RICHARDSON ORBITS FOR REAL CLASSICAL GROUPS
PETER E. TRAPA

ABSTRACT. For classical real Lie groups, we compute the annihilators and associated vari-
eties of the derived functor modules cohomologically induced from the trivial representation.
(Generalizing the standard terminology for complex groups, the nilpotent orbits that arise
as such associated varieties are called Richardson orbits.) We show that every complex
special orbit has a real form which is Richardson. As a consequence of the annihilator
calculations, we give many new infinite families of simple highest weight modules with ir-
reducible associated varieties. Finally we sketch the analogous computations for singular
derived functor modules in the weakly fair range and, as an application, outline a method
to detect nonnormality of complex nilpotent orbit closures.

1. INTRODUCTION

Fix a complex reductive Lie group, and consider its adjoint action on its Lie algebra g.
If g = [ & u is a parabolic subalgebra, then the G saturation of u admits a unique dense
orbit, and the nilpotent orbits which arise in this way are called Richardson orbits (following
their initial study in [R]). They are the simplest kind of induced orbits, and they play an
important role in the representation theory of G.

It is natural to extend this construction to the case of a linear real reductive Lie group
Gr. Let gr denote the Lie algebra of G, write g for its complexification, and G for the
complexification of Gr. Let 6 denote the Cartan involution of Ggr, write g = ¢ @ p for
the complexified Cartan decomposition, and let K denote the corresponding subgroup of G.
Instead of considering nilpotent orbits of Gr on gr, we work on the other side of the Kostant-
Sekiguchi bijection and consider nilpotent K orbits on p. (As a matter of terminology, we say
that such an orbit Ok is a K-form of its G saturation.) Fix a 6-stable parabolic subalgebra
q=I[6®u of g. Then the K saturation of uNp admits a unique dense orbit, and we call the
orbits that arise in this way Richardson. It is easy to check that this definition reduces to
the one given above if Gg is itself complex.

It is convenient to give a slightly more geometric formulation of this definition. A 6-stable
parabolic q defines a closed orbit K -q of K on G/Q (where @ is the corresponding parabolic
subgroup of G). Let m denote the projection from G/B to G/Q. Then = '(K - q) has a
dense K orbit (say Q) and we may consider its conormal bundle in the cotangent bundle
to G/B. A little retracing of the definitions shows the image of the conormal bundle to Oy
under the moment map for 7%(G/B) is indeed the K saturation of uNp, and we thus obtain
a second characterization of Richardson orbits: they arise as dense K orbits in the moment
map image of conormal bundles to orbits of the form Q.

The above geometric interpretation is especially relevant in the context of the represen-
tation theory of Gr. Consider the irreducible Harish-Chandra module (say Ag) of trivial
infinitesimal character attached to the trivial local system on Oy by the Beilinson-Bernstein
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equivalence. Then A is a derived functor module induced from a trivial character and is of
the form considered, for example, in [VZ]; see Section 2.2 for more details. From the preced-
ing discussion (especially the fact that K - q is closed), it is easy to see that the D-module
characteristic variety of Ag is the closure of the conormal bundle to Og. (The definition of
the characteristic variety is recalled in Section 2.3 below.) Since the moment map image of
the characteristic variety of a Harish-Chandra module is its associated variety, we arrive at
a third characterization of Richardson orbits: they are the nilpotent orbits of K on p that
arise as dense K orbits in the associated varieties of modules of the form A;. Note that
since the G saturation of the associated variety of a Harish-Chandra module with integral
infinitesimal character is special ([BV2]), this interpretation implies that the G saturation
of a Richardson orbit is a special nilpotent orbit for g.

The first result of the present paper is an explicit computation of Richardson orbits in
classical real Lie algebras. In type A, this is well-known (see [T3] for instance); we give the
answer for other types in Sections 3-7. This is not particularly difficult and amounts only
to some elementary linear algebra, but the answer does have the a posteriori consequence
that every complex special orbit has a Richardson K-form.

Theorem 1.1. Fix a special nilpotent orbit O for a complex classical group G. Then there
exists a real form Gr such that some irreducible component of O Np is a Richardson orbit
of K on the nilpotent cone of p.

This result has the flavor of a corresponding result for admissible orbits. Modulo some
conjectures of Arthur and based on [V4], Vogan gave a simple conceptual proof that for the
split real form of G, every complex special orbit has a K-form which is admissible. (Without
relying on the Arthur conjectures, the result has been established in a case by case manner
for the classical groups by Schwarz [Sc] and for the exceptional groups by Noél [No] and
Nevins [N].) It would be worthwhile to check Theorem 1.1 for the exceptional groups. A
conceptual argument might be very enlightening.

Our second main result concerns the annihilators of the modules A4()). Using the ex-
plicit form of the computation of Richardson orbits in the classical case, one may adapt an
argument from [T2] to establish the following result.

Theorem 1.2. For the classical groups, the annihilator of any module of the form Aq is
explicitly computable.

The computation, which is carried out in Section 8.6 and is relatively clean, is made in
terms of the tableau classification of the primitive spectrum of 4(g) due to Barbasch-Vogan
([BV1]) and Garfinkle ([G1]-[G4]). Using these calculations, one can immediately apply the
main techniques of [T2] to compute the annihilators and vanishing of many (and possibly
all) weakly fair Aq(A) modules of the classical groups. It is important to recall that these
highly singular modules can be reducible, and implicit in the previous sentence is a method
to detect cases of such reducibility. In turn, a theorem of Vogan’s (see [V3]) asserts that the
reducibility of a weakly fair Ag()) is sufficient to deduce the nonnormality of the complex
orbit closure that arises as the associated variety of Anngg)(Aq(A)). Together with the
reducibility computations, this allows one in principle to deduce the nonnormality of certain
orbit closures. It may be interesting to pursue these ideas in the still open case of the very
even orbits in type D'.

Hn this context, it is important to note that this method can be used to work directly with SO(n, C) (and
not O(n,C)) orbits; see Remark 7.3 below.
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The computations of annihilators of weakly fair A;(\) modules may still seem rather tech-
nical to those unfamiliar with real groups. Yet they are important, even for applications to
simple highest weight modules. We prove the following result, which is logically independent
from the rest of the paper, in Section 8.2; the notation is as in Section 2.1.

Theorem 1.3. Fiz G complex semisimple (not necessarily classical). Suppose I is the
annihilator of an Aq module for some real form Gr of G. If Annﬂ(g)(L(w*I)) = 1, then
AV (L(w)) is irreducible, i.e. is the closure of a unique orbital variety for g. If G is classical,
this orbital variety is effectively computable.

This result gives new examples of simple highest weight modules with irreducible asso-
ciated varieties; using more refined ideas (which will pursued elsewhere), it leads to many
more examples. The proof of Theorem 1.3 is based on an interesting (but indirect) interac-
tion between the highest weight category and the category of Harish Chandra modules for a
real reductive group. It would be very useful to understand this interaction in a more direct
manner.

2. BACKGROUND AND NOTATION

Throughout we retain the notation established in the introduction for a real reductive Lie
group GR.

2.1. Highest weight modules. Let h be a subalgebra of g. In general, we write indg for
the change of rings functor (£(g) ®s1(h) .

