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Gaussian Random
Vectors

1. The multivariate normal distribution

Let X := (Xy,...,Xyn) be a random vector. We say that X is a Gaussian
random vector if we can write

X=pn+AZ,
where p € R", A is an n x k matrix and Z := (Zy,...,Zg) is a k-vector

of i.i.d. standard normal random variables.

Proposition 1. Let X be a Gaussian random vector, as above. Then,
EX = p, Var(X):= ¥ = AA’, and Mx(f) = /P34 _ otp+bt=t)

for all t € R™.

Thanks to the uniqueness theorem of MGF'’s it follows that the dis-
tribution of X is determined by p, X, and the fact that it is multivariate
normal. From now on, we sometimes write X ~ Np(z,X), when we
mean that Mx(t) = exp(t'p + %t’Zf). Interesetingly enough, the choice
of A and Z are typically not unique; only (z,X) influences the distribu-
tion of X.

Proof. The expectation of X is p, since E(AZ) = AE(Z) = 0. Also,
E(XXX')=E([p+ AZ][p+ AZ]) = pp’' + AE(ZZ)A'.

Since E(ZZ') = I, the variance-covariance of X is E(XX') — (EX)(EX)" =
E(XX') — pp’ = AA/, as desired. Finally, note that Mx(t) = exp(t'n) -
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32 6. Gaussian Random Vectors

Mz(A't). This establishes the result on the MGF of X, since Mz(s) =
[Ti-; exp(s?/2) = exp(5]s|?) for all s € R™. O

We say that X has the multivariate normal distribution with param-
eters p and X := AA’, and write this as X ~ N,(p, AA’).

Theorem 2. X := (Xy,...,Xy) has a multivariate normal distribution
if and only if t X = Y1 | ;X; has a normal distribution on the line for
every t ¢ R, That is, X1,..., Xy are jointly normally distributed if and
only if all of their linear combinations are normally distributed.

Note that the distribution of X depends on A only through the pos-
itive semidefinite n x n matrix ¥ := AA’. Sometimes we say also that
X41,...,Xn are jointly normal [or Gaussian] when X := (Xj,..., Xy)" has
a multivariate normal distribution.

Proof. If X € N,(u,AA’) then we can write it as X = p + AZ, we as
before. In that case, t'X = t'p+t'AZ is a linear combination of Zy, ..., Zy,
whence has a normal distribution with mean typ14 +- - -+ tp 1, and variance
tAA't = |A't|>.

For the converse, suppose that ¢’X has a normal distribution for
every t € R". Let p := EX and ¥ := Var(X), and observe that t'X
has mean vector t'u and variance-covariance matrix t'Xtf. Therefore,
the MGF of the univariate normal t'X is Mygx(s) = exp(st'p + %SQf’Zf)
for all s € R. Note that M¢x(s) = Eexp(st’X). Therefore, apply this
with s := 1 to see that Mgx(1) = Mx(tf) is the MGF of a multivariate
normal. The uniqueness theorem for MGF’s (Theorem 1, p. 27) implies
the result. O

2. The nondegenerate case

Suppose X ~ Np(pr, X), and recall that ¥ is always positive semidefinite.
We say that X is nondegenerate when X is positive definite (equivalently,
invertible).

Take, in particular, X ~ N4(u,X); p can be any real number and ¥ is
a positive semidefinite 1 x 1 matrix; i.e., X > 0. The distribution of X is
defined via its MGF as

Mx(t) _ etp+%t22.

When X is nondegenerate (X > 0), X ~ N(u,X). If ¥ = 0, then Mx(t) =
exp(tp); therefore by the uniqueness theorem of MGFs, P{X = p} = 1.
Therefore, Ny (i, 0?) is the generalization of N(uz, 02) in order to include
the case that 0 = 0. We will not write Ny (1, 02); instead we always write
N(u, 02) as no confusion should arise.
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Theorem 3. X ~ N,(u,X) has a probability density function if and
only if it is nondegenerate. In that case, the pdf of X is

1 1 R
frla) = sy o0 [~ 5la - W= e )

for all a € R™.

