Math 2280 - Assignment 6

Dylan Zwick

Spring 2014

Section 3.8 - 1, 3, 5, 8, 13
Section 4.1 - 1, 2, 13, 15, 22
Section 4.2 - 1, 10, 19, 28
Section 3.8 - Endpoint Problems and Eigenvalues

3.8.1 For the eigenvalue problem

\[y'' + \lambda y = 0; \quad y'(0) = 0, \quad y(1) = 0, \]

first determine whether \(\lambda = 0 \) is an eigenvalue; then find the positive eigenvalues and associated eigenfunctions.

Solution - First, if \(\lambda = 0 \) then the solution to the differential equation

\[y'' = 0 \]

is

\[y = Ax + B. \]

From this we get \(y' = A \), and so if \(y'(0) = 0 \) we must have \(A = 0 \). This would mean \(y = B \), and if \(y(1) = 0 \) then \(B = 0 \). So, only the trivial solution \(A = B = 0 \) works, and therefore \(\lambda = 0 \) is not an eigenvalue.

For \(\lambda > 0 \) the characteristic polynomial for our linear differential equation is:

\[r^2 + \lambda = 0, \]

which has roots \(r = \pm \sqrt{-\lambda} \). The corresponding solution to our ODE will be:

\[y = A \cos (\sqrt{\lambda} x) + B \sin (\sqrt{\lambda} x). \]

with derivative

\[y' = -A\sqrt{\lambda} \sin (\sqrt{\lambda} x) + B\sqrt{\lambda} \cos (\sqrt{\lambda} x). \]
So, \(y'(0) = B\sqrt{\lambda} \), and therefore if \(y'(0) = 0 \) then we must have \(B = 0 \), as \(\lambda > 0 \). So, our solution must be of the form:

\[
y = A \cos (\sqrt{\lambda} x).
\]

If we plug in \(y(1) = 0 \) we get:

\[
y(1) = A \cos (\sqrt{\lambda}) = 0.
\]

If \(A \neq 0 \) we must have \(\cos(\sqrt{\lambda}) = 0 \), which is true only if \(\sqrt{\lambda} = \frac{\pi}{2} + n\pi \). So, the eigenvalues are:

\[
\lambda_n = \left(\pi \left(\frac{1}{2} + n \right) \right)^2, \text{ with } n \in \mathbb{N},
\]

and corresponding eigenfunctions

\[
y_n = \cos \left(\left(\frac{\pi}{2} + n\pi \right) x \right).
\]
3.8.3 Same instructions as Problem 3.8.1, but for the eigenvalue problem:

\[y'' + \lambda y = 0; \quad y(-\pi) = 0, y(\pi) = 0. \]

Solution - If \(\lambda = 0 \) then, as in Problem 3.8.1, our solution will be of the form:

\[y = Ax + B. \]

This means \(y(\pi) = A\pi + B = 0 \), and \(y(-\pi) = -A\pi + B = 0 \). Adding these two equations we get \(2B = 0 \), which means \(B = 0 \). If \(B = 0 \) then \(A\pi = 0 \), which means \(A = 0 \). So, the only solution is the trivial solution \(A = B = 0 \), and therefore \(\lambda = 0 \) is not an eigenvalue.

Now if \(\lambda > 0 \) then again just as in Problem 3.8.1 we’ll have a solution of the form:

\[y(x) = A \cos (\sqrt{\lambda}x) + B \sin (\sqrt{\lambda}x). \]

If we plug in our endpoint values we get:

\[y(\pi) = A \cos (\sqrt{\lambda}\pi) + B \sin (\sqrt{\lambda}\pi) = 0, \]
\[y(-\pi) = A \cos (-\sqrt{\lambda}\pi) + B \sin (-\sqrt{\lambda}\pi) = A \cos (\sqrt{\lambda}\pi) - B \sin (\sqrt{\lambda}\pi) = 0, \]

where in the second line above we use that \(\cos \) is an even function, while \(\sin \) is odd.

If we add these two equations together we get:

\[2A \cos (\sqrt{\lambda}\pi) = 0. \]
This is true if either $A = 0$ or $\sqrt{\lambda} = \left(\frac{1}{2} + n\right)$. If $\sqrt{\lambda} = \left(\frac{1}{2} + n\right)$ then

$$y(\pi) = B \sin \left(\left(\frac{1}{2} + n\right) \pi\right) = 0.$$

As $\sin \left(\left(\frac{1}{2} + n\right) \pi\right) = \pm 1$ we must have $B = 0$.

