Homework Assignment No. 3, Math 5765, due Feb. 28 at 5 p.m.

1. The kurtosis of a random variable is the ratio of its fourth central moment to the square of its variance. For a normal random variable, the kurtosis is 3. One way to calculate this is to use the characteristic function
\[\phi(u) = E[e^{u(X-\mu)}] \] and note that for a normal random variable \(X \sim N(0, \sigma^2) \), \(\phi(u) = e^{\frac{1}{2}u^2\sigma^2} \). The 4th moment is therefore calculated as \(\phi^{(4)}(0) \). Use the above results to show
\[E[(W(t + \Delta t) - W(t))^4] = 3(\Delta t)^2 \]

2. Assume that the stock price follows the process,
\[S(t) = S(0) \exp \left((r - \frac{1}{2}\sigma^2)t + \sigma W(t) \right) \]
where the volatility \(\sigma \) and the interest rate \(r \) are taken as constants. You may want to estimate the realized variance \(\int_0^T V(t) \, dt \) over \([0, T]\), using the real data \(S(t_j), j = 0, 1, 2, \ldots, n \), at \(t_j = j\Delta t \), where \(\Delta t = T/n \). The following steps describe the procedure to estimate \(\sigma \).

(a) Show that
\[n - 1 \sum_{j=0}^{n-1} \left(\log \frac{S(t_{j+1})}{S(t_j)} \right)^2 = \sigma^2 \sum_{j=0}^{n-1} (\Delta W_j)^2 + (r - \frac{1}{2}\sigma^2)^2 \sum_{j=0}^{n-1} (\Delta t)^2 + 2\sigma(r - \frac{1}{2}\sigma^2) \sum_{j=0}^{n-1} (\Delta W_j) \cdot \Delta t \]
where \(\Delta W_j = W(t_{j+1}) - W(t_j) \);
(b) Justify for each term to show that as \(\Delta t \to 0 \), the above sum converges to \(\sigma^2T \);
(c) If we denote \(Y_j = \log \frac{S(t_{j+1})}{S(t_j)} \) and assume \(Y_j, j = 0, 1, \ldots \) are i.i.d.’s, the variance of \(Y_j \) should be estimated based on
\[\sum_{j=0}^{n-1} (Y_j - \bar{Y})^2 = \sum_{j=0}^{n-1} Y_j^2 - \frac{1}{n} \left(\sum_{j=0}^{n-1} Y_j \right)^2 \]
where the second term on the right-hand-side is an adjustment. When do you think this adjustment is needed?
(d) Now assume that \(\sigma \) is time-dependent but still deterministic, how does the formula change in part (a)? Does it matter if \(r \) is also time-dependent?
3. The generalized geometric Brownian motion equation for a stock price $S(t)$ is

$$\frac{dS(t)}{S(t)} = \alpha(t) \, dt + \sigma(t) \, dW(t)$$

Using Itô’s formula to compute $d \log S(t)$. Simplify so that it does not involve $S(t)$. Then integrate the formula you obtained and exponentiate to arrive at a formula for $S(t)$.

2