Proof. First of all let us consider the case that X is degenerate. In that
case ¥ has some number k < n of strictly-positive eigenvalues. The
proof of Theorem 2 tells us that we can write X = AZ + p, where Z is a
k-dimensional vector of i.i.d. standard normals and A is an n x k matrix.
Consider the k-dimensional space

E:= {xeR”: x=Az+;1forsomez€Rk}.

Because P{Z ¢ R*} = 1, it follows that P{X € E} = 1. If X had a pdf fx,
then

1 —P{XcE]— /Efx(x)dx.

But the n-dimensional volume of E is zero since the dimension of E is
k < n. This creates a contradiction [unless X did not have a pdf, that is].

If X is nondegenerate, then we can write X = AZ + pu, where Z is
an n-vector of i.i.d. standard normals and X = AA’ is invertible; see the
proof of Theorem 2. Recall that the choice of A is not unique; in this
case, we can always choose A := " because £2Z + p ~ N,(pn,X). In
other words,

n n
X,‘ = ZA,'J'Z]' + [ = ZZ:/?Z] + M = gi(Zi ,...,Zn) (1 <i< n).
j=1 j=1

Ifa = X"z +p, then z = X~"*(a —p1). Therefore, the change of variables
formula of elementary probability implies that

2= "a ~ p))

fx(a) det| )
as long as det] # 0, where
% STQi Atp - Ain
Je=| : = : | =A
89n Ogn cee
agi s % An,i An,n

Because det(X) = det(AA’) = (detA)? it follows that detA = (detX)",

and hence .
_ —1/2
fla) = oo fz (27 ).
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Because of the independence of the Z;'s,

n__z2/2
e 1 o
fZ(Z) _ ]—[ — e z'z/2

jo1 V2T (20"

for all z ¢ R™. Therefore,

fz (27"a -m) -

(2;)11/2 exp <_;(a - p),2~1(a - ﬂ)) ’

and the result follows. O

3. The bivariate normal distribution

A bivariate normal distribution has the form No(p , ¥), where 1y = EXj,
ne = EXp, X441 = Var(Xj) := 612 > 0, XYoo = Var(Xy) := 622 > 0, and
Y190 =291 = Cov(Xj, Xg). Let

COV(X1 ) X2)
v/ Var(Xj) - Var(Xy)
denote the correlation between X; and Xy, and recall that —1 < p < 1.
Then, X419 = X941 = po10y, whence

5 _ 0f  poyoy
poroy o )’
Since detX = 612622(1 — p?), it follows immediately that our bivariate nor-

mal distribution is non-degenerate if and only if —1 < p < 1, in which
case

p:= Corr(Xy, Xp) :=

1 p 1
612(1 - p2) 1 - p2 0102

=
p 1 1

1-p2 o010, oz(1 - p?)

7y lz= (2 2—2p zy (22, (2 ’
01 01 02 02

for all z € R", the pdf of X = (X}, Xs)—in the non-degenerate case
where there is a pdf—is

Because

fX(xl ,x2)

1 1
= exp —
2mo100v/1 —p2 < 2(1 _92)

X1 — 1 2—2p X1 — M Xo — H2
(7] (7] 09
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But of course non-degenerate cases are also possible. For instance,
suppose Z ~ N(0,1) and define X := (Z,-Z). Then X = AZ where
A:=(1,-1), whence

zoav- (4 )

is singular. In general, if X ~ N,(p,X) and the rank of ¥ is k < n, then
X depends only on k [and not n] i.i.d. N(O, 1)’s. This can be gleaned from
the proof of Theorem 2.

4. A few important properties of multivariate normal
distributions

Proposition 4. Let X ~ Ny(n,X). If C is an m x n matrix and d is
an m-vector, then CX +d ~ Np(Cp +d,CXC’). In general, CXC’
is positive semidefinite; it is positive definite if and only if it has full
rank m.

In particular, if a is a nonrandom n-vector, thena’X ~ N(a'p,a’Za).

