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Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holo-
morphic function in Ω+ that extends continuously to I and such that f
is real-valued on I. Then there exists a function F holomorphic in all of
Ω such that F = f on Ω+.

Proof. The idea is simply to define F (z) for z ∈ Ω− by

F (z) = f(z).

To prove that F is holomorphic in Ω− we note that if z, z0 ∈ Ω−, then
z, z0 ∈ Ω+ and hence, the power series expansion of f near z0 gives

f(z) =
∑

an(z − z0)n.

As a consequence we see that

F (z) =
∑

an(z − z0)n

and F is holomorphic in Ω−. Since f is real valued on I we have f(x) =
f(x) whenever x ∈ I and hence F extends continuously up to I. The
proof is complete once we invoke the symmetry principle.

5.5 Runge’s approximation theorem

We know by Weierstrass’s theorem that any continuous function on a
compact interval can be approximated uniformly by polynomials.4 With
this result in mind, one may inquire about similar approximations in
complex analysis. More precisely, we ask the following question: what
conditions on a compact set K ⊂ C guarantee that any function holo-
morphic in a neighborhood of this set can be approximated uniformly by
polynomials on K?

An example of this is provided by power series expansions. We recall
that if f is a holomorphic function in a disc D, then it has a power series
expansion f(z) =

∑∞
n=0 anz

n that converges uniformly on every compact
set K ⊂ D. By taking partial sums of this series, we conclude that f can
be approximated uniformly by polynomials on any compact subset of D.

In general, however, some condition on K must be imposed, as we see
by considering the function f(z) = 1/z on the unit circle K = C. Indeed,
recall that

∫
C
f(z) dz = 2πi, and if p is any polynomial, then Cauchy’s

theorem implies
∫

C
p(z) dz = 0, and this quickly leads to a contradiction.

4A proof may be found in Section 1.8, Chapter 5, of Book I.
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A restriction on K that guarantees the approximation pertains to the
topology of its complement: Kc must be connected. In fact, a slight mod-
ification of the above example when f(z) = 1/z proves that this condition
on K is also necessary; see Problem 4.

Conversely, uniform approximations exist when Kc is connected, and
this result follows from a theorem of Runge which states that for any K
a uniform approximation exists by rational functions with “singularities”
in the complement of K.5 This result is remarkable since rational func-
tions are globally defined, while f is given only in a neighborhood of K.
In particular, f could be defined independently on different components
of K, making the conclusion of the theorem even more striking.

Theorem 5.7 Any function holomorphic in a neighborhood of a compact
set K can be approximated uniformly on K by rational functions whose
singularities are in Kc.

If Kc is connected, any function holomorphic in a neighborhood of K
can be approximated uniformly on K by polynomials.

We shall see how the second part of the theorem follows from the
first: when Kc is connected, one can “push” the singularities to infinity
thereby transforming the rational functions into polynomials.

The key to the theorem lies in an integral representation formula that is
a simple consequence of the Cauchy integral formula applied to a square.

Lemma 5.8 Suppose f is holomorphic in an open set Ω, and K ⊂ Ω is
compact. Then, there exists finitely many segments γ1, . . . , γN in Ω −K
such that

(15) f(z) =
N∑

n=1

1
2πi

∫
γn

f(ζ)
ζ − z

dζ for all z ∈ K.

Proof. Let d = c · d(K,Ωc), where c is any constant < 1/
√

2, and
consider a grid formed by (solid) squares with sides parallel to the axis
and of length d.

We let Q = {Q1, . . . , QM} denote the finite collection of squares in
this grid that intersect K, with the boundary of each square given the
positive orientation. (We denote by ∂Qm the boundary of the square
Qm.) Finally, we let γ1, . . . , γN denote the sides of squares in Q that do
not belong to two adjacent squares in Q. (See Figure 13.) The choice of
d guarantees that for each n, γn ⊂ Ω, and γn does not intersect K; for if
it did, then it would belong to two adjacent squares in Q, contradicting
our choice of γn.

5These singularities are points where the function is not holomorphic, and are “poles”,
as defined in the next chapter.
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Figure 13. The union of the γn’s is in bold-face

Since for any z ∈ K that is not on the boundary of a square in Q there
exists j so that z ∈ Qj, Cauchy’s theorem implies

1
2πi

∫
∂Qm

f(ζ)
ζ − z

dζ =
{
f(z) if m = j,

0 if m �= j.

Thus, for all such z we have

f(z) =
M∑

m=1

1
2πi

∫
∂Qm

f(ζ)
ζ − z

dζ.

However, ifQm andQm′ are adjacent, the integral over their common side
is taken once in each direction, and these cancel. This establishes (15)
when z is in K and not on the boundary of a square in Q. Since γn ⊂ Kc,
continuity guarantees that this relation continues to hold for all z ∈ K,
as was to be shown.

The first part of Theorem 5.7 is therefore a consequence of the next
lemma.

