Tangent Planes. The tangent plane to a function \(f(x, y) \) at the point \(a = (x_0, y_0) \) is
\[
z = f(a) + \nabla f(a) \cdot (x - x_0, y - y_0);
\]
if \(\nabla f(a) = (A, B) \), then the normal vector to the tangent plane is \(\mathbf{n} = (A, B, -1) \).

Chain Rule. If \(f \) is a function of \((x, y, z)\) and each of \(x, y, z\) is a function of \((s, t)\), then
\[
\frac{df}{ds} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial s}
\]
and
\[
\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}
\]

Local Extrema. A critical point of a function \(f(x, y) \) occurs when \(\nabla f = (0, 0) \). Compute \(D = f_{xx} f_{yy} - f_{xy}^2 \).
- If \(D < 0 \), then the critical point is a saddle point.
- If \(D > 0 \) and \(f_{xx} < 0 \), then the critical point is a local maximum.
- If \(D > 0 \) and \(f_{xx} > 0 \), then the critical point is a local minimum.
- If \(D = 0 \), then the analysis is inconclusive.

Lagrange Multipliers. The extrema of a function \(f \) subject to a constraint function \(g = 0 \) occurs when
\[
\nabla f = \lambda \nabla g.
\]

Double Integrals. The integral of a function \(f(x, y) \) over a region \(R \) in the \(xy \)-plane is
\[
\iint_R f(x, y) \, dA.
\]
In Cartesian coordinates, \(dA = dx \, dy \). In polar coordinates, \(dA = r \, dr \, d\theta \).

Triple Integrals. The integral of a function \(f(x, y, z) \) over a solid \(R \) in \(\mathbb{R}^3 \) is
\[
\iiint_R f(x, y, z) \, dV.
\]
In Cartesian coordinates, \(dV = dx \, dy \, dz \). In cylindrical coordinates, \(dV = r \, dr \, d\theta \, dz \). In spherical coordinates, \(dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi \).

Cartesian/cylindrical/spherical coordinates. The equations relating the various coordinate systems:
\[
\begin{align*}
x &= r \cos \theta \\
y &= r \sin \theta \\
y &= x \tan \theta \\
z &= \rho \cos \phi \\
r &= \rho \sin \phi
\end{align*}
\]

Change of Variables. Suppose that \(f \) is a function of \((x, y)\) and that \(x \) and \(y \) are functions of \((u, v)\), i.e., that \((x, y) = g(u, v)\) for a transformation \(g : \mathbb{R}^2 \to \mathbb{R}^2 \). The Jacobian of the change of variables is
\[
J(u, v) = \begin{bmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{bmatrix}.
\]
For a region \(R \) in the \(xy \)-plane, and its corresponding region \(S = g^{-1}(R) \) in the \(uv \)-plane,
\[
\iint_R f(x, y) \, dx \, dy = \iint_S f(x(u, v), y(u, v)) |J(u, v)| \, du \, dv.
\]

Mass and Center of Mass. If \(R \) is a region in the \(xy \)-plane with a density \(\delta(x, y) \), the mass of the region is
\[
m = \iint_R \delta(x, y) \, dA,
\]
and the center of mass is given by
\[
\bar{x} = \frac{1}{m} \iint_R x \delta(x, y) \, dA \quad \text{and} \quad \bar{y} = \frac{1}{m} \iint_R y \delta(x, y) \, dA.
\]