Fix a Borel b = h @ n in g, and write p for the corresponding half-sum of positive roots.
Let w, denote the long element in W = W (h,g). For w € W, let M(w) denote the Verma
module ind} (Cyuw, p—p); here Cyu, p—p is the one dimensional Ll(b) module corresponding to
the 1nd1cated weight. We write L(w) for the unique simple quotient of M (w).

Given a highest weight module, let X7 denote the subspace obtained by applying 4=/ (b)
applied to the highest weight vector. The associated graded object is a C[n] module; let
AV (X) denote its support.

2.2. The modules A,;. Fix G and let ¢ = [@u be a f-stable parabolic subalgebra of g. Let
Lg be the analytic subgroup of Gr corresponding to q N g, where the bar notation indicates
complex conjugation with respect to gr. Consider the one dimensional (q, L N K) module
AP u, and set S = dim(u N ¢). Define

9,K g, Tﬂ[( top
Aq = (Hg'png)s(indg 7k /\ u))

here Ilg is the Sth derived Bernstein functor. A more detailed account of this notation can
be found in [KV, Chapter 5].

2.3. Associated varieties and characteristic cycles of Harish-Chandra modules.
Fix G, and let X be a finite length (g, K) module. Fix a K-stable good filtration of X, and
consider the S(g) module obtained by passing to the associated graded object gr(X). By
identifying (g/€)* with p (and noting the K-invariance of the filtration), we can consider the
support of gr(X) as a subvariety of p. This subvariety, denoted AV(X), is a (finite) union
of closures of nilpotent K orbits on p, and is called the associated variety of X.

Let D denote the sheaf of algebraic differential operators on 8, the variety of Borel sub-
algebras in g. If X has trivial infinitesimal character, we can repeat the above construction
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for the (D, K) module D ®g(4) X. This defines a subvariety CV(X) of T*%®B called the char-
acteristic variety of X. It is a union of closures of conormal bundles to K orbits on 8. The
moment map image of CV(X) is AV(X) (once we identify p with p*).

Both invariants may be refined by considering the rank of the associated graded object
along the irreducible components of its support. In the former case we obtain the associated
cycle of X, a linear combination (with natural number coefficients) of closures of nilpotent
K orbits on p. In the latter case we obtain the characteristic cycle of X, a linear combination
of closures of conormal bundles to K orbits on ‘B.

2.4. Tableaux. We adopt the standard (English) notation for Young diagrams and standard
Young tableaux of size n. We let YD(n) denote the set of Young diagrams of size n, and
SYT(n) the set of standard Young tableaux of size n.

A standard domino tableau of size n is a Young diagram of size 2n which is tiled by
two-by-one and one-by-two dominos labeled in a standard configuration; that is, the tiles
are labeled with distinct entries 1,...,n so that the entries increase across rows and down
columns. We let SDT¢(n) (resp. SDTp(n)) denote the set of standard domino tableau of size
n whose shape is that of a nilpotent orbit for Sp(2n, C) (resp. O(2n, C); see Proposition 2.1.
Finally, we define SDTg(n) to be the set of Young diagrams of size 2n + 1 and shape the
form of a nilpotent orbit for O(2n+1),C) (Proposition 2.1), whose upper left box is labeled
0, and whose remaining 2n boxes are tiled by dominos labeled in a standard configuration.

A signed Young tableau of signature (p, q) is an arrangement of p plus signs and ¢ minus
signs in a Young diagram of size p+q so that the signs alternate across rows, modulo the
equivalence of interchanging rows of equal length. We denote the set of signature (p,q)
signed tableau by YTy (p,q). We let ¢(p,q) denote the unique element of YT (p,q) whose
shape consists of a single column.

Given T € YT+ (p, q), we write nj for the number of rows of 1" of length j beginning with

the sign €, and set n; = nj +n;.

2.5. Adding a column to a signed tableau. The key combinatorial operation in the
computation of associated varieties is that of adding the column c¢(r,s) (notation as in
Section 2.4), either from the left or the right, to an existing T4 € YT (p,q) to obtain new
tableaux

c(r,s) Ty, T ®c(r,s) € YT (p+r,q+s).

We first describe Ty @ ¢(r, s). This signed tableau is obtained by by adding r pluses and
s minuses, from top to bottom, to the row-ends of T4 so that

(1) at most one sign is added to each row-end; and

(2) the signs of the resulting diagram must alternate across rows.

(3) each sign is added to as high a row as possible, subject to requirements (1) and (2),
possibly after interchanging rows of equal length.
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For example,

+[-[+]-[+
+[-[+]-[+

+[-[+]- —[+]-|+]-

+[=1+]- +] +[-]+]-

—+]-]+ -+ +-]+]-

-+ | +[-[+]-

+| -]+ — —[+]-

Rl Bl - |

il @ ] = il

The signed tableau c(r, s) @ T4 is obtained by exactly the same procedure, except that the
signs are added to the beginnings of each row of T4.. For example,

+[-[+]- —[+[-[+]-
+] +-[+]- —[+[-]+]-
-+ —[+[-]+ +[=[+]-[+
- +[-]+]- —[+]=1+]-
| +[- [+ —[+[-]+
B +] |+ +-|+]-
-] o —+]- _ +[-]+

The preceding discussion evidently gives two ways of defining the addition of two columns
c(ry,s1) ®c(r], s}). A little checking shows that they coincide. In general, we want to make
sense of successive addition of column,

ciLPca®--- Dy,

but one must check that the operation @ associates in a suitable sense. For instance, by
1@ co ® c3 d ¢q, we could mean either ¢ @ (co ® (c3Dcy)), 1D ((c2 B e3) B ey), or two other
possibilities. (Note that (c; @ c2) @ (c3 @ ¢4) is not a possibility since the middle & is not
the sum of a single column and a tableau.) We leave it to the reader to supply the details
of proving that the notation ¢; @ co @ - -+ & ¢, is indeed well-defined.

2.6. Orbits of G on N(g*). We recall the standard partition classification of nilpotent
orbits and special nilpotent orbits for complex classical Lie groups. (We state the result for
the disconnected even orthogonal group for applications below).

Proposition 2.1 ([CMc, Chapter 6]). Recall the notation of Section 2.4

(1) Orbits of SL(n,C) on N (sl(n,C)) are parametrized by partitions of n. All orbits are
special.

(2) Orbits of Sp(2n,C) on N (sp(2n,C)) are parametrized by partitions of 2n in which
odd parts occur with even multiplicity. Such an orbit is special if and only if the
number of even rows between consecutive odd rows or greater than the largest odd
TOW 1S even.

(3) Orbits of O(n,C) on N (so(n,C)) are parametrized by partitions in which even parts
occur with even multiplicity. If n is even (resp. odd), such an orbit is special if and
only if the number of odd rows between consecutive even rows is even and the number
of odd rows greater than the largest even row is even (resp. odd).
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2.7. Orbits of K on N (p*). We recall the following parametrization of K\N (p*) for various
classical real groups Ggr. (These parametrizations differ slightly from the perhaps more
standard one given in [CMc, Chapter 9], but the correspondence between the two is obvious.)
Recall that since O(p, q) is disconnected, the complexification of Ok € K\N (p*) need not
be a single orbit of SO(n,C) on N (so(n,C)), though it is of course single orbit under the
action of O(n,C).

Proposition 2.2. Recall the notation of 2.4.

