch. Start with a representation 7 of SO(p, q)
for which « is real. It may happen that 7’ := T}, () is also a representation of SO(p, q). If
this is the case, then the computation of T, in [V1] mentioned above shows that 7' is the
inverse Cayley transform (through «) of 7 and (3.9) follows from the computation of T, and
general properties of [V4]. (No assumption of purity is required here.) So we may suppose
that 7' is a representation of SO(p',q') # SO(p, q). We may find a sequence of cross actions
and Cayley transforms that takes 7’ to 1, ,, the trivial representation of SO(p’,q’). One
may check that it makes sense to apply this same sequence (suitably interpreted) to 7 to
arrive at a new representation 71 which differs from 1, , by a Cayley transform. Suppose
this sequence takes the root « to the root # which again will necessarily be long. It is enough
to check that supp,(Dso(m1))s = supp,(Dso(ly,¢))s if and only if Dy, , and Dy o are of
the same type. Suppose the latter is of type mr. We need to recall the distance between
two element @ and @' in K\ X. This is the minimal length of a saturated chain between Q
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and @'. (By saturated chain, we mean a sequence of elements in K\ X beginning at @ and
ending at Q" such that if Q; and Q9 are successive terms in the sequence, either Q1 > Q-
or Q2 > @)1 in the closure order and, moreover, the complex dimensions of (J; and )2 differ
by exactly one.) Because Dy 4 is of type 7, the distance between supp,(Dso(1y,4)) and
supp,(nr,) is shorter than the distance between supp,(Dso(1lp,q)) and supp,(n}). Since
m differs from 1, , by only a Cayley transform, we know supp,(Dgo(71)) will be closer to
supp,(7r) than supp, (7 ) if and only if D, , is of type nz. It then remains to show that
the fact that both supp,(Dso(1,,4)) and supp,(Dso(71)) are closer to supp, () than
supp, (7 ) implies (3.9). This follows because one can directly establish that either (3.9)
holds or the equality in (3.9) holds with the right-hand side twisted by A. But if the this
latter case holds, it contradicts the fact that both supp,(Dso(1,,)) and supp,(Dso(71))
are closer to supp,(7z) than supp, (7} ). O

We now turn to the representation theoretic significance of Ds;,. The deep and miraculous
fact is that for pure choices of Dgp, Dy, implements a character multiplicity duality.

Theorem 3.16. Recall the assumption that the infinitesimal character X is half-integral and
reqular. Fiz 6 and a pure choice of Dgo (Definition 3.2), and define Dy, with respect to
these choices (Equation 8.5). On the level of pseudocharacters write vV = Dpp(y). Then

317) [ = Y M(1,0)[std(y)] iff [stdy")]= D esM(y,8)irr(s")];

yEPYP sVePy'P
where €(y,8) = (—1)470) with
d(~,d) = dimsupp(irr(d)) — dimsupp(irr(y)).
Sketch. We first recall that in [RT], Definition 6.31, we defined an involution
Dgr : Irr(Mp(2n,R))5™" — Irr(Mp(2n, R)){™.
On the level of pseudocharacters, write
Drgr : ’Piwp — ’Piv"p

Actually there were two such involutions defined in [RT] and they differed by composing
with A (see [RT], Remark 6.35) and it is impossible to make a distinguished choice among
these two. For either choice, the main result of [RT] shows that Dyt implements a character
multiplicity duality in the sense that of Equation (3.17). Fix 6 and a pure choice of Dgg
defining Dys,. Our task is to show that there is a choice of Dgt such that Drr = Djyp.

First we comment on the definition of Dgry. Let m be any genuine discrete series, let 11
denote the set of simple short roots in the abstract root system, and let 75(7) denote the
subset of II; consisting of those roots roots in the 7 invariant of 7. Remark 6.34 of [RT]
implies a choice of Dyt is completely characterized by two conditions: Dgr(7) is a principal
series such that 74(Dgrr(7)) = {a@ € II; | @ ¢ 74(7)}; and Dy satisfies the conclusion of
Lemma 3.6.

Let 7 denote the genuine discrete series of Mp(2n,R) at infinitesimal character A whose
image under @ is the representation with infinitesimal character \’ of the compact inner form
of SO with discriminant d. Since every simple root is in the 7 invariant of 7/, Theorem 2.7(3)
implies that every short simple root is in the 7-invariant of 7. From Theorem 2.7(1), we know
7 is a discrete series, and so from the proof of Proposition 3.4 we conclude that Dy (7) is
a principal series. From the definition of D sy, we know that (D (7)) = Dgo(n'). Again
from Theorem 2.7(3) together with the fact ([V4]) that Dgo inverts 7-invariant, we conclude



16 DAVID A. RENARD AND PETER E. TRAPA

that no short simple root is in the 7-invariant of Dz, (7). From the characterization of Dy
in the previous paragraph, Lemma, 3.6 implies that Dy, coincides with a choice of Drr. O

The reader will note the strong analogy of this theorem with the symmetric reformulation,
due to Adams-Vogan (see [A1]), of [V4]. From this perspective, it is clear that the set K\ X
plays the role of the set of Langlands-Weil parameters for L-packets of Mp(2n,R) with
infinitesimal character A. We pursue this in the next section.

We conclude by examining the effects of the choices defining D;z,. Recall that there were
two pure choices of Dgp and four choices of §. The following propositions indicate that
modifying the choices amounts to twisting D s, by the outer automorphism A.

Proposition 3.18. Fiz a choice of 8. Let Dy be defined with respect to 0 and a pure choice
of Dso, and let D'Mp be defined with respect to the other pure choice. Then D'Mp = AoDyyp.

Proof. Retain the notation of the proof of Theorem 3.16. From Lemma 3.1, it is easy to
check that Dgr(m) # Dgp(m). Yet both Dy, and D, coincide with some choice of Drgr.
Since these choices differ by A, the proposition follows. O

Unlike the dichotomy of Proposition 2.6, both kinds of choices for # amount to the outer
automorphism of Mp(2n,R).

Proposition 3.19. Recall that the definition of Dyrp depends on a choice of 6 and Dgo.
For the following statements, fix a pure choice of Dgo.

(1) Retain the notation of Proposition 2.6(1), and let Darp and DY, denote the corre-
sponding involutions of ’P)]\V[p. Then D' » = A o Dyyp.

(2) Retain the notation of Proposition 2.6(2), and let Dy and DYy, denote the corre-
sponding involutions of ’Piwp. Then D'Mp = A oDyyp.

