Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holomorphic function in Ω^{+}that extends continuously to I and such that f is real-valued on I. Then there exists a function F holomorphic in all of Ω such that $F=f$ on Ω^{+}.

Proof. The idea is simply to define $F(z)$ for $z \in \Omega^{-}$by

$$
F(z)=\overline{f(\bar{z})}
$$

To prove that F is holomorphic in Ω^{-}we note that if $z, z_{0} \in \Omega^{-}$, then $\bar{z}, \overline{z_{0}} \in \Omega^{+}$and hence, the power series expansion of f near $\overline{z_{0}}$ gives

$$
f(\bar{z})=\sum a_{n}\left(\bar{z}-\overline{z_{0}}\right)^{n} .
$$

As a consequence we see that

$$
F(z)=\sum \overline{a_{n}}\left(z-z_{0}\right)^{n}
$$

and F is holomorphic in Ω^{-}. Since f is real valued on I we have $\overline{f(x)}=$ $f(x)$ whenever $x \in I$ and hence F extends continuously up to I. The proof is complete once we invoke the symmetry principle.

5.5 Runge's approximation theorem

We know by Weierstrass's theorem that any continuous function on a compact interval can be approximated uniformly by polynomials. ${ }^{4}$ With this result in mind, one may inquire about similar approximations in complex analysis. More precisely, we ask the following question: what conditions on a compact set $K \subset \mathbb{C}$ guarantee that any function holomorphic in a neighborhood of this set can be approximated uniformly by polynomials on K ?

An example of this is provided by power series expansions. We recall that if f is a holomorphic function in a disc D, then it has a power series expansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ that converges uniformly on every compact set $K \subset D$. By taking partial sums of this series, we conclude that f can be approximated uniformly by polynomials on any compact subset of D.

In general, however, some condition on K must be imposed, as we see by considering the function $f(z)=1 / z$ on the unit circle $K=C$. Indeed, recall that $\int_{C} f(z) d z=2 \pi i$, and if p is any polynomial, then Cauchy's theorem implies $\int_{C} p(z) d z=0$, and this quickly leads to a contradiction.

[^0]A restriction on K that guarantees the approximation pertains to the topology of its complement: K^{c} must be connected. In fact, a slight modification of the above example when $f(z)=1 / z$ proves that this condition on K is also necessary; see Problem 4.

Conversely, uniform approximations exist when K^{c} is connected, and this result follows from a theorem of Runge which states that for any K a uniform approximation exists by rational functions with "singularities" in the complement of $K .{ }^{5}$ This result is remarkable since rational functions are globally defined, while f is given only in a neighborhood of K. In particular, f could be defined independently on different components of K, making the conclusion of the theorem even more striking.

Theorem 5.7 Any function holomorphic in a neighborhood of a compact set K can be approximated uniformly on K by rational functions whose singularities are in K^{c}.

If K^{c} is connected, any function holomorphic in a neighborhood of K can be approximated uniformly on K by polynomials.

We shall see how the second part of the theorem follows from the first: when K^{c} is connected, one can "push" the singularities to infinity thereby transforming the rational functions into polynomials.

The key to the theorem lies in an integral representation formula that is a simple consequence of the Cauchy integral formula applied to a square.

Lemma 5.8 Suppose f is holomorphic in an open set Ω, and $K \subset \Omega$ is compact. Then, there exists finitely many segments $\gamma_{1}, \ldots, \gamma_{N}$ in $\Omega-K$ such that

$$
\begin{equation*}
f(z)=\sum_{n=1}^{N} \frac{1}{2 \pi i} \int_{\gamma_{n}} \frac{f(\zeta)}{\zeta-z} d \zeta \quad \text { for all } z \in K \tag{15}
\end{equation*}
$$

Proof. Let $d=c \cdot d\left(K, \Omega^{c}\right)$, where c is any constant $<1 / \sqrt{2}$, and consider a grid formed by (solid) squares with sides parallel to the axis and of length d.

We let $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{M}\right\}$ denote the finite collection of squares in this grid that intersect K, with the boundary of each square given the positive orientation. (We denote by ∂Q_{m} the boundary of the square Q_{m}.) Finally, we let $\gamma_{1}, \ldots, \gamma_{N}$ denote the sides of squares in \mathcal{Q} that do not belong to two adjacent squares in \mathcal{Q}. (See Figure 13.) The choice of d guarantees that for each $n, \gamma_{n} \subset \Omega$, and γ_{n} does not intersect K; for if it did, then it would belong to two adjacent squares in \mathcal{Q}, contradicting our choice of γ_{n}.