(1) For Gr =U(p,q), K\N (p*) is parametrized by YT+ (p,q). (As a matter of notation,
we set YT (SU(p,q)) = YT+ (p,q).)
(2) For Gg = Sp(2n,R), K\N(p*) is parametrized by the subset

YT (Sp(2n,R)) C YT4(n,n)

of elements such that for each fized odd part, the number of rows beginning with +
coincides with the number beginning with —.
(3) For Gg = Sp(p,q), K\N (p*) is parametrized by the subset

YT+ (Sp(p,q)) C YT+(2p,2q)

consisting of signed tableaux such that
(a) For each fized even part, the number of rows beginning with + coincides with
the number beginning with —; and
(b) The multiplicity of each odd part beginning with + (respectively —) is even.
In particular, all parts occur with even multiplicity, and the complexification of any
Ok € K\N(p*) is special.
(4) For Ggr = SO*(2n), K\N (p*) is parametrized by the subset

YTi(SO* (2”)) C YTi(Zn, 2”)

consisting of signed tableaux such that
(a) For each fized odd part, the number of rows beginning with + coincides with the
number beginning with —; and
(b) The multiplicity of each even part beginning with + (respectively —) is even.
In particular, all parts occur with even multiplicity, and the complexification of any
Ok € K\N(p*) is special.
(5) For Gg = O(p,q), K\N (p*) is parametrized by the subset

YT+(O(p,q)) C YT+ (p,q)

consisting of signed tableaux such that for each fixed even part, the number of rows
beginning with + equals the number beginning with —.

Proof. Although this is very well known, we will need some details of the parametrization
below. Consider first the case of U(p,q). Let E, (resp. E_) be a complex vector space of
dimension p (resp. ¢). Then p = Hom(E;,E_) ® Hom(E_,E.), K = GL(E;) x GL(E_)
acts in the natural way, and an element (A, B) of p is nilpotent if and only if AB and BA are

nilpotent endomorphisms of £, and E_. Fix a basis el+, e ,e;; for B and ey ,... e, for

E_. A mild generalization of the argument leading to the Jordan normal form of a nilpotent
endomorphism of C" shows that any nilpotent (A, B) € N(p) is a direct sum (in an obvious
sense) of terms of the form

(1) ezf" e e;:l e

+
i R 4

A 0;
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or

+ - +
(2) € € e ey ey

i ;=0
or such a term with the e*’s and e ’s interchanged. We represent the first term as a single
row + — + -+ the second as + — +--- — and likewise for the other terms (with + and —

signs inverted). This gives the parametrization in (1).

Parts (2)—(5) follow easily along the same lines. For instance, consider part (2). Here
Sp(2n,R) = U(n,n)NSp(2n,C), and N (p) consists (as above) of pairs (A, B) subject to the
additional requirement that

+ _ - + _ -
Aej” = Zaijej = Ay = Z GijCnt1-is
j i
and similarly for B. This symmetry requirement implies that the ‘Jordan blocks’ are now
either of the form

- +

+ - +
€Z~ '—>€Z~ — e n+1fk'_>en+27

..ot - e
i1 e, e e P en+1;|—>0

7

(i.e. an even row beginning with +), the above element with the e*’s and e ’s interchanged
(i.e. an even row beginning with —), or the pair

+ - + - .
e, wre; el = e =0 (with k <n)
- + + +
Cntl—i 7 Cngii T i i g 0,

(i.e. a pair of odd rows beginning with opposite signs). This gives the parametrization in
(2). The argument is nearly identical for (3)—(5). O

2.8. A collapse algorithm for Sp(p,q) and SO*(2n). Let p = p1+p2 and ¢ = q1+¢qo. Fix
a tableau 7" € YTL(Sp(p1,q1)). Then the tableau T = c(p2,q2) & T' @ ¢(p2,q2) need not
belong to YT1(Sp(p,q)). We now define a combinatorial manipulation of T to produce a
new tableau T, € YT (Sp(p, q)) called the collapse of T' (or c¢-collapse to distinguish it from
the d-collapse below). This is needed in the statement of Proposition 5.1 below.

IfT € YT+ (Sp(p,q)), then set T, = T. One can check that the definition of 7' implies
that the number of rows of a fixed even length beginning with + coincides with the number
beginning with —. So if T' ¢ YT (Sp(p,q)), there exists an odd number of rows of a fixed
odd length (say 2k+1) ending with sign e. Choose k maximal with this property, and fix
such a row (say R). The definition of T implies that there is a row (say S) of length 2k—1
ending with sign —e. Then move the terminal box labeled € in R to the end of the row
S. Rearrange the resulting diagram to obtain 77 € YT (2p,2q). If Ty € YT+ (Sp(p,q)),
set T, = Ty. Otherwise repeat this procedure to obtain Ty. After a finite number of steps,
necessarily T; € YT (Sp(p, q)), and we set T, = T.

We need to develop an analogous procedure for SO*(2n). Fix T" € YT (SO*(2n)). Then
the tableau T = c(p2,q2) ® T' @ ¢(g2,p2) need not belong YT (SO*(2n)). If it does, set
Ty = T. One can check from the definition of 7' that the number of rows with a fixed
odd length beginning with the sign € is the same as the number beginning with —e. So if
T ¢ YT, (SO*(2n)), there exists some even row (of length, say, 2k) and some sign e such
that the number of rows of length 2k ending with the sign € is odd. Choose £ maximal with
respect to this condition, and fix such a row (say R). The definition of T" implies that there
is some row (say S) of length 2k —2 ending with the sign —e. (Here S may have length
0; in this case, we interpret S as ending with both + and —.) Move the terminal box of
R to the end of S, and rearrange the resulting diagram to obtain T3 € YT4(2n,2n). If
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T, € YT1(SO*(2n)), set Ty = Ty. Otherwise repeat this procedure to obtain Ty. After a
finite number of steps, necessarily T € YT (S0O*(2n)), and we set T; = T;.

These algorithm can be characterized as follows. (For later use, we also include the
analogous statements for the other relevant real forms.)

Proposition 2.3. (1) Set Gr = U(p,q), and fix positive integers p',p1,q',q1 such that
p=p1+p andq=q1 +q¢. FixT' € YT1(p'.q'), and set

T=T &c(p1,q1).

Then T parametrizes the largest orbit among those parametrized by tableauz obtained
from T" by adding p plus signs (resp. q minus signs) to the row ends of the resulting
diagram.

(2) Set Gg = Sp(2n,R) and fix positive integers m,p, and q such that n = m+p+q. Fix
T € YT+ (Sp(2m,R)) and set

T =c(p,qg) @1 @ c(g,p).

ThenT € YT (Sp(2n,R)), and T parametrizes the largest orbit among those parametrized
by tableaux obtained by adding p plus signs (resp. ¢ minus signs) to the beginnings of
rows of T' and q plus signs (resp. p minus signs) to the ends of rows of the resulting
diagram.

(3) Set Gr = Sp(p,q) and fix positive integers p',p1,q" and q1 such that p = p'+p; and
qg=q¢+q. Fiz T' € YTL(Sp(p,q)) and set

T = C(p1=Q1) GBT’ 2] c(plqu)-

Then T, (the c-collapse of T' defined above) parametrizes the largest orbit among
those parametrized by tableauz obtained by adding p1 plus signs (resp. ¢ minus signs)
to the beginnings of rows of T' and py plus signs (resp. g1 minus signs) to the ends
of rows of the resulting diagram.

(4) Set Gr = SO*(2n), and fix positive integers m,p and q such that n = m+p+q. Fiz
T' € YT£(SO*(2m)) and set

T =c(p,qg) T @ c(g,p).