Proof. Consider (1) and retain the notation of the proof of Theorem 3.16. From Proposi-
tion 2.6(1), it is easy to check that Dgrp(m) # Dy (7). Now the conclusion of the proposition
follows exactly as in the proof of Proposition 3.18. The proof of (2) is identical. d

Remark 3.20. Suppose A is not regular, but still half-integral. The situation is then
analogous to the case of parabolic-singular duality for linear groups. Since this contains
some ideas only implicit in [V4], we briefly recall them. Suppose a representation 7 of a
linear group Gg has singular infinitesimal character \;. Let GY()\;) denote the centralizer
of exp(2mi),) in the complex dual group GV, and write PV ();) for the parabolic subgroup
of GV defined by the roots which are singular for A\;. Let meg denote some irreducible
representation of Gr with regular infinitesimal character which translates (via a translation
functor, say, T') to 7, and let By denote the block containing mes. Then [V4] supplies
a block By, of representations with trivial infinitesimal character for a real form Gy (X;)
of GV(X;s) and a bijection D : Brg — By,. Consider the block B containing m; so
B = T(Breg). Then the image BY := D(B) consists of the irreducibles in the category
of representations of G}(\s) with trivial infinitesimal character obtained by localizing on
GY(\)/PV(Xs). (It is possible to formulate a character multiplicity duality statement in
this context, but since standard modules in the parabolic category are more delicate, we
omit a precise statement.) Let KV denote the complexification of the maximal compact
in G (As). Roughly speaking, in the regular case the approach of [ABV] reinterprets the
Langlands-Weil parameters as the set of K orbits on the flag variety of G¥(\;). At the
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singular infinitesimal character As, the appropriate set of parameters is the set of K orbits
on the partial flag variety GV()s)/PY(\s)-

Here the situation here is exactly the same. If ), is singular and half-integral, and = is
an irreducible genuine representation of Mp(2n,R), the its dual is obtained by localization
on the partial flag variety Sp(2n,C)/P()s), where P();) is the defined as above. Since this
case reduces to the regular case in the same way that the linear case does, we will focus all
of our attention on the regular case.

3.2. L-packets. Fix @ € K\X and X regular and half-integral as above. Following [ABV],
we write Lgo (Q, \') for the super L-packet of representations with infinitesimal character
M'; more precisely, fix a pure choice of the duality Dgo of [V4] (Definition 3.2), and define

Lso(Q,N)={m¢€ H'Irr(SO(p,q))X with supp, (Dgo(ﬂ') =Q};

By analogy, fix a choice of Dz, as in Section 3.1 and define

Larp (Q, A) = {m € Irr(Mp(2n, R))§™ with supp, (DMP(T(')) = Q}.
It is important to note that while the definitions of L-packets depend on the indicated choices
of duality, the set of L-packets with fixed infinitesimal character does not.
As a matter of notation, it will be also convenient to define

(3.21) PYP(Q) = {y € PyP |irr(y) € Larp (@, N},
and similarly
(3.22) P2 (Q) = {v € Py |irr(y) € Lagp (@, N)}.

Previously [AB1] suggested defining L-packets for Mp(2n,R) as the theta lifts of super-
packets for SO. We now show that this definition coincides with our intrinsic definition of
L-packets for Mp.

Proposition 3.23. Fiz Q € K\X, fix reqular half-integral infinitesimal character X\, and
Set X' = 0i.(X) (Notation 2.83). Fiz a pure choice of Dgo (Definition 3.2), fiz a choice of
6, and let Dy, denote the corresponding choice of duality for Mp (Equation (3.5)). Define
L-packets for Mp and SO with respect to these choices. Then theta lifting preserves L-packets:

H(LMP (Qa A)) = ]LSO (Q7 >‘I)

Proof. Let 7 be any genuine irreducible representation m of Mp(2n,R) with infinitesimal
character A. Then it is a trivial consequence of the definition of Dj;, given above that

sSupp, (DMP(W)) = Supp, (DSO (0(7‘-))) -
The theorem now follows immediately from the definition of Lz, (@, A) and Lgo (@, A'). O

3.3. L-packets and stability. We now turn our attention to stable virtual representations
supported on L-packets (or strongly stable virtual representations supported on super L-
packets)?. For Mp(2n,R), stability is defined in [A2] (see also [R1], [R2]). The following
theorem gathers some results of [ABV], [AB1] and [A2].

Theorem 3.24. Fiz Q € K\X, and X regular and half-integral. Set X' = 6i.(\) (Nota-
tion 2.3), fix a pure choice of Dgo and a choice of Dy, and recall the notation of Equations
(8.21)-(3.22).

4Since we have assumed the infinitesimal character is regular, there is no difference between stable virtual
representations and stable eigendistributions: the isomorphism is obtained by simply taking characters.
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(1) The sum of the standard representations in the super L-packet for SO defined by Q
and N is strongly stable. More precisely,

1 (Lso(@N) = 3 [std(y)]

7EPflO(Q)
is a strongly stable virtual representation for [[' SO(p,q). Furthermore, the set

{°(Lso (@, X)) | Q € K\X}

is a basis of KHC(SO(2n+1,C))$%, the space of strongly stable virtual representations
for [T SO(p, q) with infinitesimal character X'
(2) Similarly,

N (Larp(Q, 0) == Y [std(y)]
vePY(Q)
is a stable virtual representation of Mp(2n,R). Furthermore, the set

{1°°(Lap (@ N) | Q € K\X}

is a basis of KHC(Mp(2n,R))3!, the space of stable virtual representations of Mp(2n, R)
with infinitesimal character .

Proof. The fact that the indicated statements are independent of the choices of Dgo
and Dy, follows from the observation (mentioned above) that the set of L-packets with a
fixed infinitesimal character is independent of such choices. All the assertion in (1) about
SO(2n + 1) are in Theorem 18.14 of [ABV], which is a reformulation of [Sh], Lemmas 5.2
and 5.3. By carefully examining these references, one sees that the same arguments carry
over to prove (2).

For readers not satisfied with this approach, we give an extrinsic argument that deduces
(2) from (1) as follows. Since everything is independent of the choices of Dy, and Dgo,
we may make take a fixed pure choice of Dgg, fix a choice of 6, and fix Dy, defined with
respect to these choices. In [A2], given a choice of oscillator Adams gives an isomorphism
from the space of stable virtual representations of SO at A’ to those of Mp(2n,R) at A. Part
(4) of the theorem in the introduction to [A2] together with Theorem 8.8 of [AB1] implies
that for the choice of oscillator defining 6, the isomorphism takes 7'°(Lgso (@, \')) to the
sum of the standard representations corresponding to elements of 8~ (Lgo (@, \')). Now (2)
follows from (1) and Proposition 3.23. O

3.4. Micro L-packets. We now define microlocal L-packets (“micro L-packets” for short)
for SO and Mp when A is regular and half-integral. For linear groups, in particular the case of
SO, the definition is given in [ABV], Chapter 19, where they are simple called micro-packets.
The definition in the case of the metaplectic group is new.

Given a Harish-Chandra module 7 for either Mp or Sp, we write

CO(m) = > me(mTHX
QEK\X

for its characteristic cycle; here mg(m) are positive integers (which can be zero, since we are
summing over all K orbits on X). Note that it is an easy consequence of the definition of
the characteristic cycle that

(3.25) Msupp, (x) (T) = 1.
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Fix Q in K\ X, fix a pure choice of Dgg, and define the micro L-packet for SO as
ISmOC (Qa )‘I) = {7‘(’ € H,IIT(SO(p, Q)))\’ | mq (DSO(W)) 5& O},

i.e. LI (Q, \') consists of all representations in [ ['Irr(SO(p, q))» whose dual representations
in Irr(Sp(2n, R)), have characteristic cycles containing 7, X' with non-zero multiplicity. Note

that Equation (3.25) immediately implies
Lso (Q,X) C L5 (Q,X),

but the containment is generally proper. (For examples of this latter phenomenon, see the
n = 1 example in Section 3.5.)