[^1]

Figure 13. The union of the γ_{n} 's is in bold-face

Since for any $z \in K$ that is not on the boundary of a square in \mathcal{Q} there exists j so that $z \in Q_{j}$, Cauchy's theorem implies

$$
\frac{1}{2 \pi i} \int_{\partial Q_{m}} \frac{f(\zeta)}{\zeta-z} d \zeta=\left\{\begin{array}{cl}
f(z) & \text { if } m=j \\
0 & \text { if } m \neq j
\end{array}\right.
$$

Thus, for all such z we have

$$
f(z)=\sum_{m=1}^{M} \frac{1}{2 \pi i} \int_{\partial Q_{m}} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

However, if Q_{m} and $Q_{m^{\prime}}$ are adjacent, the integral over their common side is taken once in each direction, and these cancel. This establishes (15) when z is in K and not on the boundary of a square in \mathcal{Q}. Since $\gamma_{n} \subset K^{c}$, continuity guarantees that this relation continues to hold for all $z \in K$, as was to be shown.

The first part of Theorem 5.7 is therefore a consequence of the next lemma.

Lemma 5.9 For any line segment γ entirely contained in $\Omega-K$, there exists a sequence of rational functions with singularities on γ that approximate the integral $\int_{\gamma} f(\zeta) /(\zeta-z) d \zeta$ uniformly on K.

Proof. If $\gamma(t):[0,1] \rightarrow \mathbb{C}$ is a parametrization for γ, then

$$
\int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=\int_{0}^{1} \frac{f(\gamma(t))}{\gamma(t)-z} \gamma^{\prime}(t) d t
$$

Since γ does not intersect K, the integrand $F(z, t)$ in this last integral is jointly continuous on $K \times[0,1]$, and since K is compact, given $\epsilon>0$, there exists $\delta>0$ such that

$$
\sup _{z \in K}\left|F\left(z, t_{1}\right)-F\left(z, t_{2}\right)\right|<\epsilon \quad \text { whenever }\left|t_{1}-t_{2}\right|<\delta \text {. }
$$

Arguing as in the proof of Theorem 5.4, we see that the Riemann sums of the integral $\int_{0}^{1} F(z, t) d t$ approximate it uniformly on K. Since each of these Riemann sums is a rational function with singularities on γ, the lemma is proved.

Finally, the process of pushing the poles to infinity is accomplished by using the fact that K^{c} is connected. Since any rational function whose only singularity is at the point z_{0} is a polynomial in $1 /\left(z-z_{0}\right)$, it suffices to establish the next lemma to complete the proof of Theorem 5.7.

Lemma 5.10 If K^{c} is connected and $z_{0} \notin K$, then the function $1 /\left(z-z_{0}\right)$ can be approximated uniformly on K by polynomials.

Proof. First, we choose a point z_{1} that is outside a large open disc D centered at the origin and which contains K. Then

$$
\frac{1}{z-z_{1}}=-\frac{1}{z_{1}} \frac{1}{1-z / z_{1}}=\sum_{n=1}^{\infty}-\frac{z^{n}}{z_{1}^{n+1}},
$$

where the series converges uniformly for $z \in K$. The partial sums of this series are polynomials that provide a uniform approximation to $1 /\left(z-z_{1}\right)$ on K. In particular, this implies that any power $1 /\left(z-z_{1}\right)^{k}$ can also be approximated uniformly on K by polynomials.

It now suffices to prove that $1 /\left(z-z_{0}\right)$ can be approximated uniformly on K by polynomials in $1 /\left(z-z_{1}\right)$. To do so, we use the fact that K^{c} is connected to travel from z_{0} to the point z_{1}. Let γ be a curve in K^{c} that is parametrized by $\gamma(t)$ on $[0,1]$, and such that $\gamma(0)=z_{0}$ and $\gamma(1)=z_{1}$. If we let $\rho=\frac{1}{2} d(K, \gamma)$, then $\rho>0$ since γ and K are compact. We then choose a sequence of points $\left\{w_{1}, \ldots, w_{\ell}\right\}$ on γ such that $w_{0}=z_{0}, w_{\ell}=z_{1}$, and $\left|w_{j}-w_{j+1}\right|<\rho$ for all $0 \leq j<\ell$.

We claim that if w is a point on γ, and w^{\prime} any other point with $\left|w-w^{\prime}\right|<\rho$, then $1 /(z-w)$ can be approximated uniformly on K by polynomials in $1 /\left(z-w^{\prime}\right)$. To see this, note that

$$
\begin{aligned}
\frac{1}{z-w} & =\frac{1}{z-w^{\prime}} \frac{1}{1-\frac{w-w^{\prime}}{z-w^{\prime}}} \\
& =\sum_{n=0}^{\infty} \frac{\left(w-w^{\prime}\right)^{n}}{\left(z-w^{\prime}\right)^{n+1}}
\end{aligned}
$$

and since the sum converges uniformly for $z \in K$, the approximation by partial sums proves our claim.