Then Ty (the d-collapse of T' defined above) parametrizes the largest orbit among
those parametrized by tableauz obtained by adding p plus signs (resp. q minus signs)
to the beginnings of rows of T' and q plus signs (resp. p minus signs) to the ends of
rows of the resulting diagram.

(5) Set Gg = O(p,q), and fix positive integers p',p1,q', and q1 such that: p = p’ + py;
g=q¢ +q; and p' +q =p+q mod (2). Fiz T" €e YTL(O(p',q")) and set

T =c(p.q) &T" @® c(p, q)-

ThenT" € YT1(O(p,q)), and T parametrizes the largest orbit among those parametrized
by tableaux obtained by adding p plus signs (resp. ¢ minus signs) to the beginnings of
rows of T' and p plus signs (resp. ¢ minus signs) to the ends of rows of the resulting
diagram.

Sketch. This essentially follows from the parametrizations in Proposition 2.2. The only
point that we have not made explicit is the closure order on nilpotent K orbits on p. Consider
the partial order on YT (2p,2q) corresponding to closure order for U(p, q) It is relatively
easy to check from the proof of Proposition 2.2 that this partial order is generated by the
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covering relations A > A’ defined as follows. Fix A € YT4(p, q), and choose a row (say R)
of length d in A. Suppose this row ends in the sign €, and choose a row (say R’) of maximal
length (say d') subject to the condition that d' < d—2 and that R’ ends in —e. Here R’ may
have length 0, in which case we adopt the convention that its terminal sign is both + and
—. Remove the terminal box of R labeled with a + (thus changing R into a row of length
d—1 ending in —¢) and move it to the end of R’ (thus changing R' to a row of length d' to
one of length d'+1 ending in €). Rearrange the rows to have decreasing length. This defines
a new element A’ € YT1(p,q) and we declare A > A’ to be a covering relation. Now the
statement in (1) is clear.

Consider the statements for (2),(3), and (5). In each of these cases we can embed Gg
into an appropriate éR = U(p,q) and the K saturation of the K orbit parametrized by a
signed tableau T' € YTy (GR) is simply the orbit parametrized by T" € YT1(p,q). So the
assertions in (2), (3), and (5) follow. The case of SO*(2n) is slightly different, since it is not
a subgroup of U(p, q), but it isn’t much more difficult. [l

Remark 2.4. From the proof of Proposition 2.3, we obtain a more natural characterization
of the c-collapse algorithm. Set Gg = Sp(p,q). Then G is a subgroup of Gp = U(2p,2q).
Assume that the Cartan involutions of the two groups are arranged compatibly. Let p =
p1+p2 and ¢ = q1 + go, fix T" € YT1(Sp(p1,q1)), and set T = c(p2,q2) ® T © ¢(p2, g2). Let
O denote the K orbit for Gg parametrized by T. Then the intersection of the closure of O
with p has a unique dense K orbit and it is parametrized by 7.

More generally, if O is any K orbit for Gg = U(p,q), we have given enough details to
compute the intersection of the closure of O with p. We leave the formulation of this result
(and its analogs for O(p, q) and Sp(2n,R)) to the reader.

3. U(p,q)

The K conjugacy classes of f-stable parabolic subalgebras for U (p, q) are parametrized by
an ordered sequence of pairs (p1,q1), ..., (pr,gr) such that >, p; = pand ), gi = ¢. The Levi
subgroup of U(p, q) corresponding to such a parabolic subalgebra is U(p1,q1) X - XU (py, q;)-

Proposition 3.1. In the above notation, let q be parametrized by (p1,q1),- .., (Pr,qr). Then
AV (A4 (X)) is the closure of the orbit parametrized by
c(pr.q1) ® c(p2.q2) & -+ & c(pr, ar)

with notation as in Sections 2.5 and 2.7.

Proof. Set p' = Z;:ll pi, and likewise for ¢'. Let q' denote the §'-stable parabolic for Gl =
U(p', ¢') parametrized by (p1,q1),- .., (pr—1,¢r—1). Recall the procedure outlined in the proof
of Proposition 2.2 that associates to each nilpotent element of Hom(E% , E? )&Hom(E?, EY)

a signature (p, q) signed tableau. Write E? = Eﬁl GBET, and likewise for E?. Implicitly this
defines an inclusion of G into Gr = U(p,q), and with this in mind it is easy to check that
qNu= (¢ Nv') & Hom(E”, E”) & Hom(EY , E?"),

where

q' Nu' C Hom(EY, E?) @ Hom(E, EY).
Fix a K’ orbit through ¢’ € ¢’ N v parametrized by T7'. From the description of the
parametrization in the proof of Proposition 2.2, it is clear that the K orbit through any
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¢ € qNu with ¢|ynw = ¢’ is parametrized by a tableau obtained from T" by augmenting p,
rows of T ending with — by a plus sign and ¢, rows of 7" ending with + by a minus sign.
(An empty row is interpreted as ending with both + and —.) Using the closure ordering
outlined in the proof of Proposition 2.3, we conclude that T" @ c(p,, q,) parametrizes the
largest K orbit through ¢ € qNu with ¢|ynw = ¢'. The proposition now follows by an easy
induction. O

Corollary 3.2 (Barbasch-Vogan). Every K orbit for U(p,q) is Richardson.

Proof. If Ok is parametrized by T € YT (p,q), let p; (resp. g;) be the number of plus
(resp. minus) signs in the ith column of 7', and let q be the #-stable parabolic corresponding
to the sequence of pairs (p1,q1), (p2,q2),. ... Using Proposition 3.1, it is easy to check that
Ok = AV(4y). O

4. Sp(2n,R)

The K conjugacy classes of 8-stable parabolic subalgebras for Sp(2n, R) are parametrized
by a tuple consisting of a positive integer m < n and an ordered sequence of pairs (p1,q1), - - -, (Pr, qr)
such that m + Y, (p; + ¢;) = n. The Levi subgroup of Sp(2n,R) corresponding the such a
parabolic subalgebra is Sp(2m,R) X U(p1,q1) X --- X U(py, q;)-

Proposition 4.1. Retain the above notation, and let ¢ = | & u be parametrized by the
sequence m, (p1,q1), - -, (Pr.qr). Then AV(Aq(X)) is the closure of the orbit parametrized by

c(pruQT) D c(prfluqrfl) @D c(pluql) S c(m,m) 2] C(Qlapl) O---D C(QTflupT'fl) S C(QT‘apT‘)a

with notation as in Sections 2.5 and 2.7 .