Similarly we fix a choice of D), and define the micro L-packet

My (Q:2) = {7 € Lir(Mp(2n, R){™ | mo(Dasy(m)) # 0},

the set of representations in Irr(Mp(2n,R)){™" whose dual representations (which are also

in Irr(Mp(2n,R))$™) have characteristic cycles containing T X with non-zero multiplicity.
Again we have

Larp (@A) C LEE(Q, N).

3.5. Behavior of micro L-packets under theta lifting. By analogy with Proposi-
tion 3.23, it is tempting to ask whether micro L-packets lift to micro L-packet under theta.
This is easily seen to be false, already for n = 1. The dual of the trivial representation of
SO(3) is the irreducible (nonunitary) principal series of Sp(2,R) ~ SL(2,R). The charac-
teristic cycle of the nonunitary principal series is easily seen to consist of the sum of the
conormal bundles to each of the three orbits of K ~ C* on X ~ P! (each with multiplicity
one). Hence we conclude that the trivial representation of SO(3) belongs to each of the
three micro L-packets for SO with infinitesimal character A’ = pso = 60ic((1/2)psp). It is
easy to see that there is no genuine irreducible representation of Mp(2,R) with infinitesi-
mal character A = (1/2)ps, whose characteristic cycle is supported on all three conormal
bundles. Hence we conclude that the intersection of the three micro L-packets of genuine
representations of Mp(2,R) with infinitesimal character A is empty. Since 6 is a bijection,
it cannot take micro L-packets to micro L-packets.

3.6. Micro L-packets and stability. We turn to the application of micro L-packets to
stable virtual representations.

Theorem 3.26. Retain the notation of Theorem 3.2/, and define micro L-packets as above.

(1) The sum of the irreducible representations in a micro L-packet for SO, weighted by
coefficients from the characteristic cycles of their duals, is strongly stable. More
precisely

PUULES (@A) = D elm)(=) e @ b (1Y) ]
WEL?iOC(Q,/\’)
is a strongly stable virtual representation for [ SO(p,q); here e(r) is the Kottwitz

sign attached to w (i.e. e(r) = (—1)" 7" if # € Irr(SO(p, q))x ). Furthermore, the set
{n™(L§5 (@ )) | @ € K\X}

is a basis of KHC(SO(2n +1,C))$t (with notation as in Theorem 3.24(1)).
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(2) Similarly,

PULES(Q,N) = Y (—1)dmeup(m ) ~dim(@)yp o (V) ]

TELRIS(Q,N)

is a stable virtual representation of Mp(2n,R). Furthermore, the set
{n™(LE5(Q:N) | Q € K\X}
is a basis of KHC(Mp(2n,R))3 (with notation as in Theorem 3.24(2)).

Proof. Part (1) is a special case of [ABV], Corollary 1.32. It follows from part (1) of
Theorem 3.24 and [ABV], Theorem 1.31). These results also hold in the relevant setting for
Mp. So we deduce (2) of the present theorem from (2) of Theorem 3.24 in exactly the same
way. O

Remark 3.27. The proof given in [ABV] of their Theorem 1.31 uses the relatively deep index
theorem of Kashiwara. We sketch a very short and elementary proof of the [ABV] result
that makes no use of Kashiwara’s theorem, and which makes the proof of our Theorem 3.26
entirely self-contained. Equation (3.33) below proves the required statement in the context
of the metaplectic group, and its derivation (which depends only on some linear algebra and
the easy Lemma 3.30) immediately generalizes to the statement given in [ABV], Theorem
1.31.

Remark 3.28. For later use it will be useful to rewrite the stable virtual representations
appearing in the theorem. For instance in (2), we can write

LR (@A) == Y (~L) TP =A@ (e () [ixr (7)),
yePYP
since, by definition, mg (") # 0 if and only if 7 € L™(Q, \); here 7V = D, (7) where
the choice of Dy, is the one used to define micro L-packets. We can use the linearity of the

characteristic cycle to express the above sum in terms of standard (rather than irreducible)
representations

LR Q) = Y 6 Pmg(std(yY))[std(7)],
yePP

where )P = (—1)dim(supp(y*))=dim(Q) for o € PP, This should be compared with Theo-
rem 3.24(2). Similarly we can apply the same considerations to Theorem 3.26(1) to write

N LES QX)) = Y & mg(std(y))lstd(v)],
'yEPf,O

where 6,‘30 = (_1)dim(supp(7v)—dim(Q) for v € 'Pf;o.

We now define now maps between spaces of stable virtual representations, and investigate
their relation with the one defined in [A2]. Fix, as always, a regular half-integral infinitesimal
character A\. Fix a pure choice of Dgp and a choice of Dysp. Retain the notation of
Theorems 3.24 and 3.26, and recall that those theorems imply that the assignments

T : 7(Lso(Q, X)) = 7' (Larp(Q; A),
Tmic . nmic(Lg'lioc(Q,A,)) — nmiC( IAI}IIIC)(Q’ )\))’
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for each @ € K\ X, extend to linear isomorphisms
¢, T™iC . KHC(SO(2n + 1,0))5E — KHC(Mp(2n,R))$E.

The maps T'°¢ and 7™ both depend on the choice of Dgo and D Mp- From Lemma 3.1 and
the fact that the two choices of Dy, differ by A (see Propositions 3.18 and 3.19), making
an alternate choice in the definition of 7'°¢ or 7™ amounts to twisting their image by A.

Theorem 3.29. Fiz regular half-integral infinitesimal character . With the notation of the
previous paragraph, and for a fized choices of Dy and Dgo, Tl = T™i¢  Pyrthermore
these maps coincide with Adams’ transfer of stable distributions up to outer automorphism.
More precisely, Adams’ map depends on a choice of oscillator, and there is a choice of
oscillator such that Adams’ map coincides with T'°¢ = T™ic,

Proof. Let us first show that Adams’ map coincide with 7'°¢ up to outer automorphism.
For a packet of discrete series, this is already in [A2]. The general case follows from this and
the induction principle. (See §12 of [A2] and the proof of Theorem 3.24).

We now turn to the proof that 7'°¢ = T™i¢, This is more subtle and requires the well-
known (and easy) fact that the characteristic cycle of a standard module depends only on
its support. (Proposition 2.6.2 in [Ch] is a convenient reference.) We isolate the very special
cases that we will need.

Lemma 3.30. Fiz fyMp,'yf\,[p € Piwp, for X half-integral and regular, and fiz dsp, € ’Pf,p, for
X regular and integral. Then the characteristic cycles of the corresponding standard modules
only depends on their support. More precisely,

(1) If supp(irrap(ymp)) = supp(irrsp(dsp)), then
CC (stdarp(yap)) = CC (stdsp(dsy))-
(2) If supp(irrarp(ymp)) = supp(irrary(Vas,)), then
CC(stdrp(vmp)) = CC(stdrp(Yarp))-

(By (1), the corresponding statement holds for standard modules for Sp.) O

To prove that T'°¢ = T™i¢, we will show that the change of basis matrix between the bases
in Theorems 3.24(1) and 3.26(1) coincides with the corresponding matrix for the bases in
Theorems 3.24(2) and 3.26(2). We first rewrite this latter matrix as follows, starting with
the expression for nmiC(L“A}};(Q, A)) in Remark 3.28,

(3.31) L (@A) = D & Pmostdary(v))Istdary (7))
yePP

Recall the notation of Equation (3.21), and note that it is obvious from the definitions that
P = (—1)dm(@)=dim(@) for all 4 € PLP(Q"). So Equation (3.31) becomes

(3.32) ™ IAI?S(Q’/\)):Z Z (—1)dim(@)~dim(@ 5 (std prp (7)) [std arp (7))
Q" yePYP(Q)
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According to Lemma 3.30(2), (—1)3m(@)=dim(@)yy 5 (stdps,(7Y)) is a constant for all y €
Piw P(Q"). If we denote this constant CAQ/IQP,, we can rewrite Equation (3.32) as

7™ (LS (Q, ) ch S Istda()] |

yEPYP(Q')

or, using the definition of 1'°¢ in Theorem 3.24(2),
(3.33) LR Q) = Y el (1 (Tarn (Q'51)))
Q'

(As noted in Remark 3.27, this equation establishes the stability of nmic(LIA’}[i; (Q,A)) and, in

fact, [ABV], Theorem 1.31, in this context.) So cgfs, is the change of basis matrix between
the bases in Theorems 3.24(2) and 3.26(2).