On the other hand, if $A = 0$ above then we have:

$$y(\pi) = B \sin (\sqrt{\lambda} \pi).$$

If $B \neq 0$ then we must have $\sqrt{\lambda} = n$. Combining our two results we get that the possible eigenvalues are:

$$\lambda_n = \frac{n^2}{4},$$

for $n \in \mathbb{N}$, and $n > 0$, with corresponding eigenfunctions:

$$y_n(x) = \begin{cases}
\cos \left(\frac{n}{2} x\right) & n \text{ odd} \\
\sin \left(\frac{n}{2} x\right) & n \text{ even}
\end{cases}$$
3.8.5 Same instructions as Problem 3.8.1, but for the eigenvalue problem:

\[y'' + \lambda y = 0; \quad y(-2) = 0, y'(2) = 0. \]

Solution - If \(\lambda = 0 \) then, just as in Problem 3.8.1, the solution to the ODE will be:

\[y(x) = Ax + B, \]
\[y'(x) = A. \]

If we plug in our endpoint conditions we get \(y(-2) = -2A + B = 0 \) and \(y'(2) = A = 0 \). These equations are satisfied if and only if \(A = B = 0 \), which is the trivial solution. So, \(\lambda = 0 \) is *not* an eigenvalue.

If \(\lambda > 0 \) then, just as in Problem 3.8.1, the solution to the ODE will be of the form:

\[y(x) = A \cos(\sqrt{\lambda}x) + B \sin(\sqrt{\lambda}x), \]

with

\[y'(x) = -A\sqrt{\lambda} \sin(\sqrt{\lambda}x) + B\sqrt{\lambda} \cos(\sqrt{\lambda}x). \]

Plugging in the endpoint conditions, and using that \(\cos \) is even and \(\sin \) is odd, we get:

\[y(-2) = A \cos(-2\sqrt{\lambda}) + B \sin(-2\sqrt{\lambda}) = A \cos(2\sqrt{\lambda}) - B \sin(2\sqrt{\lambda}) = 0, \]
\[y'(2) = -A\sqrt{\lambda} \sin(2\sqrt{\lambda}) + B\sqrt{\lambda} \cos(2\sqrt{\lambda}) = 0. \]

If we divide both sides of the second equality by \(\sqrt{\lambda} \) we get
\[-A \sin (2\sqrt{\lambda}) + B \cos (2\sqrt{\lambda}) = 0.\]

From these equations we get:

\[
A \cos (2\sqrt{\lambda}) = B \sin (2\sqrt{\lambda}) \Rightarrow \frac{A}{B} = \tan (2\sqrt{\lambda}),
\]

\[
B \cos (2\sqrt{\lambda}) = A \sin (2\sqrt{\lambda}) \Rightarrow \frac{B}{A} = \tan (2\sqrt{\lambda}).
\]

So,

\[
\frac{A}{B} = \frac{B}{A} \Rightarrow A^2 = B^2.
\]

So, either \(A = B\) or \(A = -B\).

If \(A = B\) then \(\tan (2\sqrt{\lambda}) = 1\), which means \(2\sqrt{\lambda} = \frac{\pi}{4} + n\pi\), and therefore

\[
\lambda = \left(\left(\frac{1+4n}{8}\right)\pi\right)^2.
\]

If \(A = -B\) then \(\tan (2\sqrt{\lambda}) = -1\), which means \(2\sqrt{\lambda} = \frac{3\pi}{4} + n\pi\), and therefore

\[
\lambda = \left(\left(\frac{3+4n}{8}\right)\pi\right)^2.
\]

So, the eigenvalues are:
\[\lambda_n = \left(\left(\frac{1 + 2n}{8} \right) \pi \right)^2 \]

with \(n \in \mathbb{N} \) and \(n > 0 \), with corresponding eigenfunctions:

\[y_n = \begin{cases}
\cos(\left(\frac{1+2n}{8}\right) \pi x) + \sin(\left(\frac{1+2n}{8}\right) \pi x) & n \text{ even} \\
\cos(\left(\frac{1+2n}{8}\right) \pi x) - \sin(\left(\frac{1+2n}{8}\right) \pi x) & n \text{ odd}
\end{cases} \]
3.8.8 - Consider the eigenvalue problem

\[y'' + \lambda y = 0; \quad y(0) = 0 \quad y(1) = y'(1) \text{ (not a typo)}; \]

all its eigenvalues are nonnegative.