Proof. We compute the MGF of CX + d as follows:
Mcx+d(t) = Eexp (¢ [CX + d]) = e"Mx(s),

where s := C’t. Therefore,
1 1
Mcx.q(t) = exp <t’d +s'p+ 23’25> = exp <t’v + 2t'Qt> ,

where v:= Cp +d and Q := CXC'. Finally, a general fact about sym-
metric matrices (Corollary 13, p. 17) implies that the symmetric m x m
matrix CXC’ is nonsingular if and only if it has full rank m. O

Proposition 5. If X € N,(n, X), for a nonsingular variance-covariance
matrix ¥, and Cpxn and d,x1 are nonrandom, then CX + d is non-
singular if and only if rank(C) = m.

Proof. Recall that the nonsingularity of X is equivalent to it being pos-
itive definite. Now CX + d is multivariate normal by the preceding re-
sult. It is nondegenerate if and only if CXC’ is positive definite. But
x'CEC'x = (C'x)'Z(C'x) > 0 if and only if (C'x) # 0, since X is positive
definite. Therefore, CX + d is nondegenerate if and only if C'x + 0
whenever x # 0. This is equivalent to x’C # 0 for all nonzero vectors
x; that is, C has row rank—hence rank—m. O
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The following is an easy corollary of the previous proposition, and
identifies the “standard multivariate normal” distribution as the distribu-
tion of i.i.d. standard univariate normal distributions. It also states that
we do not change the distribution of a standard multivariate normal if
we apply to it an orthogonal matrix.

Corollary 6. Z ~ N,(0,I) if and only if Zy,...,Z, are iid. N(0,1)’s.
Moreover, if Z ~ Np(0,I) and A, «n is orthogonal then AZ ~ N,(0,I)
also.

Next we state another elementary fact, derived by looking only at
the MGF’s. It states that a subset of a multivariate normal vector itself is
multivariate normal.

Proposition 7. Suppose X ~ Np(p,X)and 1 <iy <ig<---<ip<nis

a subsequence of 1,...,n. Then, (X;, ,...,X;,) ~ N(v, Q), where
Xi1 Hiy Xi1 Zi1,i1 e Zi1,ik

vi=E| ¢ | =1|:], Q:=Var| : | = : :
Xik l’lik Xik Zik,ii e Zik,ik

Proposition 8. Suppose X ~ N,(n, X), and assume that we can divide
the X;’s into two groups: (Xj)icg and (X]-)j¢G, where G is a subset of the
index set {1,...,n}. Suppose in addition that Cov(X;,X;) = 0 for all
i€ Gandj¢ G. Then, (Xj)icg is independent from (Xj)j¢c.

Thus, for example, if (X1, Xo, X3)" has a trivariate normal distribu-
tion and X; is uncorrelated from Xy and X3, then X; is independent
of (Xo,X3). For a second example suppose that (X1, Xo,X3,X,;) has a
multivariate normal distribution and: E(X;X5s) = E(X1)E(X»), E(X1X3) =
E(X1)E(X3), E(X4X2) = E(X4)E(X2), and E(X,X5) = E(X4)E(X3), then (X1, X4)
and (Xy, X3) are two independent bivariate normal random vectors.

Proof. I will prove the following special case of the proposition; the gen-
eral case follows from a similar reasoning, but the notation is messier.

Suppose (X1, X2) has a bivariate normal distribution and E(X;X5) =
E(X1)E(X»). Then, X; and X, are independent. In order to prove this we
write the MGF of X := (X1, Xp)"

Mx(t) = et’;H—%t’Zt

1 Var(Xj) 0 t
_ altpittopy | - 1 1
¢ P <2(“’12) < 0 Var(X2)> <t2>>

tipy + % thaP(Xﬂ topio+ %thaP(XQ)

=e .e
Mx, (t1) - Mx, (to).
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The result follows from the independence theorem for MGF’s (Theorem
6, p. 29). O

