2.2-1: The limit should be 3, since as \(n \) gets very large, \(3n^2 - 2 \) is practically the same as \(3n^2 \) while \(n^2 + 1 \) is practically the same as \(n^2 \).

Proof. Let \(\epsilon > 0 \). Choose \(N \) to be an integer larger than \(\sqrt{5/\epsilon} \). Then, for \(n > N \), we have

\[
\left| \frac{3n^2 - 2}{n^2 + 1} - 3 \right| = \left| \frac{-5}{n^2 + 1} \right| < \frac{5}{n^2} \leq \frac{5}{N^2} < \frac{5}{\epsilon} = \epsilon,
\]

so the sequence converges to 3.

\[\square\]

2.2-3: The limit should be 0, since \(\sqrt{n} \) grows without bound.

Proof. Let \(\epsilon > 0 \). Choose \(N \) to be an integer larger than \(1/\epsilon^2 \) so that \(\sqrt{N} > 1/\epsilon \). Then, for \(n > N \), we have

\[
\left| \frac{1}{\sqrt{n}} - 0 \right| = \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} \leq \frac{1}{1/\epsilon} = \epsilon,
\]

so the sequence converges to 0.

\[\square\]

2.2-8: Suppose that \(a_n \) converges to \(a \). Then, for any \(\epsilon' > 0 \), there exists an integer \(N' \) such that, for \(n > N' \), the distance \(|a_n - a| \) is less than \(\epsilon' \).

We want to prove that \(a_n^3 \) converges to \(a^3 \), i.e., that we can make \(|a_n^3 - a^3| \) arbitrarily small for large enough \(n \). First we factor and use the triangle inequality to see that

\[
|a_n^3 - a^3| = |a_n - a| \cdot |a_n^2 + a_n a + a^2| \leq |a_n - a| \cdot (|a_n^2| + |a_n a| + |a^2|).
\]

Next, since \(|a| < 2|a| \) and since \(a_n \to a \), we can find an integer \(N_1 \) such that, for any \(n > N_1 \), we have that \(|a_n| < 2|a| \). This implies that, for \(n > N_1 \), the term \(|a_n^2| + |a_n a| + |a^2| \) is less than \(5|a^2| \).

Let \(\epsilon > 0 \) be any number. From the first paragraph, we can choose \(N' \) such that, for \(n > N' \), we have \(|a_n - a| < \epsilon' = \epsilon/5|a^2| \). Let \(N \) be the maximum of \(N_1 \) and \(N' \). Then, for any \(n > N \), we can say that

\[
|a_n^2 - a^2| \leq |a_n - a| \cdot (|a_n^2| + |a_n a| + |a^2|) < \epsilon' \cdot 5|a^2| = \epsilon,
\]

which proves that \(a_n^3 \to a^3 \).

\[\square\]

2.2-10: Let \(a_n = (-1)^n \). This sequence does not converge: for example, let’s pick \(\epsilon = 1/2 \) and let’s take \(a \) to be a potential limit of the sequence and \(N \) any natural number.

On the one hand, there exists an even integer \(n \) which is larger than \(N \). For this \(n \), we have \(|a_n - a| = |1 - a| \). This difference being less than \(\epsilon = 1/2 \) is equivalent to our potential limit \(a \) being between \(1/2 \) and \(3/2 \).

On the other hand, there exists also an odd integer \(m \) which is larger than \(N \). For this \(m \), we have \(|a_m - a| = |-1 - a| \). This difference being less than \(\epsilon = 1/2 \) is equivalent to our potential limit \(a \) being between \(-3/2 \) and \(-1/2 \).

Since there is no \(a \) that satisfies both inequalities, the sequence cannot converge. However, the sequence \(|a_n| = |(-1)^n| = 1 \) is a constant sequence, which converges to 1.

2.2-15: A sequence of this type cannot possibly converge to 0. We proceed by contradiction. Assume that \(a_n \) is a sequence that converges to 0 and also that every millionth term of \(a_n \) is larger than some fixed \(\epsilon \). Since it converges to 0, there exists an \(N \) such that, for \(n > N \), the difference \(|a_n - 0| \) is smaller than \(\epsilon \). However, since every millionth term is larger than \(\epsilon \), there is an \(n \) which is simultaneously larger than \(N \) and also one of the millionth indeces. For this \(n \), we have the contradictory situation that

\[
|a_n| < \epsilon \quad \text{and} \quad a_n > \epsilon.
\]

We conclude that such a sequence cannot converge to 0.
2.3-1: We know that the limits of $1/n$, $1/n^2$, and $1/n^3$ are all 0. Therefore, we know that
\[
\lim \left(2 - \frac{1}{n^2} + \frac{1}{n^3} \right) = \lim 2 - \lim \frac{1}{n^2} + \lim \frac{1}{n^3} = 2 - 0 + 0 = 2,
\]
and
\[
\lim \left(3 + \frac{1}{n} + \frac{6}{n^3} \right) = \lim 3 + \lim \frac{1}{n} + 6 \lim \frac{1}{n^3} = 3 + 0 + 6 \cdot 0 = 3,
\]
from which we conclude that
\[
\lim \left(\frac{2n^2 - n + 1}{3n^3 + n^2 + 6} \right) = \lim \left(\frac{2 - \frac{1}{n^2} + \frac{1}{n^3}}{3 + \frac{1}{n} + \frac{6}{n^3}} \right) = \lim \left(\frac{2 - \frac{1}{n^2} + \frac{1}{n^3}}{3 + \frac{1}{n} + \frac{6}{n^3}} \right) = \frac{2}{3}.
\]

2.3-3: From Example 2.3.5, if $|a| < 1$, we know that $\lim a^n = 0$. Applying this to $a = 1/2$, we get that
\[
0 = \lim (1/2)^n = \lim 2^{-n}.
\]
This gives us the following:
\[
\lim \left(\frac{2^n}{2^n + 1} \right) = \lim \left(\frac{1}{1 + 2^{-n}} \right) = \frac{\lim 1}{\lim (1 + 2^{-n})} = \frac{1}{1 + 0} = 1.
\]

2.3-6: (\Rightarrow): Assume that $\{a_n\}$ is bounded above and below, i.e., that there exist real numbers P and Q such that $P < a_n < Q$ for all n. We prove that $|a_n|$ is bounded above in two different ways.

pf 1: Let $M = \max(|P|, |Q|)$. Then $-M \leq P \leq M$ and $-M \leq Q \leq M$. Since $P < a_n$ and $-M \leq P$, we see that $-M < a_n$. Also, since $a_n < Q$ and $Q \leq M$, we see that $a_n < M$. Therefore, $-M < a_n < M$, which is equivalent to $|a_n| < M$ for all n, i.e., $|a_n|$ is bounded above.

pf 2: Our inequality $P < a_n < Q$ is equivalent to $0 < a_n - P < Q - P$. Taking absolute values, we get $0 < |a_n - P| < |Q - P|$. Therefore,
\[
|a_n| = |a_n - P + P| \leq |a_n - P| + |P| < |Q - P| + |P|,
\]
which proves that $|a_n|$ is bounded above.

(\Leftarrow): Assume that $|a_n|$ is bounded above, i.e., that there exists a positive real number M such that $|a_n| < M$. This inequality is equivalent to the inequality $-M < a_n < M$, so a_n is bounded both above and below.