(a) Show that \(\lambda = 0 \) is an eigenvalue with associated eigenfunction \(y_0(x) = x \).

(b) Show that the remaining eigenfunctions are given by \(y_n(x) = \sin \beta_n x \), where \(\beta_n \) is the \(n \)th positive root of the equation \(\tan z = z \). Draw a sketch showing these roots. Deduce from this sketch that \(\beta_n \approx (2n + 1)\pi/2 \) when \(n \) is large.

Solution -

(a) - If \(\lambda = 0 \) then the solution to the ODE will be of the form:

\[y(x) = Ax + B, \]

with

\[y'(x) = A. \]

So, \(y(0) = B = 0 \), and \(y(1) = A = y'(1) \). So, any function of the form \(y(x) = Ax \) will work, and our eigenfunction for \(\lambda = 0 \) is:

\[y_0 = x. \]

(b) - For \(\lambda > 0 \) the solutions will all be of the form:

\[y(x) = A \cos (\lambda x) + B \sin (\lambda x). \]

If we plug in \(y(0) = A = 0 \) we get the solutions are of the form:
\[y(x) = B \sin(\sqrt{\lambda}x), \]
with
\[y'(x) = B\sqrt{\lambda} \cos(\sqrt{\lambda}x). \]

If we plug in the other endpoint values we get:
\[y(1) = B \sin(\sqrt{\lambda}) = B\sqrt{\lambda} \cos(\sqrt{\lambda}) = y'(1). \]

If \(B \neq 0 \) then we must have:
\[\tan(\sqrt{\lambda}) = \sqrt{\lambda}. \]

So, \(\sqrt{\lambda} \) works if it's a root of the equation \(\tan z = z \), and if \(\beta_n \) is the \(n \)th such root, then the associated eigenfunction is:
\[y_n = \sin(\beta_n x). \]

A sketch of \(z \) and \(\tan z \) are below. The roots are where they intersect:

As \(n \) gets large it occurs at approximately \(\left(\frac{2n + 1}{2}\right) \pi \).
Consider the eigenvalue problem
\[y'' + 2y' + \lambda y = 0; \quad y(0) = y(1) = 0. \]

(a) Show that \(\lambda = 1 \) is not an eigenvalue.

(b) Show that there is no eigenvalue \(\lambda \) such that \(\lambda < 1 \).

(c) Show that the \(n \)th positive eigenvalue is \(\lambda_n = n^2\pi^2 + 1 \), with associated eigenfunction \(y_n(x) = e^{-x} \sin(n\pi x) \).

Solution -

(a) If \(\lambda = 1 \) then the characteristic polynomial is:
\[r^2 + 2r + 1 = (r + 1)^2, \]
which has roots \(r = -1, -1 \). So, \(-1\) is a root with multiplicity 2. The corresponding solution to the ODE will be:
\[y(x) = Ae^{-x} + Bxe^{-x}. \]

If we plug in the endpoint values we get:
\[y(0) = A = 0, \]
\[y(1) = Ae^{-1} + Bxe^{-1} = Bxe^{-1} = 0. \]

From these we see the only solution is the trivial solution \(A = B = 0 \), so \(\lambda = 1 \) is not an eigenvalue.
(b) - If $\lambda < 1$ then the characteristic polynomial will be:

$$r^2 + 2r + \lambda,$$

which has roots

$$r = \frac{-2 \pm \sqrt{2^2 - 4(1)\lambda}}{2} = -1 \pm \sqrt{1 - \lambda}.$$

If $\lambda < 1$ then $\sqrt{1 - \lambda}$ will be real, and the solution to our ODE will be of the form:

$$y(x) = Ae^{(-1+\sqrt{1-\lambda})x} + Be^{(-1-\sqrt{1-\lambda})x}.$$

Plugging in our endpoint values we get:

$$y(0) = A + B = 0,$$
$$y(1) = Ae^{(-1+\sqrt{1-\lambda})} + Be^{(-1-\sqrt{1-\lambda})} = 0.$$

From these we get, after a little algebra:

$$A(1 - e^{-2\sqrt{1-\lambda}}) = 0.$$

If $\lambda < 1$ then $e^{-2\sqrt{1-\lambda}} < 1$, and therefore $1 - e^{2\sqrt{1-\lambda}} > 0$. So, for the above equality to be true we must have $A = 0$, which means $B = 0$, and so the only solution is the trivial solution $A = B = 0$. Therefore, no value $\lambda < 1$ is an eigenvalue.

