Math 2270 - Assignment 11

Dylan Zwick

Fall 2012

Section 6.1 - 2, 3, 5, 16, 17
Section 6.2 - 1, 2, 15, 16, 26
Section 6.4 - 1, 3, 5, 14, 23
6.1 - Introduction to Eigenvalues

6.1.2 Find the eigenvalues and the eigenvectors of these two matrices:

\[
A = \begin{pmatrix}
1 & 4 \\
2 & 3 \\
\end{pmatrix}
\quad \text{and} \quad
A + I = \begin{pmatrix}
2 & 4 \\
2 & 4 \\
\end{pmatrix}.
\]

\(A + I\) has the __________ eigenvectors as \(A\). Its eigenvalues are __________ by 1.
6.1.3 Compute the eigenvalues and eigenvectors of A and A^{-1}. Check the trace!

$$A = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad A^{-1} = \begin{pmatrix} -\frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{pmatrix}.$$

A^{-1} has the __________ eigenvectors as A. When A has eigenvalues λ_1 and λ_2, its inverse has eigenvalues ________________.
6.1.5 Find the eigenvalues of A and B (easy for triangular matrices) and $A + B$:

\[
A = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix} \quad \text{and} \quad A + B = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}.
\]

Eigenvalues of $A + B$ (are equal to)(are not equal to) eigenvalues of A plus eigenvalues of B.
6.1.16 The determinant of A equals the product $\lambda_1\lambda_2 \cdots \lambda_n$. Start with the polynomial $\det(A - \lambda I)$ separated into its n factors (always possible). Then set $\lambda = 0$:

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

so $\det(A) = \underline{\text{ }}$.

Check this rule in Example 1 where the Markov matrix has $\lambda = 1$ and $\frac{1}{7}$.

The sum of the diagonal entries (the \textit{trace}) equals the sum of the eigenvalues:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{has} \quad \det(A - \lambda I) = \lambda^2 - (a + d)\lambda + ad - bc = 0.$$

The quadratic formula gives the eigenvalues $\lambda = \frac{a + d + \sqrt{\gamma}}{2}$ and $\lambda = \frac{a + d - \sqrt{\gamma}}{2}$. Their sum is $a + d$. If A has $\lambda_1 = 3$ and $\lambda_2 = 4$ then $\det(A - \lambda I) = \text{_______________}$.
6.2 - Diagonalizing a Matrix

6.2.1 (a) Factor these two matrices into $A = SAS^{-1}$:

\[A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}. \]

(b) If $A = SAS^{-1}$ then $A^3 = ()()()$ and $A^{-1} = ()()$.
6.2.2 If A has $\lambda_1 = 2$ with eigenvector $x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\lambda_2 = 5$ with $x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, use $S\Lambda S^{-1}$ to find A. No other matrix has the same λ's and x's.
6.2.15 $A^k = S\Lambda^k S^{-1}$ approaches the zero matrix as $k \to \infty$ if and only if every λ has absolute value less than $\underline{\text{ }}$.
Which of these matrices has $A^k \to 0$?

\[
A_1 = \begin{pmatrix} .6 & .9 \\ .4 & .1 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} .6 & .9 \\ .1 & .6 \end{pmatrix}.
\]
6.2.16 (Recommended) Find Λ and S to diagonalize A_1 in Problem 15. What is the limit of Λ^k as $k \to \infty$? What is the limit of $SA^k S^{-1}$? In the columns of this limiting matrix you see the ____________________.
6.2.26 (Recommended) Suppose $Ax = \lambda x$. If $\lambda = 0$ then x is in the nullspace. If $\lambda \neq 0$ then x is in the column space. Those spaces have dimensions $(n - r) + r = n$. So why doesn’t every square matrix have n linearly independent eigenvectors?
6.4 - Symmetric Matrices

6.4.1 Write A as $M + N$, symmetric matrix plus skew-symmetric matrix:

\[
A = \begin{pmatrix} 1 & 2 & 4 \\ 4 & 3 & 0 \\ 8 & 6 & 5 \end{pmatrix} = M + N \quad (M^T = M, N^T = -N).
\]

For any square matrix, $M = \frac{A + A^T}{2}$ and $N = \underline{\text{_______________}}$ add up to A.

6.4.3 Find the eigenvalues and the unit eigenvectors of

\[A = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix} \]
6.4.5 Find an orthogonal matrix Q that diagonalizes this symmetric matrix:

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{pmatrix}.$$
6.4.14 (Recommended) This matrix M is skew-symmetric and also __. Then all its eigenvalues are pure imaginary and they also have $|\lambda| = 1$. ($||Mx|| = ||x||$ for every x so $||\lambda x|| = ||x||$ for eigenvectors.) Find all four eigenvalues from the trace of M:

$$M = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix}$$

This matrix can only have eigenvalues i or $-i$.
6.4.23 (Recommended) To which of these classes do the matrices A and B belong: Invertible, orthogonal, projection, permutation, diagonalizable, Markov?

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad B = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Which of these factorizations are possible for A and B: $LU, QR, SAS^{-1}, QΛQT$?