Unit Circle. Cooordinate System Identities.

\[x = r \cos \theta = \rho \sin \phi \cos \theta \]
\[y = r \sin \theta = \rho \sin \phi \sin \theta \]
\[z = x \tan \theta \]
\[r = \rho \sin \phi \]
\[r^2 = x^2 + y^2 \]
\[\rho^2 = x^2 + y^2 + z^2 \]

Projections and Angles. For any two vectors \(u \) and \(v \), the projection \(p_v(u) \) of \(u \) onto \(v \) is given by
\[p_v(u) = \left(\frac{u \cdot v}{v \cdot v} \right) v \]
and the angle \(\theta \) between them satisfies
\[\cos \theta = \frac{u \cdot v}{||u|| ||v||} . \]

Notions related to curves. Consider a curve \(r(t) \) in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \).

1. **Arclength.** The arclength of the curve from \(t = a \) to \(t = b \) is given by
\[\int_a^b ||r'(t)|| \, dt. \]

2. **Unit Tangent Vector.** The unit tangent vector \(T \) at any time is given by
\[T = \frac{r'}{||r'||} . \]

3. **Tangential Acceleration.** The tangential component of the acceleration \(a_T \) at any time is given by
\[a_T = \frac{r' \cdot r''}{||r'||} \quad \text{or} \quad a_T = T \cdot r'' . \]

4. **Normal Acceleration.** The normal component of the acceleration \(a_N \) at any time is given by
\[a_N = \frac{||r' \times r'||}{||r'||^3} \quad \text{or} \quad a_N = ||T \times r'|| \quad \text{or} \quad a_N = ||r'' - a_T T|| . \]

5. **Curvature.** The curvature at \(\kappa \) at any time is given by
\[\kappa = \frac{||r' \times r''||}{||r'||^3} \quad \text{or} \quad \kappa = \frac{a_N}{||r'||^2} \quad \text{or} \quad \kappa = \frac{|x'y'' - y'x''|}{[(x')^2 + (y')^2]^{3/2}} . \]

6. **Unit Normal Vector.** The unit normal vector \(N \) at any time is given by
\[N = \frac{1}{a_N}(r'' - a_T T) \quad \text{or} \quad N = \frac{T'}{||T'||} . \]

7. **Binormal Vector.** The binormal vector \(B \) at any time is given by
\[B = T \times N . \]