INSTRUCTIONS: Complete the following problems on separate paper, using this page as a cover sheet. Justify your answers and show the relevant work. Each student needs to turn in their own assignment; however, you may work in groups, in which case you should list your collaborators below.

COLLABORATORS:

1. For each of the following matrix equations below, answer the following questions.

i) Use row reduction to find the solution set, i.e., the set of all possible x.

ii) Rewrite the matrix equation as a system of linear equations. Interpret the solution from (a) in terms of this system. Draw a sketch that illustrates the solution to the system.

iii) Rewrite the matrix system as an equation for solving a linear combination problem. Interpret the solution from (a) in terms of linear combinations. Draw a sketch that illustrates the linear combination.

(a) \[
\begin{bmatrix}
-2 & 3 \\
5 & -4
\end{bmatrix} x = \begin{bmatrix} 6 \\ 20 \end{bmatrix}
\]

(b) \[
\begin{bmatrix}
3 & 1 \\
2 & -1
\end{bmatrix} x = \begin{bmatrix} 10 \\ 5 \end{bmatrix}
\]

(c) \[
\begin{bmatrix}
-1 & 4 \\
-2 & 1
\end{bmatrix} x = \begin{bmatrix} 5 \\ -4 \end{bmatrix}
\]

(d) \[
\begin{bmatrix}
-1 & 3 \\
2 & -6
\end{bmatrix} x = \begin{bmatrix} -4 \\ 4 \end{bmatrix}
\]

(e) \[
\begin{bmatrix}
-5 & 10 \\
-2 & 4
\end{bmatrix} x = \begin{bmatrix} 30 \\ 12 \end{bmatrix}
\]

(f) \[
\begin{bmatrix}
1 & 1 \\
-1 & 2 \\
3 & 5
\end{bmatrix} x = \begin{bmatrix} 2 \\ -5 \\ 4 \end{bmatrix}
\]

(g) \[
\begin{bmatrix}
1 & 1 \\
-1 & 2 \\
3 & 5
\end{bmatrix} x = \begin{bmatrix} 4 \\ 3 \\ -15 \end{bmatrix}
\]

2. Now consider an arbitrary 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

(a) Under what conditions on A will the matrix equation $Ax = y$ always have a unique solution? [Hint: think of interpreting the matrix equation as a system of equations or a linear combination problem.]

(b) Under what conditions on A and y will the matrix equation have no solution?

(c) Under what conditions on A and y will the matrix equation have infinitely many solutions?