Proof. The current proposition follows in the same way as Proposition 3.1 with only minor
modifications. Let G = Sp(2n',R) where n’ =m + Z;:ll (pi+4ai), set n" = p, + g, and let
q' be parametrized by m, (p1,q1),. .., (Pr—1,¢—1). Fix an inclusion G C Ggr = Sp(2n,R),
Gl C U(n',n'), and Gg C U(n,n). As in the proof of Proposition 3.1, write E7 = E7 @ ET .
This defines an inclusion U(n',n’) C U(n,n), and assume it is restricts to the inclusion of
G C Gr. Then one checks directly that

uNp C Hom(EY, E™) @ Hom(E” , E") @ (v' Np') ® Hom(E" , E”") @ Hom(E™ , E¥'),
where
¢ Ny’ C Hom(E? , E™) @ Hom(E™ , E™).
Fix a K’ orbit through ¢’ € ¢’ N parametrized by T'. From the description of the

parametrization in the proof of Proposition 2.2, any ¢ € gNu with ¢|yny = ¢’ is parametrized
by a tableau obtained from 7" by

(1) adding p, plus signs (resp. g, minus signs) to the beginnings of the rows of T that
begin with — (resp. +); and

(2) to the resulting tableau, adding p, minus signs (resp. g, plus signs) to the ends of
the rows of T that begin with — (resp. +),

with the usual convention that empty rows begin and end with both plus and minus signs.
Now the proposition follows from Proposition 2.3 and an inductive argument. O

Corollary 4.2. Let O € K\N(p*) be parametrized by a signed tableauz T. Then O is
Richardson if and only if T satisfies the following conditions
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(1) The number of even rows between consecutive odd row or greater than the largest odd
row is even;

(2) Fiz a mazimal set (say S) of even rows either between consecutive odd rows or greater
than the largest odd row. Then all rows of a fized length (say 2k) in S begin with
the same sign (say €(k)). Moreover if rows of length 2k and 2l appear in S, then
e(k)e(l) = (—1)k+.

In particular, given a complex special orbit O, there exists some Ok € Irr(O Np*) such that
Ok is Richardson.

Proof. Given an orbit Ok of the form appearing in the corollary, we first inductively
construct a f-stable q such that AV(4,) = Ok. So fix Ok and T as above, and let ¢ be
the number of columns of T. If ¢ = 1, Ok is the zero orbit and obviously Richardson.
Inductively we can assume that any orbit parametrized by a tableau 7" with less than c
columns (and satisfying the condition in the statement of the corollary) is Richardson. Fix
k maximal such that nogi 1 + nox # 0 (so, in particular, nog.1 or ng, may be zero). There
are several cases to consider.
Case (I): There exists k' < k such that nog 1 # 0.

(a): noy is even (possibly zero); the hypothesis of the corollary then implies that n;kngk =
0. Define a new tableau T” obtained by modifying the rows of length greater than 2k — 2 in
T as follows:
T — (21{2 o 1)1§k+1+(n21k)/2+n;tk71 (21{2 - 2)1;k72(2k o 2)"2172 L (1)1117

here, of course, ”j;dd = n,,,, but we maintain the above notation for emphasis. One can
check directly that 7" € YT (Sp(2n/,R)) for 2n’ = 2n—2ngk11 —ngi and, moreover, that it
satisfies the conditions in the statement of the corollary. Since the number of columns of 7" is
strictly less than the number of columns of T', inductively we can find a q’ for Sp(2n’, R) such
that the orbit O} parametrized by T' satisfies (’)—’K = AV(Ay). Suppose ¢’ is parametrized
by the sequence 7’. Let q be parametrized by the sequence

+ + — —
' [Mgpn + (M /2) gy + (n5,/2)].
Using the hypothesis that n;kngk = (), one can check directly that
c(ngpr + (054/2) gy + (19/2)) @ T' & c(ngyyy + (n94/2),n5p 1 + (n5,/2))

and Proposition 4.1 implies AV(A,) = Ok, as we wished to show.
(b) ngyk is odd. (So, in particular, ng 1 = 0.) Define T' by modifying the rows of length
greater than 2k — 3 in T' as follows

Foant +
Moyt Mok s ny

’ "§k+1 "zikfa

Again one can check that 7" € YT4(Sp(2n',R)) for n' = n—nggi1—n9k and that T" satisfies
the conditions of the corollary. Let O% be the orbit corresponding to 7", and by induction

write O—'K = AV(Ay) with ¢’ parametrized by n’. Let q be parametrized by
1t + - -
™5 (Nggp1 T Mg Magrr + Ngg)-

Then one checks as in case (a) that AV(4,) = Ok using Proposition 4.1.
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Case (II): ngpy1 # 0 and there is no k' < k such that ngp 1 # 0. Modify the rows of
length greater than 2k—4 in T as follows

+ + +
T — (2k - 1)13:k+1 (2k - 2):‘:3:k+n2k—2(2k - 4)1%—4 . (2)1%.
Inductively, we can find ¢’ for Sp(2n',R) with n’ = n—nggy1 — nok such that the closure
of the orbit parametrized by 17" is AV(Ay). Suppose q' is parametrized by «’. Let q for
Sp(2n,R) be parametrized by
', (”2+k+1 + ”;ka Nogr1 T Ty
Then AV(4,) = Ok.

The discussion in Case (I) and Case (IT) prove that every orbit appearing in the corollary
are Richardson. We also need to prove that every Richardson orbit is of this form. Suppose
that g is parametrized by the sequence m, (p1,q1), ..., (pr,qr). Let g be parametrized by
the sequence m, (p1,q1), ..., (Pr—1,¢—1). Again using zero as the base case, we can assume
that the tableau 7" parametrizing the dense orbit in AV(Ay) is of the form described in
the Theorem. According to Proposition 4.1, to check that the dense orbit in AV(A4,) is of
the form described in the corollary (and hence complete the proof of the corollary), we need
to prove that ¢(p,,q;) ® T' ® ¢(gr,pr) is of the required form. This is a straightforward
combinatorial check whose details we omit O

5. Sp(p,q)

The K conjugacy classes of f-stable parabolic subalgebras for Sp(p, q) are parametrized by
a tuple of a pair of integers (p', ¢') together with an ordered sequence of pairs (p1,41), - - -, (Pr, Gr)
such that p' + >, p;i = p and ¢’ + ), ¢i = ¢. The Levi subgroup of Sp(p, ¢) corresponding
to this parabolic subalgebra is Sp(p’,¢') X U(p1,q1) X -+ X U(pr, qr)-

Proposition 5.1. In the above notation let q be parametrized by

', d), (1, q1)s - (or, ),

and recall the collapsing algorithm of Proposition 2.3(2). Then AV(Aq(XN)) is the closure of
the orbit parametrized by

[C(Pra q)® [C(prfl, Gr—1)®- - [c(p1, q1)Dc(p’, 4" )Be(pr, q1))e @ - -Be(pr—1, QTfl)]C Sc(pr, Qr)] o

with notation as in Sections 2.5 and 2.7.

Sketch. This is very similar to Proposition 4.1. The inductive analysis shows that p, plus
signs must be added to both the beginning and ends of 7", and likewise for ¢, minus signs.
The appearance of the collapse algorithm is explained by Proposition 2.3. ]

Corollary 5.2. Let O € K\N(p) be parametrized by T € YT+ (Sp(p,q)). Then Ok is
Richardson if and only if there exists and integer N such that

(1) For each j < N, all rows of length 2j5+1 begin with the same sign; and
(2) For each j > N, the number of rows of length 27 is less than or equal to 4.

Proof. As in the case of Sp(2n,R) it a detailed but elementary combinatorial check to
verify that every Richardson orbit is of the indicated form. We omit the details.

