Final Prep: Early material

1. What is an arithmetic sequence?
 A sequence defined by the rule \(a_{n+1} = a_n + d \)
 for some \(d \in \mathbb{R} \).

2. What is a geometric sequence?
 A sequence defined by the rule \(a_{n+1} = ra_n \).

3. What’s the 170\(^{th} \) term of 3, 5, 7, 9, ...
 \[3 + 169(2) = 3 + 338 = 341 \]

4. What’s the 214\(^{th} \) term of -5, 15, -45, 135, ...
 \((-5)(-3)^{213}\)

5. For which kinds of sequences do you know how
 to find the sum of the first \(k \) terms?
 arithmetic sequences

6. For which kinds of sequences have we learned how
 to find the sum of all the terms?
 geometric sequences where \(-1 < r < 1\).

7. What’s the sum of the first 40 terms of -7, -4, -12, ...
 \[\frac{40}{2} [a_1 + a_{40}] = 20 [-7 + (-7 + 39(3))] = 20 [-7 - 7 + 117] \]
 \[= 20[103] = 2060 \]

8. What’s \(\sum_{i=1}^{\infty} \frac{7}{5^i} \)?
 \[\frac{7}{5} = \frac{7 \cdot 5}{4 \cdot 5} = \frac{7}{4} \]
9. Find $\sum_{i=1}^{3} (1 - i^2)\\ \quad \quad (1-1^2) + (1-2^2) + (1-3^2) = 0 - 3 - 8 = -11$

10. Find $\sum_{i=1}^{30} 5\\ \quad \quad 5(30) = 150$

11. How many ways are there to order a set of 48 objects?\\ $48!$

12. How many ways can you choose and then order 17 objects from a set of 58 objects?\\ $\frac{58!}{(58-17)!} = \frac{58!}{41!}$

13. How many subsets of a set of 98 objects contain exactly 23 objects?\\ $\binom{98}{23}$

14. What does "options multiply" mean? To find the number of ways a sequence of decisions can be made, count how many ways each of those decisions can be made, and then multiply each of those numbers.

15. Write $\binom{7}{4}$ as a natural number in standard form.\\ $\frac{7!}{4!3!} = \frac{7\cdot6\cdot5\cdot4!}{4!\cdot6} = 7\cdot5 = 35$
16. \(f(x) = x^2 + 2 \), \(g(x) = 3x - 1 \). Find \(f \circ g(x) \) and \(g \circ f(x) \).

\[
\begin{align*}
\quad \; f \circ g(x) &= f(3x-1) = (3x-1)^2 + 2 \\
g \circ f(x) &= g(x^2+2) = 3(x^2+2) - 1
\end{align*}
\]

17. \(f(x) = 2(x-4)^3 + 1 \). Find \(f^{-1}(y) \).

\[
\begin{align*}
y &= 2(x-4)^3 + 1 \\
y - 1 &= 2(x-4)^3 \\
\frac{y - 1}{2} &= (x-4)^3 \\
\frac{\sqrt[3]{y - 1}}{2} &= x - 4
\end{align*}
\]

\[
\begin{align*}
x &= \sqrt[3]{\frac{y - 1}{2}} + 4 \\
f^{-1}(y) &= \sqrt[3]{\frac{y - 1}{2}} + 4
\end{align*}
\]

18. What are the implied domains of the following functions:

- \(f(x) = x \) \quad \text{R}
- \(f(x) = x^2 \) \quad \text{R}
- \(f(x) = x^3 \) \quad \text{R}
- \(f(x) = 4 \) \quad \text{R}
- \(f(x) = \sqrt[3]{x} \) \quad \text{[0, \infty)}
- \(f(x) = \sqrt[3]{x} \) \quad \text{R}
- \(f(x) = \frac{1}{x} \) \quad \text{R - {0}}
- \(f(x) = e^x \) \quad \text{R}
- \(f(x) = \log_e(x) \) \quad \text{(0, \infty)}
19. What’s the implied domain of \(f(x) = \frac{27}{3} x^5 - 3x^2 + 27 \)?

 \(\mathbb{R} \)

20. What’s the implied domain of \(r(x) = \frac{3x - 7}{x^2 - 4} \) ?

 \(x^2 - 4 \neq 0 \)
 \(x^2 \neq 4 \)
 \(x \neq 2 \) or \(-2 \)

 \(\mathbb{R} - \{ -2, 2 \} \)

21. What’s the implied domain of \(g(x) = \frac{1}{e^x} \) ?

 \(\mathbb{R} \)

22. What’s the implied domain of \(\sqrt[3]{7 - x} \) ?

 \(7 - x \geq 0 \)
 \(7 \geq x \)

 \((-\infty, 7] \)

23. What’s the implied domain of \(5x^2 - \sqrt[3]{2x - 3} \) ?

 \(\mathbb{R} \)

24. What’s the implied domain of \(2x - \log_e (3x + 4) \) ?

 \(3x + 4 > 0 \)
 \(3x > 4 \)
 \(x > -\frac{4}{3} \)

 \(\left(-\frac{4}{3}, \infty \right) \)

25. What’s the implied domain of \(e^{\frac{3\sqrt{5x - 2}}{2}} + 3x^2 - 5 \) ?

 \(\mathbb{R} \)