1 Section 2.3 - Elimination Using Matrices

2.3.1 Write down the 3 by 3 matrices that produce these elimination steps:

(a) E_{21} subtracts 5 times row 1 from row 2.
(b) E_{32} subtracts -7 times row 2 from row 3.
(c) P exchanges rows 1 and 2, then rows 2 and 3.
2.3.2 In Problem 1, applying E_{21} and then E_{32} to $b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ gives

$$E_{32}E_{21}b = \text{______________}.$$

Applying E_{32} before E_{21} gives

$$E_{21}E_{32}b = \text{______________}.$$

When E_{32} comes first, row ____________ feels no effect from row ____________.
2.3.3 Which three matrices E_{21}, E_{31}, E_{32} put A into triangular form U?

\[
A = \begin{pmatrix}
1 & 1 & 0 \\
4 & 6 & 1 \\
-2 & 2 & 0
\end{pmatrix}
\quad \text{and} \quad E_{32}E_{31}E_{21}A = U.
\]
2.3.7 Suppose E subtracts 7 times row 1 from row 3.

(a) To invert that step you should ____________ 7 times row ____________ to row ____________.

(b) What “inverse matrix” E^{-1} takes the reverse step (so $E^{-1}E = I$)?

(c) If the reverse step is applied first (and then E) show that $EE^{-1} = I$.

2.3.17 The parabola $y = a + bx + cx^2$ goes through the points $(x, y) = (1, 4)$ and $(2, 8)$ and $(3, 14)$. Find and solve a matrix equation for the unknowns (a, b, c).
2 Section 2.4 - Rules for Matrix Operations

2.4.1 \(A \) is a 3 by 5, \(B \) is a 5 by 3, \(C \) is a 5 by 1, and \(D \) is 3 by 1. All entries are 1. Which of these matrix operations are allowed, and what are the results

\[
\begin{align*}
BA & \quad AB & \quad ABD & \quad DBA & \quad A(B + C).
\end{align*}
\]
2.4.2 What rows or columns or matrices do you multiply to find

(a) the third column of AB?
(b) the first row of AB?
(c) the entry in row 3, column 4 of AB?
(d) the entry in row 1, column 1 of CDE?
2.4.13 Which of the following matrices are guaranteed to equal \((A - B)^2\):

\[
\begin{aligned}
& A^2 - B^2, \\
& (B - A)^2, \\
& A^2 - 2AB + B^2, \\
& A(A - B) - B(A - B), \\
& A^2 - AB - BA + B^2?
\end{aligned}
\]
2.4.14 True or false:

(a) If A^2 is defined then A is necessarily square.
(b) If AB and BA are defined then A and B are square.
(c) If AB and BA are defined then AB and BA are square.
(d) If $AB = B$ then $A = I$.
2.4.32 (*Very important*) Suppose you solve $Ax = b$ for three special right sides b:

$Ax_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $Ax_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $Ax_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

If the three solutions x_1, x_2, x_3 are the columns of a matrix X, what is A times X?