Remark 9. The previous proposition has generalizations. For instance,
suppose we could decompose {1,...,n} into k disjoint groups Gy, ..., Gy
[so GNG; =@ifi #jand GiU---UGr = {1,...,n}] such that
Xi,» ..., Xi, are [pairwise] uncorrelated for all iy € Gy,...,ir € G. Then,
(Xi)iegys - - - » (Xi)ieg, are independent multivariate normal random vec-
tors. The proof is the same as in the case k = 2. (I

Remark 10. It is important that X has a multivariate normal distribution.
For instance, we can construct two standard-normal random variables X
and Y, on the same probability space, such that X and Y are uncorrelated
but dependent. Here is one way to do this: Let ¥ ~ N(0,1) and S = +1
with probability /2 each. Assume that S and Y are independent, and
define X := S|Y|. Note that

P{X<a}=P{X<a,S=1}+P{X<a, S= -1}

- P{¥| <a}+ P(-|¥| <a).

P{X <a} =P{Y < a}if a < 0. Therefore, X,V ~ N(0,1). Further-
more, X and Y are uncorrelated because S has mean zero; here is why:
E(XY) = E(SY|Y]) = E(S)E(Y|Y]) = 0 = E(X)E(Y). But X and Y are
not independent because |X| = |Y|: For instance, P{|X| < 1} > 0, but
P{|X| <1]]Y| > 2} =0. The problem is [and can only be] that (X, Y)" is
not bivariate normal. O

If a >0, then P{X < a} = iP{|Y| < a} + 1 = P{VY < a}. Similarly,

5. Quadratic forms

Given a multivariate-normal random variable X ~ N,(0,I) and an n x n
positive semidefinite matrix A := (A;;), we can consider the random
quadratic form

Qa(lX) := X'AX.
We can write A, in spectral form, as A = PDP’, so that
QalX) = X’PDP'X.
Since P is orthogonal and X ~ N,(0,I), Z := P'X ~ N,(0,I) as well.

Therefore,

n
QalX)=Z'DZ =) Di;Z}.
i=1
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If A is a projection matrix, then all of the D;;’s are ones and zeros. In
that case, Qa(X) ~ x2 where r := the number of eigenvalues of A that
are ones; i.e, r = rank(A). Finally, recall that the rank of a projection
matrix is equal to its trace (Corollary 16, p. 16). Let us summarize our
findings.

Proposition 11. If X ~ N,(0,I) and A is a projection matrix, then
X'AX ~ xfank( a) = Xi( a) = x2, where r := the total number of nonzero
[i.e., one] eigenvalues of A.

Example 12. Let

1 —1/n 1n —1/n i/n
—in 1-1n -tn -..—-1n
A:=
—1/n —tn  —1n 1 —1/n

Then we have seen (Example 5, p. 23) that
n
x'Ax =) (xi—x)* forallax € R".
i=1
Now let us observe that A has the form
A=1-B,

where B := (1n)1,.n. Note that B is symmetric and B> = B. Therefore,
B is a projection, and hence so is A = I — B. Clearly, tr(A) = n — 1.
Therefore, Proposition 11 implies the familiar fact that if X4,..., X, are
i.id. standard normals, then Y1 | (X; — X)% ~ x2_,. O

Example 13. If A is an n x n projection matrix of rank [or trace] r, then
I — A is an n x n projection matrix of rank [or trace] n — r. Therefore,
X'(I - A)X ~ x2_,, whenever X ~ N,(0,I). O

Example 14. What is the distribution of X is a nonstandard multivariate
normal? Suppose X ~ Np(p,X) and A is a projection matrix. If X is
nondegenerate, then £~"2(X — ) ~ N,(0, I). Therefore,

(X — ) ETPARTX — ) ~ Kyaniga) = Xiiay
for every n x n projection matrix A. In particular,
(X -p)E7 X - p) ~ x1,

which can be seen by specializing the preceding to the projection matrix
A := I. Specializing further still, we see that if X4, ..., X, are independent
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normal random variables, then we obtain the familiar fact that
n 2
Z Xi — pi - X2
- Oi "
i=1
where p1; := EX; and 02 := Var(X;). O