This result allows us to travel from z_{0} to z_{1} through the finite sequence $\left\{w_{j}\right\}$ to find that $1 /\left(z-z_{0}\right)$ can be approximated uniformly on K by polynomials in $1 /\left(z-z_{1}\right)$. This concludes the proof of the lemma, and also that of the theorem.

6 Exercises

1. Prove that

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{4}
$$

These are the Fresnel integrals. Here, \int_{0}^{∞} is interpreted as $\lim _{R \rightarrow \infty} \int_{0}^{R}$.
[Hint: Integrate the function $e^{-z^{2}}$ over the path in Figure 14. Recall that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.]

Figure 14. The contour in Exercise 1
2. Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.
[Hint: The integral equals $\frac{1}{2 i} \int_{-\infty}^{\infty} \frac{e^{i x}-1}{x} d x$. Use the indented semicircle.]
3. Evaluate the integrals

$$
\int_{0}^{\infty} e^{-a x} \cos b x d x \quad \text { and } \quad \int_{0}^{\infty} e^{-a x} \sin b x d x, \quad a>0
$$

by integrating $e^{-A z}, A=\sqrt{a^{2}+b^{2}}$, over an appropriate sector with angle ω, with $\cos \omega=a / A$.

Corollary 2.3 The only automorphisms of the unit disc that fix the origin are the rotations.

Note that by the use of the mappings ψ_{α}, we can see that the group of automorphisms of the disc acts transitively, in the sense that given any pair of points α and β in the disc, there is an automorphism ψ mapping α to β. One such ψ is given by $\psi=\psi_{\beta} \circ \psi_{\alpha}$.

The explicit formulas for the automorphisms of \mathbb{D} give a good description of the group $\operatorname{Aut}(\mathbb{D})$. In fact, this group of automorphisms is "almost" isomorphic to a group of 2×2 matrices with complex entries often denoted by $\mathrm{SU}(1,1)$. This group consists of all 2×2 matrices that preserve the hermitian form on $\mathbb{C}^{2} \times \mathbb{C}^{2}$ defined by

$$
\langle Z, W\rangle=z_{1} \bar{w}_{1}-z_{2} \bar{w}_{2},
$$

where $Z=\left(z_{1}, z_{2}\right)$ and $W=\left(w_{1}, w_{2}\right)$. For more information about this subject, we refer the reader to Problem 4.

2.2 Automorphisms of the upper half-plane

Our knowledge of the automorphisms of \mathbb{D} together with the conformal map $F: \mathbb{H} \rightarrow \mathbb{D}$ found in Section 1.1 allow us to determine the group of automorphisms of \mathbb{H} which we denote by $\operatorname{Aut}(\mathbb{H})$.

Consider the map

$$
\Gamma: \operatorname{Aut}(\mathbb{D}) \rightarrow \operatorname{Aut}(\mathbb{H})
$$

given by "conjugation by F ":

$$
\Gamma(\varphi)=F^{-1} \circ \varphi \circ F .
$$

It is clear that $\Gamma(\varphi)$ is an automorphism of \mathbb{H} whenever φ is an automorphism of \mathbb{D}, and Γ is a bijection whose inverse is given by $\Gamma^{-1}(\psi)=$ $F \circ \psi \circ F^{-1}$. In fact, we prove more, namely that Γ preserves the operations on the corresponding groups of automorphisms. Indeed, suppose that $\varphi_{1}, \varphi_{2} \in \operatorname{Aut}(\mathbb{D})$. Since $F \circ F^{-1}$ is the identity on \mathbb{D} we find that

$$
\begin{aligned}
\Gamma\left(\varphi_{1} \circ \varphi_{2}\right) & =F^{-1} \circ \varphi_{1} \circ \varphi_{2} \circ F \\
& =F^{-1} \circ \varphi_{1} \circ F \circ F^{-1} \circ \varphi_{2} \circ F \\
& =\Gamma\left(\varphi_{1}\right) \circ \Gamma\left(\varphi_{2}\right) .
\end{aligned}
$$

The conclusion is that the two groups $\operatorname{Aut}(\mathbb{D})$ and $\operatorname{Aut}(\mathbb{H})$ are the same, since Γ defines an isomorphism between them. We are still left with the
task of giving a description of elements of $\operatorname{Aut}(\mathbb{H})$. A series of calculations, which consist of pulling back the automorphisms of the disc to the upper half-plane via F, can be used to verify that $\operatorname{Aut}(\mathbb{H})$ consists of all maps

$$
z \mapsto \frac{a z+b}{c z+d},
$$

where a, b, c, and d are real numbers with $a d-b c=1$. Again, a matrix group is lurking in the background. Let $\mathrm{SL}_{2}(\mathbb{R})$ denote the group of all 2×2 matrices with real entries and determinant 1 , namely

$$
\mathrm{SL}_{2}(\mathbb{R})=\left\{M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \quad a, b, c, d \in \mathbb{R} \text { and } \operatorname{det}(M)=a d-b c=1\right\}
$$

This group is called the special linear group.
Given a matrix $M \in \mathrm{SL}_{2}(\mathbb{R})$ we define the mapping f_{M} by

$$
f_{M}(z)=\frac{a z+b}{c z+d} .
$$

Theorem 2.4 Every automorphism of \mathbb{H} takes the form f_{M} for some $M \in \mathrm{SL}_{2}(\mathbb{R})$. Conversely, every map of this form is an automorphism of \mathbb{H}.