We now show that every orbit O appearing in the corollary is indeed Richardson by
constructing a #-stable q such that AV(4,) = Ok. As in the case of Corollary 4.2, the con-
struction is inductive, reducing the corollary to the case that Ok is the zero orbit and hence
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obviously Richardson. Fix Ok as in the corollary, and let T" be the tableau parametrizing
it (Proposition 2.2), and retain the notation for the index N as above. Write

nk nt
T = (2k + 1) 2 (2k) 2 - -

3

and assume that nog1 + neg is nonzero. There are a number of cases to consider.
Case (I) N =k, so all odd rows of length less than 2k+1 begin with the same sign €. Define

:F
Nok—1

F m F
T' = (2k — 1)} (2% — 2)"3 (2K — 3)'2F 1 (2k — 4)"" P22 L (1)1

Then T satisfies the condition of the corollary (with N’ = N —1), and inductively there
exists a q parametrized by the sequence «’ such that 7’ parametrizes the orbit dense in
AV(Ay). Let q be parametrized by

2k+1 2k+1

w (/24 Y mlonr 24 Y ny).
1=2 i=1

Then T parametrizes the orbit dense in AV(A4,).
Case (II) N < k.
(a): nox = 0. Modify the rows of length greater than 2k — 2 in T as follows

F + +
T — (2k — 1)12k+1+n2k—1(2k _ 2)121%2 .
Then T' satisfies the condition of the corollary so we can find q' parametrized by 7’ so that
T' parametrizes the dense orbit in AV(Ay ). Let q be parametrized by
+ —
' (”2k+1v”2k+1)-
Then T parametrizes the dense orbit in AV(A4,).

(b): mox # 0. The conditions of the corollary imply that ngy = 2 or 4. In the former
case, choose (a™,a7) € {(0,1),(1,0)}; in the latter case, set (a™,a) = (1,1). Modify the
rows of length greater than 2k—2 in T" as follows,

F +
Mok 41 +2a7 o1

n:k

Inductively we can assume there exists q' parametrized by 7’ such that T" parametrizes the
dense orbit in AV(Ay ). Let q be parametrized by

"ot + - -
7r,(n2k+1+a Mg T a ).

Then T parametrizes the dense orbit in AV(A4,) O

6. SO*(2n).

The K conjugacy classes of 8-stable parabolic subalgebras for SO*(2n) are parametrized
by a tuple consisting of a positive integer m < n and an ordered sequence of pairs (p1,q1), - -, (Pr, qr)
such that m + ) ,(p;+4qi) = n. The corresponding Levi subgroup of SO*(2n) is isomorphic
to SO*(2m) x U(p1,q1) x --- x U(pr, qr)-

Proposition 6.1. In the above notation let q be parametrized by

m, (p17q1)7 tey (pT'un)u
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and recall the d-collapsing algorithm of Proposition 2.3(3). Then AV(Aq(X)) is the closure
of the orbit parametrized by

[e(prs )@ [e(Pr—1, 4r—1)® - [c(p1, 1) ®c(m, m)®e(q1, p1)]a & - Bc(gr—1,pr-1)] , Be(ar, pr)] 45

with notation as in Sections 2.5 and 2.7.

Proof. This is very similar to the cases already treated. We omit the details. O

Corollary 6.2. Let O € K\N(p*) be parametrized by a signed tableauz T. Then Ok is
Richardson if and only if there exists an integer N such that

(1) For each j < N, the number of rows of length 2541 is less than or equal to 4; and
(2) For each j > N, all rows of length 2j begin with the same sign.

Sketch. This is very similar to the Sp(p, q) case treated above. We omit the details. O

7. O(p,q)

The K conjugacy classes of f-stable parabolic subalgebras for O(p,q) are parametrized
by a tuple consisting of a pair of positive integers (p',¢') and an ordered sequence of pairs

(p1,q1)s- -+, (pr,qr) such that

(1) p"+2>,pi =p;
(2) ¢ +2>,4i=q; and
(3) pra=p"+4'(2).

The corresponding Levi subgroup of O(p,q) corresponding is isomorphic to O(p’,q') X
Ulpr,q1) x --- x Ulpy, qr).

Proposition 7.1. In the above notation let q be parametrized by

(4. (pr,q0),-- - (pr ar)-
Then AV (Aq(X)) is the closure of the orbit parametrized by

c(pTun) D c(prluqrfl) D C(p17q1) D c(pluq’) D c(pluql) C---D c(pT*DQT*l) D c(pT7QT')7

with notation as in Sections 2.5 and 2.7 .

Proof. This is once again very similar to the preceding cases. We omit the details. U

Corollary 7.2. Let O € K\N (p*) be parametrized by a signed tableauz T. Then O is
Richardson if and only if T satisfies the following conditions

(1) If p+q is even (resp. odd), the number of odd rows between consecutive even rows is
even and the number of odd rows greater than the largest even row is even (resp. odd).

(2) Fiz a mazimal set (say S) of odd rows between consecutive even rows. Then all rows
of a fized length (say 2k+1) in S begin with the same sign (say €(2k+1)). Moreover
if rows of length 2k+1 and 21+1 appear in S, then €(2k+1)e(20+1) = (—1)k+,

In particular, given a complex special orbit O, there exists some Ok € Irr(O Np*) such that
Ok is Richardson.

Sketch. This is very similar to the case of Sp(2n,RR). We omit the details. O
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Remark 7.3. For simplicity, we have thus far restricted ourselves to the disconnected group
Gr = O(p, q). We now discuss the case of G = SO(p, q). Suppose Of is a Richardson orbit
for O(p, q) corresponding to a #-stable parabolic q. It is well-known how O splits into (at
most two) orbits for SO(p, g). Suppose this is indeed happens, and write Ox = OL U O
A simple argument using the equivariance of the moment map shows that the K orbit O
(notation as in the introduction) splits into two K’ orbits Qg, U Qy,,; i.e. the K conjugacy
class of g splits into two K’ conjugacy classes represented by q; and q;;. We conclude
that both (9% and (9% are Richardson for SO(p, ¢). The identical argument applies to the
connected group SO,(p,q), where a single K orbit may split into two or four orbits for

SO(p,C) x SO(q,C). Hence we obtain the following result.

Proposition 7.4. Suppose Gr = SO(p,q) or SO.(p,q), and Ok is a nilpotent K orbit on
p which is a union of irreducible components of a Richardson orbit for O(p,q). Then Ok 1is
Richardson.

8. ANNIHILATORS OF A; MODULES

In this section, we compute the annihilators of the A; modules for classical groups. Some
motivation for these calculations is provided by Theorem 1.3 from the introduction, which
is proved in 8.2 below.

8.1. Coincidences among A; modules. For completeness, we identify when A; = Ay
see [T2, Proposition 3.10], for instance.

Proposition 8.1. Suppose Gr is one of the groups discussed above, and let q be a 6-stable
parabolic of g parametrized by a sequence

*, (plu q1)7 BRI (pr+17 QT+1);

here % is empty if Gr = U(p,q), * = m as above for Gr = Sp(2n,R), and x = (p',¢') as
above for O(p,q). Suppose there is an index j, 1 < j <r, such that q¢; = gj41 = 0. Define a
new sequence of pairs

%, (P1:q1)s s (Prs dr),
by combining the jth and (j+1)st entries,

(> q;) = (i, ai) if i < j;
(03 qi) = S (0}, q}) = (pj +p;,0) ifi=j; and
(Pl d) = (Pic1,qi-1) ifi > j+1,

and let q' denote the corresponding parabolic. Then Aq ~ Ay. The analogous statement
holds if pj = pj41 = 0. Moreover, these conditions describe all coincidences among the Ag
modules.