Now we can simply retrace the chain of equalities in the previous paragraph on the SO
side to conclude that

7™ (LSS (Q, X)) ZCQQ’ ( *(Lso (QI”\I))) ’

where ¢l is (—1)4m(@)~dim(Q) times the multiplicity of the conormal bundle 735X in the
characteristic cycle of any standard representation of Sp(2n,R) whose irreducible quotient
has support Q’. (Lemma 3.30(2) implies that this number does not depend on the standard
representation in question.) So cg%, is the change of basis matrix between the bases in

Theorems 3.24(1) and 3.26(1). But Lemma 3.30(1) implies cg%, = cngp,. So indeed the two
change of basis matrices coincide and the theorem is proved. O

4. NON-HALF-INTEGRAL INFINITESIMAL CHARACTER

In this section, we examine the opposite case of the one considered in Section 3, and
assume throughout that none of the coordinates of the infinitesimal character X are half-
integers. There are no representations of SO(p,q) with infinitesimal character X' = 6;.(\)
unless |[p — g| = 1. If we fix § appropriately (in the notation of Section 2.3), we need only
consider representations of SO(n,n+1).

If §(irrarp (7)) = irrso(v'), we will write 6(7y) = «'. As explained in the introduction, the
notation is justified by the following more precise version of Theorem 1.4. (For the discussion
of how Theorem 1.4 follows from Theorem 4.1, see Section 2.1.2.)

Theorem 4.1. Fiz a choice of 0, recall the notation of Section 2.1.2 and retain the setting
of Theorem 1.4. Then the Z[q,q~']-linear map

. Mp(2n,R) SO(n,nt1)
6 : My — My
[stdrip(7)] — [stdso(0(A))]
is an isomorphism of H(Wirp(X)) = H(Wso(6ic()))) modules.

Proof. Fix A, and recall that none of its coordinates are half-integers. Fix a genuine
representation 7w for Mp(2n,R) with infinitesimal character A\. Because each noncompact
simple root for 7 is necessarily type II (by the infinitesimal character restriction), one can
easily check that there are no nonintegral simple roots a which are noncompact imaginary.
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By the same token, there can be no nonintegral simple real roots for = which satisfy the
Speh-Vogan parity condition. (Crossing such a wall would lead to a nonintegral noncompact
imaginary root by [V1], Lemma 4.9.) So the only kinds of nonintegral wall crossings that
arise for infinitesimal character A are the ones treated by [V1], Corollary 4.8, and according
to that corollary, these are very simple to describe in the Langlands classification. From
this computation and [AB1], Theorem 5.1, it is easy to see that # commutes with these
nonintegral wall crossings. Since such crossings are equivalences of categories, by successively
applying them we can reduce the general case of the Theorem 4.1 to the case that every
simple integral root for A is actually simple. (Here we are using that W () is the Weyl group
of a Levi subalgebra of g. By contrast, in the half-integral case, the integral Weyl group is
of type D, and it is impossible to apply a sequence of nonintegral wall crosses every simple
integral root is in fact simple.)

Fix a simple integral root « for A. By the previous paragraph, we can assume that
a is actually simple. Note that o' (notation as in Remark 2.3) is a simple integral root
for () which is also simple. Write T,, and T, for the corresponding Hecke operators in
H(Warp(A) @~ HWso(6ic(A))). We are trying to show

(4.2) To - [stdarp(7)] = T - [stdso(0(7))]-

Because « is assumed to be simple, the action of T, and T, is described explicitly in [V3],
Definition 6.4. The only structural information that appears in that definition is that of
the cross-action and Cayley (and inverse Cayley) transforms. Unwinding the definitions
immediately implies that Equation (4.2) follows from Theorem 2.7(4). The proof is complete.

O

Definition 4.3. Fix non-half-integral infinitesimal character A and let Dgo denote a choice
of the duality of [V4] for SO(n,n + 1) at infinitesimal character A. Fix a choice of 6 and set
Dysp = Dgo 0 6. The dual of a genuine representation 7 = X () is defined to be Dy, ()
and is denoted by 7V or, on the level of the pseudocharacter classification, by X (y"). This is
a representation with trivial infinitesimal character of a real form of Sp()’), the centralizer
of e>™" in Sp(2n,C), where N = 6ic()).

Given the definition, the following theorem is a direct corollary of Theorem 4.1.

Theorem 4.4. The duality map of Definition 4.3 is a character multiplicity duality in the
sense of Theorem 8.16. In more detail, if X\ is reqular (see Remark 3.20 for comments on
the singular case),

[irr(8)] = Y M(y,6)[std(y)]
'yEPi\lp

if and only if
[stdy")] = D esM(y,8)[irr(s")];

5vePy P
where €(y,8) = (—1)470) with

d(~,d) = dimsupp(irr(d)) — dimsupp(irr(y)).

Some special cases of the theorem are especially interesting.
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Corollary 4.5. Suppose the coordinates of A are of the form,
ALy ooy dn) = (LN, oo T+,
where N, € Z and X, > --- > X > 0.

(1) Suppose that l is a positive real number that is neither an integer nor a half-integer.
Write 'P,E;L(H’R) for the pseudocharacters for GL(n,R) with infinitesimal character
p=((n-1)/2,...,—(n—1)/2) in standard coordinates. Then the following three sets
in pairwise bijection

pr(n,R)’ 7;/1\\41)(271,11%) pSO(nntl)

Oic ()

bl

and, moreover, the corresponding Hecke modules for H(S,) are isomorphic. Hence
the character formulas for Mp(2n,R) and SO(n,n+1) reduce to those for GL(n,R).
In particular, each set has n+1 blocks, dual to the unique blocks in U(n,0),U(n—
1,1),...,U(0,n) at infinitesimal character p.

(2) Suppose l is a positive integer. Then ’P/]\\/"p(Qn’R) ~ Pico(%"—l_l) (Theorem 4.1) has n+1
blocks which are dual to the unique blocks in Sp(n,0),...,Sp(0,n) of infinitesimal
character X.

Sketch. Part (2) is simply Theorem 4.1, together with the duality of [V4] worked out
explicitly for SO(n,n+1) at this kind of infinitesimal character. The final statement of part
(1) is again just the explicit duality for GL(n,R) at infinitesimal character p — see [T1],
Section 6, for details.

