1. For each function, find all of its critical points and then classify each point as a local extremum or saddle point.
 (a) \(f(x, y) = 2x^3 + 6xy + 3y^2 \)
 (b) \(g(x, y) = x(y^2 - 4)e^x \)

2. Consider the surface given by \(z = x + 2y - y^2 \).
 (a) Find the gradient of the surface at the point \((4, -1, 1)\).
 (b) Sketch the level curves of the surface corresponding to \(z = -2, -1, 0, 1, 2 \). Then sketch the gradient vector from part (a), emanating from the point \((4, -1)\) on the level curve \(z = 1 \).
 (c) Find the equation of the plane tangent to the surface at the point \((4, -1, 1)\).

3. Let \(a, b \), and \(P \) be constants. Use the method of Lagrange multipliers to show that the function \(f(x, y) = xy \) subject to the constraint \(ax + by = P \) has a maximum value of \(\frac{P^2}{4ab} \).

4. Let \(w = x^2y + 4xz \).
 (a) Find the gradient of \(w \) as a function of \((x, y, z)\).
 (b) If \(x = s^2t, y = st^2 \), and \(z = s + 2t \), use the chain rule to find the gradient of \(w \) as a function of \((s, t)\).

5. Compute the integral \(\iint_S (25 - x^2 - y^2) \, dA \) for each of the regions pictured below.

6. Consider the triangle \(T \) with vertices \((0, 0)\), \((3, 3)\), and \((2, -1)\) and with density function \(\delta(x, y) = 2 \).
 (a) Find the mass and center of mass of the triangle directly.
 (b) Find the mass and center of mass by performing the change of variables
 \[x = 2u + v \quad \text{and} \quad y = -u + v. \]

7. Find the volumes of the following solids.
 (a) The first octant solid bounded by the coordinate planes and the planes \(y = 2 \) and \(x + 2y + 3z = 6 \).
 (b) The first octant solid bounded by the \(xz \)-plane, the \(xy \)-plane, the plane \(y = x \), and in between the spheres \(x^2 + y^2 + z^2 = 1 \) and \(x^2 + y^2 + z^2 = 4 \).
 (c) The solid bounded by the \(xy \)-plane, the plane \(y + z = 4 \), and the cylinder \(x^2 + y^2 = 4 \).