The proof consists of a sequence of steps. For brevity, we denote the group $\mathrm{SL}_{2}(\mathbb{R})$ by \mathcal{G}.

Step 1. If $M \in \mathcal{G}$, then f_{M} maps \mathbb{H} to itself. This is clear from the observation that
(4) $\operatorname{Im}\left(f_{M}(z)\right)=\frac{(a d-b c) \operatorname{Im}(z)}{|c z+d|^{2}}=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}>0 \quad$ whenever $z \in \mathbb{H}$.

Step 2. If M and M^{\prime} are two matrices in \mathcal{G}, then $f_{M} \circ f_{M^{\prime}}=f_{M M^{\prime}}$. This follows from a straightforward calculation, which we omit. As a consequence, we can prove the first half of the theorem. Each f_{M} is an automorphism because it has a holomorphic inverse $\left(f_{M}\right)^{-1}$, which is simply $f_{M^{-1}}$. Indeed, if I is the identity matrix, then

$$
\left(f_{M} \circ f_{M^{-1}}\right)(z)=f_{M M^{-1}}(z)=f_{I}(z)=z .
$$

Step 3. Given any two points z and w in \mathbb{H}, there exists $M \in \mathcal{G}$ such that $f_{M}(z)=w$, and therefore \mathcal{G} acts transitively on \mathbb{H}. To prove this,
it suffices to show that we can map any $z \in \mathbb{H}$ to i. Setting $d=0$ in equation (4) above gives

$$
\operatorname{Im}\left(f_{M}(z)\right)=\frac{\operatorname{Im}(z)}{|c z|^{2}}
$$

and we may choose a real number c so that $\operatorname{Im}\left(f_{M}(z)\right)=1$. Next we choose the matrix

$$
M_{1}=\left(\begin{array}{cc}
0 & -c^{-1} \\
c & 0
\end{array}\right)
$$

so that $f_{M_{1}}(z)$ has imaginary part equal to 1 . Then we translate by a matrix of the form

$$
M_{2}=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \quad \text { with } b \in \mathbb{R}
$$

to bring $f_{M_{1}}(z)$ to i. Finally, the map f_{M} with $M=M_{2} M_{1}$ takes z to i.
Step 4. If θ is real, then the matrix

$$
M_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

belongs to \mathcal{G}, and if $F: \mathbb{H} \rightarrow \mathbb{D}$ denotes the standard conformal map, then $F \circ f_{M_{\theta}} \circ F^{-1}$ corresponds to the rotation of angle -2θ in the disc. This follows from the fact that $F \circ f_{M_{\theta}}=e^{-2 i \theta} F(z)$, which is easily verified.

Step 5 . We can now complete the proof of the theorem. We suppose f is an automorphism of \mathbb{H} with $f(\beta)=i$, and consider a matrix $N \in \mathcal{G}$ such that $f_{N}(i)=\beta$. Then $g=f \circ f_{N}$ satisfies $g(i)=i$, and therefore $F \circ g \circ F^{-1}$ is an automorphism of the disc that fixes the origin. So $F \circ g \circ F^{-1}$ is a rotation, and by Step 4 there exists $\theta \in \mathbb{R}$ such that

$$
F \circ g \circ F^{-1}=F \circ f_{M_{\theta}} \circ F^{-1} .
$$

Hence $g=f_{M_{\theta}}$, and we conclude that $f=f_{M_{\theta} N^{-1}}$ which is of the desired form.

A final observation is that the group $\operatorname{Aut}(\mathbb{H})$ is not quite isomorphic with $\mathrm{SL}_{2}(\mathbb{R})$. The reason for this is because the two matrices M and $-M$ give rise to the same function $f_{M}=f_{-M}$. Therefore, if we identify the two matrices M and $-M$, then we obtain a new group $\mathrm{PSL}_{2}(\mathbb{R})$ called the projective special linear group; this group is isomorphic with Aut(\mathbb{H}).

[^0]: ${ }^{4}$ A proof may be found in Section 1.8, Chapter 5, of Book I.

[^1]: ${ }^{5}$ These singularities are points where the function is not holomorphic, and are "poles", as defined in the next chapter.