Definition 8.2. Consider a sequence of pairs appearing in Proposition 8.1. We say the
sequence is saturated if there are no adjacent terms with p; = p;11 = 0 and no adjacent
terms with ¢; = ¢j41 = 0. (Thus with this terminology, Proposition 8.1 says that the A
modules are parametrized by saturated sequences of the form appearing in the proposition.)
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8.2. Proof of Theorem 1.3. Fix Gr. Let B be a #-stable Borel in G corresponding to a
choice of positive roots A™, write p = p(A™1), and b = h @ n. Let q be a 6-stable parabolic
containing b. Let AV(4,) = Ok and recall the orbit Qq of K on B := G/B defined in the
introduction. Fix a generic point N € AV(A,) and consider the variety of Borel subalgebras
in g containing N, 8" = {b | N € b}. For a dominant weight A € h*, consider the integer
p(A) defined to be the Euler characteristic of the Borel-Weil line bundle G x g C,, restricted
to the intersection of BV with T(S]q B, the conormal bundle to @;. Then it is known (see,
e.g., [J2]) that A — p(A\) extends to a harmonic polynomial in S(h*). In more classical
language, p is a Joseph polynomial.

Consider the coherent family X (A + p) based at X (p) = Ag. A simple argument shows
that for A dominant AV (X (X + p)) = AV(X(p)). Consider the function ¢ that takes A € h*
dominant and maps it to the multiplicity of Ok in the associated cycle of X (A + p). Then
q extends to a harmonic polynomial on S(h*). It is known ([Ch]) that ¢ is proportional to
the Goldie rank polynomial g; of I := Anngg)(X(p)), the annihilator of A,.

In the introduction we sketched the computation of the characteristic variety of Ay. This
argument in fact shows that the characteristic cycle of Ay is the closure of the conormal
bundle to Oy with multiplicity one. A result of Chang ([Ch]) implies that for A dominant,
p(A) = ¢(N). In other words, as harmonic polynomials on h*, p coincides (up to a constant)
with the Goldie rank polynomial of I. Now Theorem 1.3 follows from the main theorem

of [J1]. O

8.3. The t-invariant. Fix a Borel b in g, let X be a simple 4(g) module, and let v be
a b-dominant representative of its infinitesimal character. Let « be a positive simple root,
and suppose (a,y) is integral and nonzero. Then « is said to be in the 7-invariant of X if
the translation functor from infinitesimal character v to the wall defined by « is zero when
applied to X (see [V2], for example).

Proposition 8.3. Let q = [&u be a 0-stable parabolic containing b. Then the set of simple
roots contained in [ is contained in T(Aq). Moreover, in the setting of Proposition 8.1, if
we ezclude adjacent compact factors of the same signature (i.e. if q is parametrized by a
saturated sequence in the terminology of Definition 8.2), then this containment is in fact
equality.

Proof. The proposition certainly follows from the Langlands parameter computations
of [VZ] and the 7-invariant calculations of [V1]. A more direct argument is contained in [T2,
Lemma 3.12] and its proof. O

8.4. Primitive ideals and tableaux. Suppose g is complex and reductive. Consider the
set of primitive ideals Prim(4l(g)), of primitive ideals in {{(g) containing the maximal ideal in
3(g) corresponding to p under the Harish-Chandra isomorphism. We recall the parametriza-
tion of this set for g classical.

If g is of type A,, Joseph parametrized Prim(i(g)), in terms of SYT(n). (For precise
details of exactly how we want to arrange this parametrization, see [T2, Ssection 3].) Implicit
in this parametrization is a choice of positive roots. As in [T2, Section 3], we make the
standard choice of positive roots

Al ={aj=ej_1—¢; | 2<j<n}.

If g is classical of type X = B,,,C,,, or D,,, Barbasch-Vogan and Garfinkle attached a prim-
itive ideal I(7T) € Prim(t(g)), to each T' € SDTx (n), and showed that this assignment is
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bijective when restricted to SDT x (n)P, the subset of SDTx (n) of special shape (Proposi-
tion 2.1). In this way, we may speak of the primitive ideal attached to a domino tableau. We
follow Garfinkle’s conventions for this assignment. In particular, there is an implicit choice
of simple roots which, in the respective three cases, is as follows:

Ap=far=eraji=¢1¢|2<j <n}
Ag ={ar :=2e,a; :=ej_1—¢; | 2< 75 <n}
A% — {O[l = 61—]—62,04]- = ejfl_ej ‘ 2 S] S n}

When we discuss the 7-invariant of I € Prim(4(g)), (Section 8.3), we will always implicitly
make the choice of positive roots indicated above.

8.5. 7 invariants on the level of tableaux.

Lemma 8.4. Let g be a classical reductive Lie algebra of type A, 1, By,Cn, or D,. Fiz
I € Prim(U(g)),, and let T denote the standard Young tableau of size n (if X = A,_1) or
standard domino tableau of size n (if X # A, ) parametrizing I as in Section 8.4, and recall
the notation established there. Then

(1) If X = B, or Cp, ay € 7(I) if and only if the domino labeled 1 in T is vertical.

(2) Forj > 2, aj € 7(I) if and only if the box (or domino) labeled j —1 in T lies strictly
above the box (or domino) labeled j in T. More precisely, counting the topmost row
as the first row of T, let v denote the largest number so that that there appears a
label j—1 in the rth row. Similarly define the index s to be the smallest number so
that the sth row contains the label j. Then o € 7(I) if and only if r > s.

Proof. In type A, this is a well-known feature of the Robinson-Schensted algorithm. The
assertion for other classical types follows from the discussion in [G2, Section 1] O

Lemma 8.5. Let G g C Gaog be two groups of the form discussed in Sections 3-7. Let r;
denote the rank of g;. In the notation of Proposition 8.1, let q1 be the 61-stable parabolic of
g1 parametrized by the saturated sequence (Definition 8.2)

*, (plu q1)7 tey (pT'7 QT')u
and let qo be the O9-stable parabolic of go parametrized by the saturated sequence

*, (pla ql)a R (pra qT)ﬂ (pT+1a q?“+1)'

Let T, denote the special-shape tableau parametrizing Ann(Ag,). Then Ann(Ag,) is the
primitive ideal attached (via the discussion in Section 8.4) to the subtableau Ty consisting of
the first ry boxes (or dominos) of Ty

Sketch. The results of [V2] (in type A), [G3] (in types B and (), and [G4] (in type D)
imply that the primitive ideal attached to the first r; boxes of T} (resp. T») is completely
characterized by the action of certain wall-crossing translation functors in the simple roots
a,...,a,, 1 and (outside of type A) a; on Ay, (resp. Ay,). Since translation functors
commute with derived Zuckerman (or Bernstein) functors, it is easy to see that the relevant
wall-crossing information is identical for both A;, and A,,. The lemma follows. O

The following two results are crucial observations about the combinatorial algorithms of
Sections 3-7.

Lemma 8.6. Retain the setting and notation of Lemma 8.5. Then the shape of Ty coincides
with that of AV(Ag,). In particular, T\ has special shape.
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Sketch. Obviously we may assume that we are not in Type A. The other cases are a little
more delicate. They are treated in Section 8.7. O

Lemma 8.7. Retain the notation of Lemma 8.5. Write S for the skew-shape obtained by
removing the shape of AV(Aq,) from the shape of AV(Ag,). Then there is at most one way
to tile S by bozes (in type A) or dominos (otherwise) labeled r1+1,... .19 such that each
index j lies strictly above j + 1 (in the sense of Lemma 8.4).