(c) - If $\lambda > 1$ then again using the roots from the quadratic equation in part (b) we get that our solutions will be of the form:
\[y(x) = Ae^{-x} \cos(\sqrt{\lambda} - 1x) + Be^{-x} \sin(\sqrt{\lambda} - 1x). \]

If we plug in the endpoint values we get:

\[y(0) = A = 0, \]

and so

\[y(x) = Be^{-x} \sin(\sqrt{\lambda} - 1x). \]

If we plug in our other endpoint value we get:

\[y(1) = Be^{-1} \sin(\sqrt{\lambda} - 1) = 0. \]

If \(B \neq 0 \) then we must have \(\sin(\sqrt{\lambda} - 1) = 0 \), which is only possible if

\[\sqrt{\lambda} - 1 = n\pi, \]

\[\Rightarrow \lambda_n = n^2 \pi^2 + 1. \]

So, the eigenvalues are given above, and the corresponding eigenfunctions are:

\[y_n = e^{-x} \sin(n\pi x), \]

for \(n \in \mathbb{N}, \ n > 0. \)
Section 4.1 - First-Order Systems and Applications

4.1.1 - Transform the given differential equation into an equivalent system of first-order differential equations.

\[x'' + 3x' + 7x = t^2. \]

Solution - If we define \(x = x_1 \) then define:

\[
\begin{align*}
 x_1' &= x_2, \\
 x_2' &= t^2 - 3x_2 - 7x_1.
\end{align*}
\]

So, the system is:

\[
\begin{align*}
 x_1' &= x_2, \\
 x_2' &= -7x_1 - 3x_2 + t^2.
\end{align*}
\]
4.1.2 - Transform the given differential equation into an equivalent system of first-order differential equations.

\[x^{(4)} + 6x'' - 3x' + x = \cos 3t. \]

Solution - Define \(x = x_1 \). Then the equivalent system is:

\[
\begin{align*}
 x_1' &= x_2 \\
 x_2' &= x_3 \\
 x_3' &= x_4 \\
 x_4' &= -6x_3 + 3x_2 - x_1 + \cos (3t)
\end{align*}
\]
4.1.13 - Find the particular solution to the system of differential equations below. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the given system.

\[x' = -2y, \quad y' = 2x; \quad x(0) = 1, y(0) = 0. \]

Solution - If we differentiate \(y' = 2x \), we get \(y'' = 2x' = -4y \). So, we have the differential equation:

\[y'' + 4y = 0. \]

The solution to this ODE is:

\[y(t) = A \cos (2t) + B \sin (2t). \]

Now,

\[x(t) = \frac{1}{2} y' = \frac{1}{2} \left(-2A \sin (2t) + 2B \cos (2t) \right) = -A \sin (2t) + B \cos (2t). \]

If we plug in \(x(0) = B = 1 \) and \(y(0) = A = 0 \) we get:

\[x(t) = \cos (2t) \]
\[y(t) = \sin (2t). \]
More room, if necessary, for Problem 4.1.13.

Direction Field

Our Solution

Note: Should be circles. I'm not the best artist.
4.1.15 - Find the general solution to the system of differential equations below. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the given system.

\[x' = \frac{1}{2}y, \quad y' = -8x. \]

Solution - If we differentiate \(y' = -8x \) we get \(y'' = -8x' = -4y \). So, our ODE is:

\[y'' + 4y = 0. \]

The solution to this ODE is:

\[y(t) = A \cos (2t) + B \sin (2t). \]

The function \(x(t) \) is:

\[x(t) = -\frac{1}{8}y'(t) = -\frac{A}{4} \sin (2t) + \frac{B}{4} \cos (2t). \]

So, the general solution to this system of ODEs is:

\[x(t) = -\frac{A}{4} \sin (2t) + \frac{B}{4} \cos (2t) \]

\[y(t) = A \cos (2t) + B \sin (2t). \]
More room, if necessary, for Problem 4.1.15.
4.1.22 (a) - Beginning with the general solution of the system from Problem 13, calculate \(x^2 + y^2 \) to show that the trajectories are circles.

(b) - Show similarly that the trajectories of the system from Problem 15 are ellipses of the form \(16x^2 + y^2 = C^2 \).