Lemma 5.9 For any line segment γ entirely contained in Ω −K, there
exists a sequence of rational functions with singularities on γ that ap-
proximate the integral

∫
γ
f(ζ)/(ζ − z) dζ uniformly on K.

Proof. If γ(t) : [0, 1] → C is a parametrization for γ, then∫
γ

f(ζ)
ζ − z

dζ =
∫ 1

0

f(γ(t))
γ(t) − z

γ′(t) dt.
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Since γ does not intersect K, the integrand F (z, t) in this last integral
is jointly continuous on K × [0, 1], and since K is compact, given ε > 0,
there exists δ > 0 such that

sup
z∈K

|F (z, t1) − F (z, t2)| < ε whenever |t1 − t2| < δ.

Arguing as in the proof of Theorem 5.4, we see that the Riemann sums
of the integral

∫ 1

0
F (z, t) dt approximate it uniformly on K. Since each

of these Riemann sums is a rational function with singularities on γ, the
lemma is proved.

Finally, the process of pushing the poles to infinity is accomplished by
using the fact that Kc is connected. Since any rational function whose
only singularity is at the point z0 is a polynomial in 1/(z − z0), it suffices
to establish the next lemma to complete the proof of Theorem 5.7.

Lemma 5.10 If Kc is connected and z0 /∈ K, then the function
1/(z − z0) can be approximated uniformly on K by polynomials.

Proof. First, we choose a point z1 that is outside a large open disc D
centered at the origin and which contains K. Then

1
z − z1

= − 1
z1

1
1 − z/z1

=
∞∑

n=1

− zn

zn+1
1

,

where the series converges uniformly for z ∈ K. The partial sums of
this series are polynomials that provide a uniform approximation to
1/(z − z1) on K. In particular, this implies that any power 1/(z − z1)k

can also be approximated uniformly on K by polynomials.
It now suffices to prove that 1/(z − z0) can be approximated uniformly

on K by polynomials in 1/(z − z1). To do so, we use the fact that Kc is
connected to travel from z0 to the point z1. Let γ be a curve in Kc that
is parametrized by γ(t) on [0, 1], and such that γ(0) = z0 and γ(1) = z1.
If we let ρ = 1

2d(K, γ), then ρ > 0 since γ and K are compact. We then
choose a sequence of points {w1, . . . , w} on γ such that w0 = z0, w = z1,
and |wj − wj+1| < ρ for all 0 ≤ j < �.

We claim that if w is a point on γ, and w′ any other point with
|w − w′| < ρ, then 1/(z − w) can be approximated uniformly on K by
polynomials in 1/(z − w′). To see this, note that

1
z − w

=
1

z − w′
1

1 − w−w′
z−w′

=
∞∑

n=0

(w − w′)n

(z − w′)n+1
,
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and since the sum converges uniformly for z ∈ K, the approximation by
partial sums proves our claim.

This result allows us to travel from z0 to z1 through the finite sequence
{wj} to find that 1/(z − z0) can be approximated uniformly on K by
polynomials in 1/(z − z1). This concludes the proof of the lemma, and
also that of the theorem.

6 Exercises

1. Prove that ∫ ∞

0

sin(x2) dx =

∫ ∞

0

cos(x2) dx =

√
2π

4
.

These are the Fresnel integrals. Here,
∫∞
0

is interpreted as limR→∞
∫ R

0
.

[Hint: Integrate the function e−z2
over the path in Figure 14. Recall that∫∞

−∞ e−x2
dx =

√
π.]

R

Rei π
4

0

Figure 14. The contour in Exercise 1

2. Show that

∫ ∞

0

sin x

x
dx =

π

2
.

[Hint: The integral equals 1
2i

∫∞
−∞

eix−1
x

dx. Use the indented semicircle.]

3. Evaluate the integrals∫ ∞

0

e−ax cos bx dx and

∫ ∞

0

e−ax sin bx dx , a > 0

by integrating e−Az, A =
√
a2 + b2, over an appropriate sector with angle ω, with

cosω = a/A.
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Corollary 2.3 The only automorphisms of the unit disc that fix the ori-
gin are the rotations.

Note that by the use of the mappings ψα, we can see that the group of
automorphisms of the disc acts transitively, in the sense that given any
pair of points α and β in the disc, there is an automorphism ψ mapping
α to β. One such ψ is given by ψ = ψβ ◦ ψα.

The explicit formulas for the automorphisms of D give a good de-
scription of the group Aut(D). In fact, this group of automorphisms is
“almost” isomorphic to a group of 2 × 2 matrices with complex entries
often denoted by SU(1, 1). This group consists of all 2 × 2 matrices that
preserve the hermitian form on C2 × C2 defined by

〈Z,W 〉 = z1w1 − z2w2,

where Z = (z1, z2) and W = (w1, w2). For more information about this
subject, we refer the reader to Problem 4.

