This lecture covers section 6.7 of the textbook.

Today, we summit diagonal mountain. That is to say, we’ll learn about the most general way to “diagonalize” a matrix. This is called the singular value decomposition. It’s kind of a big deal.

Up to this point in the chapter we’ve dealt exclusively with square matrices. Well, today, we’re going to allow rectangular matrices. Is \(A \) is an \(m \times n \) matrix with \(m \neq n \) then the eigenvalue equation

\[
Ax = \lambda x
\]

has issues. In particular, the vector \(x \) will have \(n \) components, while the vector \(Ax \) will have \(m \) components (!) and so the equation above won’t make sense.

Well... nuts. Now what do we do? We need a square matrix. Well, as we learned when we were learning about projections, the matrices \(A^T A \) and \(AA^T \) will be square. They will also be symmetric, and in fact positive semidefinite. A diagonalizer’s dream!

Making use of \(AA^T \) and \(A^T A \), we’ll construct the singular value decomposition of \(A \).

The assigned problems for this section are:

Section 6.7 - 1, 4, 6, 7, 9.
1 The Singular Value Decomposition

Suppose A is an $m \times n$ matrix with rank r. The matrix AA^T will be $m \times m$ and have rank r. The matrix A^TA will be $n \times n$ and also have rank r. Both matrices A^TA and AA^T will be positive semidefinite, and will therefore have r (possibly repeated) positive eigenvalues, and r linearly independent corresponding eigenvectors. As the matrices are symmetric, these eigenvectors will be orthogonal, and we can choose them to be orthonormal.

We call the eigenvectors of A^TA corresponding to its non-zero eigenvalues v_1, \ldots, v_r. These vectors will be in the row space of A. We call the eigenvectors of AA^T corresponding to its non-zero eigenvalues u_1, \ldots, u_r. These vectors will be in the column space of A.

Now, these vectors have a remarkable relation. Namely,

$$Av_1 = \sigma_1 u_1, Av_2 = \sigma_2 u_2, \ldots, Av_r = \sigma_r u_r$$

where $\sigma_1, \ldots, \sigma_r$ are positive numbers called the singular values of the matrix A.

This relation lets us write

$$A \begin{pmatrix} v_1 & \cdots & v_r \end{pmatrix} = \begin{pmatrix} u_1 & \cdots & u_r \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{pmatrix}.$$

This gives us a decomposition $AV = U \Sigma$.

Noting that the columns of V are orthonormal we can right multiply both sides of this equality by V^T to get $A = U \Sigma V^T$. This is the singular value decomposition of A.

If we want to we can make V and U square. We just append orthonormal vectors v_{r+1}, \ldots, v_n in the nullspace of A to V, and orthonormal vectors u_{r+1}, \ldots, u_m in the left-nullspace of A to M. We’ll still get $AV = U \Sigma$ and $A = U \Sigma V^T$.
This singular value decomposition has a particularly nice represen-
tation if we carry through the multiplication of the matrices:

\[A = U \Sigma V^T = u_1 \sigma_1 v_1 + \cdots + u_r \sigma_r v_r^T. \]

Each of these “pieces” has rank 1. If we order the singular values

\[\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r \]

then the singular value decomposition gives \(A \) in \(r \) rank 1 pieces in order of importance.

We should prove the singular value decomposition before we compute some examples.

Proof of the Singular Value Decomposition - The matrices \(A^T A \) and \(A A^T \), as we learned in section 6.5, are positive semidefinite. Therefore, all non-zero eigenvalues will be positive.

If \(\lambda_i \) is a non-zero eigenvalue of \(A^T A \) with eigenvector \(v_i \) then we can write \(A^T A v_i = \sigma_i^2 v_i \), where \(\sigma_i = \sqrt{\lambda_i} \) is the positive square root of \(\lambda_i \).

If we left multiply \(A^T A v_i = \sigma_i^2 v_i \) by \(v_i^T \) we get

\[v_i^T A^T A v_i = \sigma_i^2 v_i^T v_i, \]

and therefore

\[v_i^T A^T A v_i = (A v_i)^T (A v_i) = ||A v_i||^2 = \sigma_i^2 v_i^T v_i = \sigma_i^2. \]

The last equality uses that \(v_i \) is normalized. So, this gives us \(||A v_i|| = \sigma_i \).

Now, as \(A^T A v_i = \sigma_i^2 A v_i \) if we left multiply both sides of this equation by \(A \) we get

\[A A^T A v_i = \sigma_i^2 A v_i. \]
and so $A\mathbf{v}_i$ is an eigenvector of AA^T, with eigenvalue σ_i^2. So, $\mathbf{u}_i = A\mathbf{v}_i/\sigma_i$ is a unit eigenvector of AA^T, and we have

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i.$$

Done!

2 Finding Singular Value Decompositions

Let’s calculate a few singular value decompositions. First, let’s start with the rank 2 unsymmetric matrix

$$A = \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix}.$$

A is not symmetric, and there will be no orthogonal matrix Q that will make $Q^{-1}AQ$ diagonal. We need two different orthogonal matrices U and V.

We find these matrices with the singular value decomposition. So, we want to compute $A^T A$ and its eigenvectors.

$$A^T A = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$$

and so

$$\begin{vmatrix} 5 - \lambda & 3 \\ 3 & 5 - \lambda \end{vmatrix} = (5 - \lambda)^2 - 9 = \lambda^2 - 10\lambda + 16 = (\lambda - 8)(\lambda - 2).$$

So, $A^T A$ has eigenvalues 8 and 2. The corresponding eigenvectors will be

$$\mathbf{v}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$
Now, to find the vectors u_1 and u_2 we multiply v_1 and v_2 by A:

$$A v_1 = \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 2\sqrt{2} \\ 0 \end{pmatrix},$$

$$A v_2 = \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ \sqrt{2} \end{pmatrix}.$$

So, the unit vectors u_1 and u_2 will be:

$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad u_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

The singular values will be $2\sqrt{2} = \sqrt{8}$ and $\sqrt{2}$. This gives us the singular value decomposition:

$$\begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$
Example - Find the SVD of the matrix

\[A = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}. \]