(a) - The general solution to the system of ODEs from Problem 4.1.13 is:

\[
\begin{align*}
x(t) &= -A \sin (2t) + B \cos (2t) \\
y(t) &= A \cos (2t) + B \sin (2t).
\end{align*}
\]

From these we get:

\[
\begin{align*}
x(t)^2 + y(t)^2 &= (-A \sin (2t) + B \cos (2t))^2 + (A \cos (2t) + B \sin (2t))^2 \\
&= A^2 \sin^2 (2t) - 2AB \sin (2t) \cos (2t) + B^2 \cos^2 (2t) + A^2 \cos^2 (2t) + 2AB \sin (2t) \cos (2t) + B^2 \sin^2 (2t) \\
\end{align*}
\]

So, circles.

(b) - The general solution to the system of ODEs from Problem 4.1.15 is:

\[
\begin{align*}
x(t) &= -\frac{A}{4} \sin (2t) + \frac{B}{4} \cos (2t) \\
y(t) &= A \cos (2t) + B \sin (2t).
\end{align*}
\]

So,

\[
\begin{align*}
16x(t)^2 &= A^2 \sin^2 (2t) - 2AB \sin (2t) \cos (2t) + B^2 \cos^2 (2t), \\
y(t)^2 &= A^2 \cos^2 (2t) + 2AB \sin (2t) \cos (2t) + B^2 \sin^2 (2t).
\end{align*}
\]

Combining these we get \(16x(t)^2 + y(t)^2 = A^2 + B^2 = C^2 \). So, ellipses.
Section 4.2 - The Method of Elimination

4.2.1 - Find a general solution to the linear system below. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the system.

\[
\begin{align*}
x' &= -x + 3y \\
y' &= 2y
\end{align*}
\]

Solution - The differential equation

\[
y' = 2y
\]

has the solution

\[
y(t) = Ae^{2t}.
\]

So,

\[
x' = -x + 3Ae^{2t} \Rightarrow x' + x = 3Ae^{2t}.
\]

This is a first-order linear ODE. Its integrating factor is:

\[
\rho(t) = e^{\int 1 dt} = e^t.
\]

Multiplying both sides by this integrating factor our linear ODE becomes:

\[
\frac{d}{dt} (e^{t}x) = 3Ae^{3t}.
\]
Integrating both sides we get:

\[e^t x = Ae^{3t} + B \]
\[\Rightarrow x = Ae^{2t} + Be^{-t}. \]

So, the general solution to this system is:

\[x(t) = Ae^{2t} + Be^{-t}, \]
\[y(t) = Ae^{2t}. \]

We can write this in vector form as:

\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
= A \begin{pmatrix}
 1 \\
 1
\end{pmatrix} e^{2t} + B \begin{pmatrix}
 1 \\
 0
\end{pmatrix} e^{-t}.
\]

The direction field looks kind of like this:
4.2.10 Find a particular solution to the given system of differential equations that satisfies the given initial conditions.

\[
\begin{align*}
x' + 2y' &= 4x + 5y, \\
2x' - y' &= 3x; \\
x(0) &= 1, y(0) = -1.
\end{align*}
\]

Solution - If we add 2 times the second equation to the first we get:

\[5x' = 10x + 5y.\]

If we subtract 2 times the first equation from the second we get:

\[-5y' = -5x - 10y \Rightarrow 5y' = 5x + 10y.\]

Differentiating \(5x' = 10x + 5y\) and plugging in \(5y' = 5x + 10y\) we get:

\[
\begin{align*}
5x'' &= 10x' + 5y' = 10x' + (5x + 10y) \\
\Rightarrow 5x'' &= 10x' + (5x + 10x' - 20x) \\
\Rightarrow 5x'' &= 20x' - 15x \\
\Rightarrow x'' &= 4x' - 3x.
\end{align*}
\]