It remains to establish the H(S,,) isomorphism M,?L(n) ~ MZCO((;;’”H). (Applying The-
orem 4.1 then gives the other pairs of H(S,) isomorphisms.) Let 7’ be an irreducible
representation of GL(n,R) with trivial infinitesimal character. Let P be a parabolic for
SO(n,n + 1) with Levi factor GL(n,R), and let m denote the parabolically induced rep-
resentation IndIGD(ﬂ). It is easy to see that = is irreducible, and that all irreducibles with
the same infinitesimal character as 7 arise in this way. In fact, using induction in stages
it is easy to see that the induction has a very simple description on the level of Langlands
parameters. This description shows that the induction intertwines the H(S,,) action. Since
the infinitesimal character of 7 differs from that of 6;.(\) by an integral weight, the current
result follows from the translation principle. O

Given Definition 4.3 and Theorem 4.4, we can then define L-packets and micro L-packets
exactly as in Section 3. In more detail, fix A\, Dgo, 6 and set D, = Dgp o 6 as in Defini-
tion 4.3. Fix a representation 7 with infinitesimal character A\. Consider supp, (D Mp(w));
this is an orbit of a reductive group K on a (possibly partial) flag variety X for the group
Sp(N') of Definition 4.3. Given an orbit Q € K\X, we define

Larp (@, A) = {m € Irr(Mp(2n, R))3*" with supp, (Dap(r)) = Q}-
IAI}}IC, (Q,\) ={r€ Irr(Mp(Zn,]R))ien | mg (DMp(ﬂ')) # 0}.
Using Dg( instead of Definition 4.3 allows us to define the L-packet Lgo (@, \') and micro L-

packet L7 (Q, \') of representations of SO with infinitesimal character A’ = 6;.()\) in exactly
the same way. The following analog of Proposition 3.23 is obvious from the definitions.

Proposition 4.6. Fiz non-half-integral infinitesimal character A\ and Q € K\X as in the
discussion of the previous paragraph. Set X' = 6i.(\) (Notation 2.3). Fiz Dgo and 6 and
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define L-packets and micro L-packets as above. Then theta lifting preserves both L-packets
and micro L-packets:

G(LMP (Qa )‘)) = Lso (Qa AI);
O(LE (@, ) = LES (@, X);

The relationship between L-packets and stability is even simpler than we have indicated:
for the kind of infinitesimal character under consideration, it is easy to see that all L-packets
for SO are singletons®, and so every genuine virtual representation (with non half-integral
infinitesimal character) is stable. One can easily check the corresponding statement holds
for Mp. As in Section 3.6 we obtain two isomorphisms

T'°, T™¢ : KHC(SO(2n +1,0));. () — KHC(Mp(2n,R))5.
Explicitly, for instance, we have
T°([stdso(7)]) = [stdarp(6(7))].

It is a formal consequence of the definitions that Tl_OC and T™¢ coincide, and clearly the
above displayed equation indicates that 7'°¢ = T™C¢ depends on a choice of 4. It only
remains to check their relationship with Adams’ lifting of characters ([A2]).

Theorem 4.7. Fiz a choice of @ defining T'°¢ and T™C at reqular non-half-integral infin-
itesimal character as above. Then there is a choice of oscillator defining Adams’ lifting of
characters (say T) such that T = T'°¢ = T™, That is, there is a choice of Adams map T
such that

T([stdso(7)]) = [stdrrp(0(7))]-
Using Theorem 4.1, we can rewrite this as

T(lirrso(7)]) = lirrarp(6(7))]-

Proof. Once one understands how Adams’ lifting behaves under induction ([A2], Theorem
12.16), the first assertion is relatively straightforward. (The point is that the infinitesimal
character hypothesis implies that the Levi factor of parabolic subgroup in the inducing data
for the standard modules appearing above contains only GL(1) and GL(2) factors.) As
indicated, Theorem 1.4 gives the second statement. g

5. GENERAL INFINITESIMAL CHARACTER

We now apply the results of the previous two sections to obtain a general duality theory.
So let 7w be an irreducible genuine representation of Mp(2n,R) with arbitrary infinitesimal
character A\. Let A! denote the vector consisting of the coordinates of A\ which are half-
integers, and let A? to be the vector of the coordinates which are not half-integers. Let n;
denote the length of A;; so n = n;+mny. We now define an element s of the diagonal (split)
Cartan in Sp(2n,R). In the diagonal position corresponding to the ith coordinate A; of A,
place a +1 if ); is a half-integer and a —1 if \; is not a half-integer. This defines the element
s.

The centralizer, Mg of s in Sp(2n,R) is isomorphic to Sp(2n1,R) x Sp(2n2,R). Define
Mg to be the preimage of My in Mp(2n,R). Clearly Mp(2n1,R) x Mp(2ns,R) surjects onto
M. A little checking (see Equation (5.3) and the surrounding discussion in [R2]) of the

51t is important to note that micro L-packets will still be complicated, however.
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definitions shows that if 7; are irreducible genuine representation of Mp(2n;,R), then the
external tensor product m; ® mo descends to a genuine representation of Mg (which we will
denote m1®m3), and any such representation is obtained this way.

Let 7 be the genuine irreducible representation of Mp(2n,R) parameterized by the A-
pseudocharacter v = (T',7) for a Cartan subgroup Hg. Now Hp is conjugate to a Cartan
subgroup of Mg (see [R2], Section 4, for instance) and one may verify that the pair (T',7)
satisfies the compatibility conditions in the definition of a pseudocharacter for MR; to make
the context clear, we will denote this pseudocharacter by 4'. By construction, 7' param-
eterizes a genuine irreducible representation 7’ of MR which, by the above remarks, must
be of the form m ®my for genuine irreducible representations m; of M p(2n;,R). It is clear
from this construction that the infinitesimal character of m; is A*. Section 3 defines the dual
7y := Dp(2n;)(m1), a genuine irreducible representation of Mp(2n1,R); this depends on
a choice of Dppp(an,) at AL, Section 4 defines the dual 73 := Dgo(2p,+1)(0(72)), which is
an irreducible representation of some real form of the centralizer of ¢27ic(A ") in Sp(2ns, C);
this depends on a choice of Dgo(2n,+1) at AL and a choice of € at rank ng.

Definition 5.1. Retain the above notation. The dual of 7 is defined to be 7y ® my. This
is a representation of the direct product of Mp(2n1,R) and a real form of a Levi subgroup
of Sp(2n2,C), and depends on a choice of D yp2n,) at A1 (or, by Section 3.1, a pure choice
of Dgo(an,+1) at (A') and a choice of § at rank n;), a choice of Dgo(an,11) at (A?)’, and a
choice of 6 at rank ng. (See Remark 3.20 for further comments on the singular case.)

Theorem 5.2. Fiz regular infinitesimal character and choices of Dyrpon,)s Dso(zna+1)s
and 6 at rank ny as in Definition 5.1. Then Definition 5.1 defines a character multiplicity
duality in the sense of Theorem 3.16.

Proof. Let M (resp. M;) denote the Grothendieck group of the block containing 7 (resp. ;)
with scalars extended from Z to Z[g,q!]. Similarly write MV (resp. M) for the analogous
groups for 7V (resp. m’). For instance, as Z[g,q '] modules, MY = MY ® My by definition.