2.2 Automorphisms of the upper half-plane

Our knowledge of the automorphisms of D together with the conformal
map F : H → D found in Section 1.1 allow us to determine the group of
automorphisms of H which we denote by Aut(H).

Consider the map

Γ : Aut(D) → Aut(H)

given by “conjugation by F”:

Γ(ϕ) = F−1 ◦ ϕ ◦ F.

It is clear that Γ(ϕ) is an automorphism of H whenever ϕ is an auto-
morphism of D, and Γ is a bijection whose inverse is given by Γ−1(ψ) =
F ◦ ψ ◦ F−1. In fact, we prove more, namely that Γ preserves the oper-
ations on the corresponding groups of automorphisms. Indeed, suppose
that ϕ1, ϕ2 ∈ Aut(D). Since F ◦ F−1 is the identity on D we find that

Γ(ϕ1 ◦ ϕ2) = F−1 ◦ ϕ1 ◦ ϕ2 ◦ F
= F−1 ◦ ϕ1 ◦ F ◦ F−1 ◦ ϕ2 ◦ F
= Γ(ϕ1) ◦ Γ(ϕ2).

The conclusion is that the two groups Aut(D) and Aut(H) are the same,
since Γ defines an isomorphism between them. We are still left with the
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task of giving a description of elements of Aut(H). A series of calcula-
tions, which consist of pulling back the automorphisms of the disc to the
upper half-plane via F , can be used to verify that Aut(H) consists of all
maps

z 	→ az + b

cz + d
,

where a, b, c, and d are real numbers with ad− bc = 1. Again, a matrix
group is lurking in the background. Let SL2(R) denote the group of all
2 × 2 matrices with real entries and determinant 1, namely

SL2(R) =
{
M =

(
a b
c d

)
: a, b, c, d ∈ R and det(M ) = ad− bc=1

}
.

This group is called the special linear group.
Given a matrix M ∈ SL2(R) we define the mapping fM by

fM(z) =
az + b

cz + d
.

Theorem 2.4 Every automorphism of H takes the form fM for some
M ∈ SL2(R). Conversely, every map of this form is an automorphism of
H.

The proof consists of a sequence of steps. For brevity, we denote the
group SL2(R) by G.

Step 1. If M ∈ G, then fM maps H to itself. This is clear from the
observation that

(4) Im(fM(z)) =
(ad− bc)Im(z)

|cz + d|2 =
Im(z)

|cz + d|2 > 0 whenever z ∈ H.

Step 2. If M and M ′ are two matrices in G, then fM ◦ fM ′ = fMM ′ .
This follows from a straightforward calculation, which we omit. As a
consequence, we can prove the first half of the theorem. Each fM is an
automorphism because it has a holomorphic inverse (fM)−1, which is
simply fM−1 . Indeed, if I is the identity matrix, then

(fM ◦ fM−1)(z) = fMM−1(z) = fI(z) = z.

Step 3. Given any two points z and w in H, there exists M ∈ G such
that fM (z) = w, and therefore G acts transitively on H. To prove this,



2. The Schwarz lemma; automorphisms of the disc and upper half-plane 223

it suffices to show that we can map any z ∈ H to i. Setting d = 0 in
equation (4) above gives

Im(fM (z)) =
Im(z)
|cz|2

and we may choose a real number c so that Im(fM (z)) = 1. Next we
choose the matrix

M1 =
(

0 −c−1

c 0

)
so that fM1(z) has imaginary part equal to 1. Then we translate by a
matrix of the form

M2 =
(

1 b
0 1

)
with b ∈ R,

to bring fM1(z) to i. Finally, the map fM with M = M2M1 takes z to i.
Step 4. If θ is real, then the matrix

Mθ =
(

cos θ − sin θ
sin θ cos θ

)
belongs to G, and if F : H → D denotes the standard conformal map, then
F ◦ fMθ

◦ F−1 corresponds to the rotation of angle −2θ in the disc. This
follows from the fact that F ◦ fMθ

= e−2iθF (z), which is easily verified.
Step 5. We can now complete the proof of the theorem. We suppose

f is an automorphism of H with f(β) = i, and consider a matrix N ∈ G
such that fN (i) = β. Then g = f ◦ fN satisfies g(i) = i, and therefore
F ◦ g ◦ F−1 is an automorphism of the disc that fixes the origin. So
F ◦ g ◦ F−1 is a rotation, and by Step 4 there exists θ ∈ R such that

F ◦ g ◦ F−1 = F ◦ fMθ
◦ F−1.

Hence g = fMθ
, and we conclude that f = fMθN−1 which is of the desired

form.

A final observation is that the group Aut(H) is not quite isomorphic
with SL2(R). The reason for this is because the two matrices M and −M
give rise to the same function fM = f−M . Therefore, if we identify the
two matrices M and −M , then we obtain a new group PSL2(R) called
the projective special linear group; this group is isomorphic with
Aut(H).