The linear homogeneous differential equation \(x'' - 4x' + 3x = 0\) has characteristic equation:

\[r^2 - 4r + 3 = (r - 3)(r - 1).\]
So, the roots are $r = 3, 1$, and the general solution to the ODE is:

$$x(t) = c_1 e^{3t} + c_2 e^t.$$

From the equation $5y' = 5x + 10y$ we get $y' = x + 2y$, and therefore:

$$y' - 2y = c_1 e^{3t} + c_2 e^t.$$

If we multiply both sides by the integrating factor e^{-2t} we get:

$$\frac{d}{dt}(e^{-2t}y) = c_1 e^t + c_2 e^{-t}.$$

Integrating both sides we get:

$$e^{-2t}y = c_1 e^t - c_2 e^{-t} + C,$$

and so:

$$y(t) = c_1 e^{3t} - c_2 e^t + Ce^{2t}.$$

Plugging this into any of the equations in our system gives us $C = 0$. So,

$$y(t) = c_1 e^{3t} - c_2 e^t.$$

We can write this solution in matrix form as:

$$x(t) = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t.$$
If we plug in

\[
x(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\]

we can see immediately that \(c_1 = 0 \) and \(c_2 = 1 \). So, the solution to our initial value problem is:

\[
x(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t.
\]
4.2.19 Find a general solution to the given system of differential equations.

\[
\begin{align*}
\frac{dx}{dt} &= 4x - 2y, \\
\frac{dy}{dt} &= -4x + 4y - 2z, \\
\frac{dz}{dt} &= -4y + 4z.
\end{align*}
\]

Solution - If we differentiate the first equation we get:

\[
\frac{d^2x}{dt^2} = 4\frac{dx}{dt} - 2\frac{dy}{dt} = 4\frac{dx}{dt} - 2(-4x + 4y - 2z)
\]

\[\Rightarrow \frac{d^2x}{dt^2} = 4\frac{dx}{dt} + 8x - 8y + 4z.
\]

Differentiating again we get:

\[
x^{(3)} = 4x^{''} + 8x' - 8y' + 4z' = 4x^{''} + 8x' - 8y' + 4(-4y + 4z)
\]

\[\Rightarrow x^{(3)} = 4x^{''} + 8x' - 8y' - 16y + 16z
\]

\[\Rightarrow x^{(3)} = 4x^{''} + 8x' - 8y' - 16y + 8(-y' - 4x + 4y)
\]

\[\Rightarrow x^{(3)} = 4x^{''} + 8x' - 16y' + 16y - 32x
\]

\[\Rightarrow x^{(3)} = 4x^{''} + 8x' - 8(4x' - x'') + 8(4x - x') - 32x
\]

\[\Rightarrow x^{(3)} = 12x'' - 32x' \Rightarrow x^{(3)} - 12x'' + 32x' = 0.
\]

The characteristic equation for this ODE is

\[r^3 - 12r^2 + 32r = r(r - 8)(r - 4).\]

So,
From this we get:

\[x'(t) = 8c_2 e^{8t} + 4c_3 e^{4t} \]

and

\[y(t) = 2x - \frac{1}{2}x' = 2c_1 - 2c_2 e^{8t}. \]

Finally,

\[z(t) = -2x'(t) + 2y(t) - \frac{1}{2}y'(t) = 2c_1 + 2c_2 e^{8t} - 2c_3 e^{4t}. \]

So,

\[x(t) = c_1 + c_2 e^{8t} + c_3 e^{4t}, \]

\[y(t) = 2c_1 - 2c_2 e^{8t}, \]

\[z(t) = 2c_1 + 2c_2 e^{8t} - 2c_3 e^{4t}. \]
4.2.28 For the system below first calculate the operational determinant to determine how many arbitrary constants should appear in a general solution. Then attempt to solve the system explicitly so as to find such a general solution.

\[
\begin{align*}
(D^2 + D)x + D^2y &= 2e^{-t} \\
(D^2 - 1)x + (D^2 - D)y &= 0
\end{align*}
\]

Solution - The operational determinant of the system above is:

\[
(D^2 + D)(D^2 - D) - D^2(D^2 - 1) = D^4 - D^3 + D^3 - D^2 - D^4 + D^2 = 0.
\]

So, there are 0(!) arbitrary constants. How is this possible? Well, if we subtract the second relation from the first we get:

\[
(D + 1)x + Dy = 2e^{-t}
\]

\[
\Rightarrow Dy = 2e^{-t} - (D + 1)x
\]

\[
\Rightarrow D^2y = -2e^{-t} - (D^2 + D)x
\]

\[
\Rightarrow (D^2 + D)x + D^2y = -2e^{-t}.
\]

However, this cannot be, as our first relation above is:

\[
(D^2 + D)x + D^2y = 2e^{-t},
\]

and \(2e^{-t} \neq -2e^{-t}\). So, there is no solution to the system.