Let W denote the integral Weyl group of A. Clearly W = W; X Wy where W; is the
integral Weyl group of A\’. (So, in particular, W is isomorphic to the Weyl group of type

D.) Write H; for the Hecke algebra of W;. Since W is of type D, the construction of [RT],
Proposition 7.5, produces an extended Hecke algebra H1 containing H;. Set H = H1 R Hs.

From the formulas given in (and the ones of [V3]) it is clear that: H := H; ® Hy acts on
M; H; acts on M; and MY; and H; acts on My and My. It is obvious that MY = MY @ MLy
as H modules. The key observation here is that M = M; ® M> as ﬁl ® Hy modules. This
follows again from the formulas mentioned above: those for I~{1 and those for Hy never mix
terms.

Given a module M for a noncommutative R-algebra A, one needs to specify an antiauto-
morphism of A to define a module structure on the R-linear dual of M. A particular choice
of antiautomorphism for H; and Hy is given in Section 8 of [RT]. Hence we may speak of
the modules M*, Mj, and MJ. Using [RT] and [V4] respectively, the duality theorems of
Sections 3 and 4 are equivalent to the statements

M) ~ M? as H; modules; and
My ~ M¥ as Hy modules;
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where the isomorphism in each case is obtained by sending a basis element [7}'] to the linear
map /i, which map the basis element [7] to the Kronecker delta d,,,. Since

M* = (M; ® Mp)" = (M] ® M3),

we thus conclude that
M*~ (M{ @ My) =MV

as H modules, with the isomorphism mapping p, to [r¥]. But in the formalism of [V4],
Section 13, and [RT], Section 8, this is equivalent to the assertion of the current theorem. [

The theorem now allows us to define L-packets and micro L-packets in general. Fix a
representation 7 with infinitesimal character A, and let 7V denote its dual as in Definition 5.1.
Consider supp,(n"); this is an orbit of some reductive group J on a (possibly partial) flag
variety X. L-packets of genuine representations of Mp(2n,R) are parameterized by J\X:
given ) € J\X, we define

Lap(Q, A) = {m € Irr(Mp(2n, R))§™" with supp, (1) = Q}.
Micro L-packets of such representation are also parameterized by K\ X, and are defined by
Wiy (Qs 2) = {m € Ir(Mp(2n, R)™ | mg(n") # 0}.

The same definitions allow us to define the super L-packet Lso (@, \’') and super micro L-
packet LTS (Q, X') of representation of SO at infinitesimal character \' = 6;c()). As usual
the parametrizations of these sets depend on choices of the dualities involved, and we need
to make them compatibly in the following sense.

Lemma 5.3. Fiz reqular infinitesimal character \ and a choice of 8. There is a choice of
Dy at A (Definition 5.1) and Dgo at X' such that

Supp, (DMP(T(-)) = Supb, (DSO(H(W)))
for all m € Irr(Mp(2n,R))5™.

Proof. We construct the choices. The fixed choice of 6 also fixes choices of 6 at rank n;
and ¢ at rank ny. Fix a choice of Dy, as in Definition 5.1. This amounts to a pure choice
of Dgso(n,+1) at Al, a choice of 0 at rank n;, a choice of § at rank ny, and a choice of
Dson,+1) at A,. We assume that the choices of 6 at rank n; and ngy are compatible with
the fixed choice of # at rank n. As in the construction of Definition 5.1, the choice of duality
for SO(2n + 1) at infinitesimal character A’ amounts to a choice of dualities for SO(2n; +1)
and SO(2n2 + 1) at respective infinitesimal character A} and A,. The choice of Dy, fixes
this data, and we define Dgp accordingly. By Propositions 3.23 and 4.6 (especially the
proof of the former which relies on Theorem 3.16), these choices satisfy the condition of the
lemma. 0

Theorem 5.4. Fiz choices of Dso(ant1) and Dyypan) as in Lemma 5.3, and recall the
definition of L-packets given before Lemma 5.3. Then 0 preserves L-packets

G(LMP (Qa A)) = Lso (Q7 >‘I)

Proof. This is an immediate corollary of Lemma 5.3 and the definitions.
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Fix choices as in Lemma 5.3. As in Theorems 3.24 and 3.26 we may form the virtual

characters
1 Lap(Q,N) == Y [std(y)]
7P (Q)
and
WML (@A) = DD (L) e @y () ],

TELTI(Q,N)
Arguing as in the proof of Theorems 3.24 and 3.26, we obtain two bases of stable virtual
representations of Mp(2n,R) at infinitesimal character A:

{n°°(Larp (@, V) | Q € K\X}
{n™(Larp (@, ) | Q € K\X}.

In the same way there are the two basis consisting respectively of {n'°¢(Lso (Q, \')) and
{n™(Lgp(Q,N')), and as in Sections 3 and 4 we obtain two isomorphisms by matching the
bases,

T°, T™¢ ; KHC(SO(2n +1,0)); () — KHC(Mp(2n,R))5.
The second part of the proof of Theorem 3.29 is completely general and again applies here to
show that 7T'°¢ = T™i¢, Combining Theorems 3.29 and Theorems 4.7 we obtain the following
result at regular infinitesimal character .

Theorem 5.5. Fiz infinitesimal character A\ and define T'¢ and T™C as above. Then
T'°¢ = 7™ Moreover there is is a choice of oscillator defining Adams’ map T such that
T = Tloc — Tmic.

Proof. As remarked above, the only point that requires comment is the case of singular
infinitesimal character. Strictly speaking we have only defined T'°¢ and T™€ when )\ is
regular, but the comments in Remark 3.20 show how the translation principal leads to a
general definition. More precisely, suppose A; is weakly dominant and singular, and A is a
dominant weight translate of A;. Let T' denote the translation functor from A to A;. Write
T’ for the obvious analog from ) to A.. Then T'°¢ at ), is defined by the requirement
Tioc © T' = T o Tioc, where the latter 7'°¢ is defined at the regular A\. A similar comment
applies to the definition of 7™ in the singular case. It follows easily that T°¢ = 7™ic,
Similarly it easy to check from the definition of Adams’ map that T" behaves in the same
way under translation as our 7'°¢. So the result follows. O

6. ENDOSCOPY

In this section, following the philosophy of [ABV], we give a geometric interpretation
of endoscopic lifting for Mp(2n,R). To elucidate the main ideas, we begin with a general
discussion. Let Hg be a real reductive group, and fix a maximal compact subgroup Ugr of
Hg, and an infinitesimal character A. A geometric parameter space for Hy at infinitesimal
character \ is a complex variety X ()), endowed with an action of an algebraic group YH which
has a finite number of orbits on X (), satisfying the following properties. (The notation here
is to indicate that “H is supposed to be something like a Langlands dual, but we don’t want to
be that precise for now.) Let A(X()\),YH) be the category of YH-equivariant perverse sheaves
on X (X), and write C(X (\),VH) for the category of equivariant constructible sheaves. Their
respective Grothendieck groups are identified through the Euler characteristic map, and will
be denoted by K(X ()\),"H). Irreducible objects for these two categories are parameterized
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by the same set E, and for £ € =, we denote by P(£) and p(€) the corresponding irreducible
perverse and constructible sheaves on X (\). As the name indicates, a geometric parameter
space for Hgr at infinitesimal character A also parameterizes irreducible Harish-Chandra
modules in HC(h,U),, in the sense that we require that there exist a bijection ¢ : E — P.
For ¢ € E, let us denote by std({) and irr(¢) the corresponding standard and irreducible
Harish-Chandra modules. The most crucial requirement is the existence of a duality between
the representation theory and the geometry. This is encoded in a perfect pairing

(-,-): KHC(h,U)y x K(X(\),YH) — Z

between Grothendieck groups, such that (std(¢), u(¢)) = d¢,¢ and (irr(€), P(¢)) = £0¢¢. This
says that the change of basis matrix m(§, ¢) between the bases {[irr(£)]}¢ez and {[std(§)]}ee=
of KHC(h,U), is (up to sign) the transpose of the change of basis matrix my(¢, () between
the bases {P(€)}¢ez and {4(¢)}ee= of K(X(),H).