Proof. Lemmas 8.5 and 8.6 imply that S can be tiled by dominos. It is easy to see from
the form of the algorithms that each row of S has length at most 2. This immediately gives
the lemma. O

8.6. An inductive computation of annihilators of A; modules. At last we are in a
position to compute the tableau 7' parametrizing Ann(A4,). We may argue as in [T2, Section
5]. Let s be the rank of q. Suppose q is parametrized by a saturated sequence

*, (p17 q1)7 sy (pT7 qT)u (pr+17 QT+1)-

If this sequence has a single term, Ay is the trivial representation, whose annihilator is of
course known. Inductively we may assume that we have computed the special-shape tableau
T' parametrizing the annihilator of Ay, where q' is parametrized by the saturated sequence

*, (p17q1)7 tey (pT'7QT')'

Let s' be the number of boxes in 7". Lemmas 8.5 and 8.6 imply that we know the position
of the first s’ boxes (or dominos) in T: they coincide with 7", It remains to specify the
remaining boxes (or dominos) s'+1, ..., s. Proposition 8.3 and Lemma 8.4 implies that
each index j must be entered above j+1. Since we have computed AV (4q) in Sections 3 7,
we know the shape of T, and Lemma 8.7 thus implies that there is a unique way to position
the indices s’+1, ..., s in T subject to the above restrictions. This procedure explicitly
computes the annihilators of the A; modules.

Example 8.8. Let m; (i = 1,...,3) be the sequence consisting of the first i entries of
2,(4,0),(1,1). According to the Section 4, m; parametrizes a f-stable parabolic for Sp(4,R),
mo parametrized gy for Sp(10,R), and 73 parametrizes q3 for Sp(14,R). Of course Ay, is
the trivial representation whose associated variety is the zero orbit and whose annihilator is

given by

2

Proposition 7.1 computes the associated variety of Ag, as

+[+[+]+]+
|
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Lemma 8.5 implies that the domino tableau parametrizing Ann(A4,,) looks like

or

1

with the empty entries remaining to be specified. The 7-invariant considerations of Lemma 8.4
and 8.7 imply that indeed Ann(A,,) is parametrized by

1

3

4

5

6

Theorem 1.3 implies that if the above tableau is the left tableau that Garfinkle’s algorithm
([G1]) attached to w € W (Cs), then the associated variety of the simple highest weight
module L(w) for sp(12,C) is irreducible. (More precisely, it is the closure of the orbital
variety corresponding to the above tableau in the parametrization of [T3].) Continuing
inductively, Proposition 4.1 computes AV(A4,,) as

]

[+ ][+

Arguing as above, we deduce that Ann(Ag,) is parametrized by

1

3

7]
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Again Theorem 1.3 now implies that if w € W (Cy) has the indicated left Garfinkle tableau,
the associated variety of L(w) is irreducible. This completes the example.

8.7. Proof of Lemma 8.6. Retain the notation of Lemma 8.6. Let s; denote the number
of dominos in T;. Inductively we may assume that the algorithm of Section 8.6 computes
the special-shape domino tableau parametrizing Ann(Ag, ); write 77 for this tableau. (Since
the algorithm of Section 8.6 apparently made use of Lemma 8.6, one must be a little careful
that no circularity is involved in the induction. None is.) We can thus explicitly enumerate
the possible shapes of T7: they are obtained by moving 77 through certain open cycles ([G1,
Section 5]). Write S for the skew shape obtained by removing the shape of T} from that of
Ty. Proposition 8.3 and Lemma 8.4 imply S can be tiled by the indices s1+41,..., sy that
each index j is entered above j+1. Using the enumeration of the possible shapes for T
and the effect of the relevant open cycles ([G1, Proposition 1.5.24(i)]), it is a detailed (but
relatively straightforward) check that the only way such a tiling is possible is if T} indeed has
the (special) shape of T|. (The saturated hypothesis is required here.) The precise details
are left to the reader. (All of the essential features appear at the first stage of the induction,
and there the above argument is transparent.) O

REFERENCES

[BV1] D. Barbasch and D. A. Vogan, Primitive ideals and orbital integrals in complex classical groups,
Math. Ann., 259(1982), no. 2, 153-199.

[BV2] D. Barbasch and D. A. Vogan, Jr., Primitive ideals and orbital integrals in complex exceptional
groups, J. Algebra, 80 (1983), no. 2, 350-382.

[CMc] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Chapman and
Hall (London), 1994.

[Ch] J-T Chang, Asymptotics and characteristic cycles for representations of complex groups. Compositio
Math., 88(1993), no. 3, 265 283.

[G1] D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras I, Compositio
Math., 75 (1990), no. 2, 135-169.

[G2] D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras II, Compositio
Math., 81 (1992), no. 3, 307 336.

[G3] D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras III, Compositio

Math., 88 (1993), no. 2, 187 234.
[G4] D. Garfinkle, in preparation.
] A. Joseph, On the variety of a highest weight module, J. Algebra, 88(1984), no. 1, 238-278.
2] A. Joseph, On the characteristic polynomials of orbital varieties, Ann. Sci. Ecole Norm. Sup. (4),
221989), no. 4, 569 603.
[KV] A.W.Knapp and D. A. Vogan, Jr., Cohomological Induction and Unitary Representations, Princeton
Mathematical Series, number 45, Princeton University Press, 1995.

[N] M. Nevins, Admissible nilpotent coadjoint orbits of real and p-adic Lie groups, unpublished lecture
notes, 2001.
[No] A. G. Noél, Classification of admissible nilpotent orbits for real exceptional Lie algebras of inner

type, preprint.

[Sc] J. Schwartz, MIT thesis, 1986.

[R] R. W. Richardson, Jr., Conjugacy classes in parabolic subgroups of semisimple algebraic groups,
Bull. London Math. Soc., 6(1974), 21 24.

[T1] P. E. Trapa, Generalized Robinson-Schensted algorithms for real groups, IMRN, 1999, no. 15, 803—
834.

[T2] P. E. Trapa, Annihilators and associated varieties of Aq(A\) modules for U(p,q), Compositio Math.,
129 (2001), 1-45.

[T3] P. E. Trapa, Symplectic and orthogonal Robinson-Schensted algorithms; to appear, this volume.



RICHARDSON ORBITS FOR REAL CLASSICAL GROUPS 21

[V1] D. A. Vogan, Jr., Irreducible characters of semisimple Lie groups I, Duke Math J, 46(1979), no. 1,
61 108.

[V2] D. A. Vogan, Jr., A generalized 7-invariant for the primitive spectrum of a semisimple Lie algebra,
Math Ann, 242(1977), 209-224.

[V3] D. A. Vogan, Jr, The orbit method and primitive ideals for semisimple Lie algebras, Lie algebras and
related topics (Windsor, Ont., 1984), CMS Conf. Proc. 5, AMS (Providence), 1986.

[V4] D. A. Vogan, Jr., Associated varieties and unipotent representations, Proceeding of the Bowdoin
Conference on Harmonic Analysis, Progress in Math 101, Birhduser(Boston), 1991.
[VZ] D. A. Vogan, Jr., and G. Zuckerman, Unitary representations with nonzero cohomology, Compositio

Mathematica, 53(1984) 51-90.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE Crry, UT 84112

E-mail address: ptrapa@math.harvard.edu