In an endoscopic setting, the idea is to obtain endoscopic lifting as the transpose of a
map between sheaves on geometric parameter spaces. For algebraic groups, the existence
and the construction of such geometric parameter spaces is the main topic of [ABV]. In
our setting, existence and construction of geometric parameter spaces for Mp(2n,R) and
éR (notation as in the introduction) at half-integral infinitesimal character follows from the
results of Section 3. It is a simple consequence that the geometric parameter space for Gr
includes into the one for Mp(2n,R), and so we obtain an endoscopic lifting as the transpose
of pullback of sheaves. When no coordinate of the infinitesimal character is a half-integer
results of Section 4 show that the geometric parameter spaces for the real forms of the linear
group SO(2n + 1,C) are also geometric parameter spaces for Mp(2n,R). The general case
follows by conbining these two as in Section 5.

6.1. Perverse sheaves. We begin by interpreting Theorem 3.16 along the lines of [ABV],
Theorem 1.24. We are thus working with regular half-integral infinitesimal character, as in
Section 3, and cannot apply the Riemann-Hilbert correspondence directly to the category
’D,\(X,IN( ) of K equivariant D) modules on X. Following [ABV], Chapter 17, set p =
2(A — pump), and let £ the affine line bundle it defines on X. The group H = C* x K acts
on L£* with C* acting the fibers of £L* — X by

z-&=2% (z € C Ee L)

This action of C* on L£L* allows to define “genuine” C*-equivariant object on L£*, i.e.
objects with the required monodromy. Notice that we have two notions of “genuine”, one
with respect to this action of C*, and one with respect to the action of the central element z.
There is (cf. [ABV], Proposition 17.5) an equivalence of category between Dy (X, K)9¢" and
D(L*, H)%" of H-equivariant genuine (both with respect to C* and z) Dx-modules on L£*.
Notice that D x is the sheaf of differential operators on O x, so we can apply the Riemann-
Hilbert functor RHomp , ( . ,Ofx) from D(LX, H)" to A(LX, H), the category of H-
equivariant genuine perverse sheaves on £*. To summarize, we have obtained an equivalence
of categories between HC(sp(2n,C), K), and A(L*, H). Recall that irreducible objects in
HC(sp(2n,C), K ), are parameterized by the set ’Piwp , and that this set can naturally be
viewed as the set of irreducible H-equivariant genuine local systems on L£L* (see [ABV],
Lemma 17.9, for instance). In turn, this latter set can be viewed as the set E(L*, H) of
pairs (Q,7) consisting of an H-orbit  in £* and an irreducible genuine representation
of the component group of the stabilizer of an element z € Q. (Up to isomorphism, this
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group does not depend on the choice of z € @), and we will be denote by A(Q).) For future
reference, we write

¢: E(L,H) — Py
for the bijection just described.

In addition to the perverse category A(L*, H), we need also to introduce the category
C(L*, H) of H-equivariant genuine constructible sheaves on £*. The set Z(L*, H) param-
eterized the irreducible objects in both categories and for ¢ € E(L*, H), we will denote
the respective perverse and constructible sheaves by P(¢) and u(€). Since the cohomology
sheaves of a perverse sheaf are constructible, taking Euler characteristics defines a map from
the Grothendieck group of A(L*, H) to that of C(L*, H). It is well-known that this is an
isomorphism. We will identify the two Grothendieck groups and write K(L£*, H) for the
common vector space which is endowed with two canonical bases: {P(¢)| & € (L%, H)}
and {p(¢)| € € E(L*,H)}. (Here we caution the reader that P(£) denotes both a perverse
sheaf and the image of its Euler characteristic in K(£*, H).) We define the change-of-basis
matrix as follows:

n©) = (0" 37 my(¢,€) PC);
EEE(LX,H)

here my(¢,&) an integer.
For all £ € E(L*, H), we will write

irr(€) == irr(p(€)Y),  std(€) = std((€)").
Notice the crucial appearance of the duality in this definition, which allows the following
reformulation of Theorem 3.16.

Theorem 6.1. There is a natural perfect pairing :
(,) : KHC(sp(2n,C), K)) x K(L*,H) — Z

between the Grothendieck group of finite length genuine Harish-Chandra modules with half-
integral infinitesimal character X\, and that of H-equivariant genuine (perverse or con-
structible) sheaves on L*. This pairing is defined on the level of basis vectors by

(std(£), p(C)) = F¢.c-
In terms of the other bases of KHC(sp(2n,C), K)x and K(L*, H) we have

(irr(€), P(C)) = (—1)%®g¢ .

The content of the theorem is the equivalence between the two possible definitions of the
pairing.

6.2. Endoscopy: half-integral case. Let G be one of the endoscopic groups for M p(2n,R)
defined in [R2]. It is obtained in the following way. Let s = Diag(a1,...,an,a1,...,a,), with
a; = £1 and let Gg = Cent(s, Sp(2n,C)). Thus Gy is isomorphic to Sp(2n1, R) x Sp(2na, R),
where 1y (resp. ng) is the number of 1 (resp. —1) in {ay,...,an}. As usual Gg denotes the
preimage of G in Mp(2n,R). Since Gg is a quotient of Mp(2n1,R) x Mp(2ny, R) by a two
elements subgroup it is easy to extend the relevant definitions and results about stability,
duality, and L-packets to Gr. In fact, genuine representations for Gg are given by pairs of
genuine representations for Mp(2n;, R) and Mp(2n9,R) (see Section 5.3 of [R2]).
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Let X; (¢ = 1,2) be the flag manifold of sp(2n;,C). The choices of base points according
to our conventions define an embedding :

€e: X1 xXog—X

Fix half-integral dominant regular infinitesimal character A for Mp(2n,R) as above and
let A\g = A — pmp + pg- A short computation shows that Ag is still half-integral. Form
the bundle £* over X as in the previous paragraph and let L5 denote the restriction e*£*.
Clearly L is the bundle on X; x X, formed from the integral weight pg = 2(Ag — pg)- We
again write

€e: LG — LS
for the embedding of bundles.

Let (k@)R be the maximal compact subgroup of éR chosen according to our conventions,
and let I~{G be its complexification. If S is a Kg-orbit on the flag manifold X; x X5, then
the image of S under € is contained in a single K-orbit on X. Accordingly, the image of an
orbit Qg of Hg := KG x C* in L, is contained in a single H-orbit on £*. We will denote it
by €(Q¢). Furthermore, the inclusion KG < K induces a map between component groups

Ale) : A(Qa) — A(Q)
where Q = €(Q¢). It is not difficult to compute explicitly these component groups (they are
essentially the groups F™"* of [RT], Section 2.4), and see that A(e) is in fact an isomorphism.
Pull-back of sheaves defines a map

e : K(£X, H) - K(L%, Hg).

Under the pairing of Theorem 6.1, the transpose of €°® is a map

€ : KHC(g,Kg)r, — KHC(sp(2n,C), K),.

This map is explicitly computed in [ABV], Proposition 26.4 (with the obvious modifi-
cations due to our slightly different context). The endoscopic lifting of characters will be
constructed from the map e,. We start from the endoscopic data (Gg, s). Fix an element

§ € Mp(2n,R) in the preimages of s. Then § € (Kg)r and since it is central, it defines for
all Hg-orbit Qg in L a class o in A(Qg). Let Sg be the Kg-orbit on X; x Xy which is
the projection of Qg. We form the following virtual characters

1'°(0) (IS, Ac)) = > tr7 (o) [std ()]
§:(QG77)€E(£éaHG)
In our context, the relevance of this virtual character is that it is obtained by translation

by 3 in the character formula for 7/°(£(Sq, Ag)) (the stable virtual representation defined
in Section 3.3). More precisely, the map

KHC(g, Ka))3o9" — KHC (g, Ka))3"
1" (L(Sa, Aa)) = 1'(0)((Sa, Aa))

is the restriction to virtual characters of the map
751 KHC(GR)IT™ — KHC(GR){M"
defined in [R2], Section 6.
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Define Lift : KHC(g, Kg))St’ge” — KHC(sp(2n,C), ))ge" to be the composition €,073. It
is essentially an exercise in keeplng track of the definitions to show that Lift is the restriction
on virtual genuine stable characters of the map

Trans* : KHC(Gr){T™" — KHC(Mp(2n, R)){"

defined in [R2].

6.3. Endoscopy: non half-integral case. Assume now that the infinitesimal character A
has no half-integral coordinates. The results of Section 4 imply that we can use the L-group
of [T'SO(p, q), which is

LSO, = Sp(2n,C) x Gal(C/R)

to construct geometric parameter spaces for genuine representations of Mp(2n,R) with in-
finitesimal character A. We just use the construction of [ABV], applied to [['SO(p, q) at
infinitesimal character \' = 6;.(\) and the @-correspondence. Then Theorem 4.1 insures
that these geometric parameter spaces will have the required formal properties, i.e that an
analog of Theorem 6.1 holds.

Consider now the endoscopic data (éR, s) of the previous section. View s as an element
in the trivial connected component of ©S0O,,. Thus

Cent (£SO, s) ~ Sp(2n,,C) x Sp(2ny,C) x Gal(C/R).

The considerations above about representation theory of the group Gr at infinitesimal
character A\¢ = A — p + pg enable us to see this latter group as the L-group for Gr. Fur-
thermore, we have an obvious embedding

€: Sp(2n1,C) x Sp(2ng,C) x Gal(C/R) — LSO,

We are thus reduced to the usual setting of endoscopy for linear groups. From [ABV],
Chapter 26, and we obtain a map:

Lift : KHC(g, Ka){o"*" — KHC(sp(2n,C), K )™

as the transpose of a map between Grothendieck groups of category of equivariant sheaves
on the relevant geometric parameter spaces. Again, it is elementary to check that Lift is the
restriction to stable genuine virtual characters with infinitesimal character Ag of the map
defined in [R2].

As noted in Section 4, it is important to notice that for this kind of infinitesimal character,
all virtual characters are stable, i.e.

KHC (g, Ka){T*" = KHC(g, K ) KHC(sp(2n,C), K){™* = KHC(sp(2n,C), K){".

As a consequence, we could have defined Lift using the endoscopic lifting for groups [ ['SO(p, q)
at infinitesimal character X' given by € (viewed as a map between L-groups on the SO side),
and Adams map ([A1]) to make the connection with genuine virtual characters of Gg and
Mp(2n,R). Of course the theory of Section 4 insures that the two approaches are completely
equivalent.
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6.4. General case and further results. Fix dominant regular infinitesimal character
A= (A1,...,A2) for Mp(2n,R), given in usual coordinates for the split (diagonal) Cartan.
As in section 5, the splitting between half-integral and non half-integral coordinates of A
also defines a subgroup Mg of Sp(2n,R) which is isomorphic to a product Sp(2mq,R) x
Sp(2ma, R), where my is the number of halfintegral coordinates and mgo the number of
non halfintegral coordinates (thus mj + mgo = n). Let Mg be the inverse image of Mg
in Mp(2n,R). Again, it is isomorphic to a quotient of Mp(2m1,R) x Mp(2m2,R) by a
two element subgroups and genuine representations for My are given by pair of genuine
representations for Mp(2m1,R) and Mp(2mq, R).

Let A! denotes the ordered subset of half-integral coordinates in A = (A1,...,A2) and A2
the ordered subset of non half-integral coordinates. It was shown in Section 5 how the duality
theory of genuine representations of Mp(2n,R) at infinitesimal character A is reduced to the
duality theory of JTjR (also at infinitesimal character A), and that in turn is given by the
duality theory of genuine representations of Mp(2my,R) at infinitesimal character A\! and
representations of SO(p,q)’s (p + ¢ = 2mg + 1) at infinitesimal character 6;.(A\?). Thus, a
geometric parameter space for Mp(2n,R) at infinitesimal character A is given by the product
of geometric parameter space for Mp(2m1,R) at infinitesimal character ' constructed in 6.2
and the geometric parameter space for Mp(2mo, R) at infinitesimal character A2 constructed
in 6.3. Let us write this as X = X! x X? endowed with the action of an algebraic group
J=J x J2

Let us now go back to the endoscopic setting. The choice of the element s defining Gr
defines a partition of the coordinates of A in two pieces, corresponding to the isomorphism
Gr ~ Sp(2n1,R) x Sp(2n2,R). We can now refine the splitting between the half-integral and
non half-integral coordinates of A to each of these factors, and construct the geometric pa-
rameter space for Gg at infinitesimal character Ag accordingly as above. Thus the geometric
parameter space for Gr at infinitesimal character A\g can be written as Xg = A),;, X &),
endowed with the action of an algebraic group Jg = Jp, X Jn,, and in turn A, = Xél X Xgl,
Jpy =, x J2 and Xy, = X X X2, Jn, = I, X J2,.

From the discussion in 6.2, we get a map

€ Xy X Xy — X!
and from Section 6.3, we get a map

€2 X2 x X2, — X?
The product gives a map

€e=¢€ Xey: Xy, X A, = &,
and pull-back of sheaves gives a map
et KX, J) - K(Xg, Ja)
with transpose
€ : KHC(g, Kq)r, — KHC(sp(2n,C), K)y.
Combining Section 6.2 and 6.3, this gives a map
Lift : KHC(g, K)o — KHC(sp(2n, C), K))"

which is the restriction on genuine virtual stable characters of the map Trans* defined in

[R2]
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One could also develop the relevant microlocal analysis to obtain an analog of [ABV],
Theorem 26.4, computing the lift of a stable genuine virtual character on Gg coming from
a micro L-packet. This too can be done without essential difficulties.

[A1]
[A2]
[AB1]
[ABV]

[BBD]
[Ch]

[KP]

[RT]

[Tor]
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