12.1.18 The level curve at \(z = k \) is the line through the origin of slope \(k \); if \(z = k \), then \(y = kx \).

12.1.24 For a fixed value \(V = k \), the equipotential curve is

\[
\sqrt{(x-2)^2 + (y+3)^2} = 4k,
\]

which is the upper half of the circle of radius \(4k \) centered at \((2, -3) \). For \(k = 1/2, 1, 2, 4 \), we get the circles or radius 2, 4, 8, and 16.

12.1.34 The level surfaces for the function are obtained by setting \(f(x, y, z) = k \), which gives

\[k = 100x^2 + 16y^2 + 25z^2. \]

Dividing both sides by \(k \), we get equations of ellipsoids of various sizes.

12.2.10 The partial derivatives are

\[
\frac{\partial f}{\partial s} = \frac{2s}{s^2 - t^2} \quad \text{and} \quad \frac{\partial f}{\partial t} = \frac{-2t}{s^2 - t^2}.
\]
12.2.18 The first partial derivatives are \(\frac{\partial f}{\partial x} = 15x^2(x^3 + y^2)^4 \) and \(\frac{\partial f}{\partial y} = 10y(x^3 + y^2)^4 \). The mixed partials should be equal, which we verify by taking the partial of the first with respect to \(y \) and the partial of the second with respect to \(x \):

\[
\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left[15x^2(x^3 + y^2)^4 \right] = 120x^2y(x^3 + y^2)^3
\]

\[
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left[10y(x^3 + y^2)^4 \right] = 120x^2y(x^3 + y^2)^3.
\]

12.2.34 The first partial derivatives are \(\frac{\partial f}{\partial x} = 8x^4x^2 + 4y^2 \) and \(\frac{\partial f}{\partial y} = 8y^4x^2 + 4y^2 \). The second partial derivatives are

\[
\frac{\partial^2 f}{\partial x^2} = \frac{(4x^2 + 4y^2)(8) - 8x(8x)}{(4x^2 + 4y^2)^2} = -32x^2 + 32y^2
\]

and

\[
\frac{\partial^2 f}{\partial y^2} = \frac{(4x^2 + 4y^2)(8) - 8y(8y)}{(4x^2 + 4y^2)^2} = 32x^2 - 32y^2
\]

which means that \(f \) is harmonic since

\[
\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.
\]

12.2.40 (a) \(f_x(x, y, z) = 12x^2(x^3 + y^2 + z)^3 \).

(b) \(f_y(0, 1, 1) = 8y(x^3 + y^2 + z)^3 \bigg|_{(0,1,1)} = 8(0 + 1 + 1)^3 = 64 \)

(c) \(f_{zz}(x, y, z) = \frac{\partial}{\partial z} f_z = \frac{\partial}{\partial z} [4(x^3 + y^2 + z)^3] = 12(x^3 + y^2 + z)^2. \)

12.3.20 The function is defined and continuous as long as the denominator is defined and nonzero. The denominator is defined and nonzero if and only if \(1 + x + y > 0 \). This set is the half-plane \(y > -x - 1 \) as pictured below.

![Graph of a plane]

12.4.4 The gradient of \(f \) is \(\nabla f = (2xy \cos y, -2x^2 \sin y + x^2 \cos y) \).

12.4.14 The gradient of \(f \) is \(\nabla f = (2x/y, -x^2/y^2) \); evaluated at \((2, -1) \), we get \(\nabla f = (-4, -4) \). Since \(f(2, -1) = 2^2/(-1) = -4 \), the equation of the tangent plane is \(z = -4 - 4(x - 2) - 4(y + 1) \).
12.5.4 The gradient of f is $\nabla f = \langle 2x - 3y, -3x + 4y \rangle$; evaluated at $(-1, 2)$, we get $\nabla f = \langle -8, 11 \rangle$. The directional derivative in the direction $a = \langle 2, -1 \rangle$ is
\[
\frac{\nabla f \cdot a}{||a||} = \frac{-27}{\sqrt{5}}.
\]

12.5.14 The gradient of f is $\nabla f = \langle 3\cos(3x - y), -\cos(3x - y) \rangle$; evaluated at $(\pi/6, \pi/4)$, we get
\[
\nabla f = \left\langle \frac{3}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\rangle = \frac{1}{\sqrt{2}}(3, -1).
\]

Therefore, the function decreases most rapidly in the direction $\langle -3, 1 \rangle$, opposite to ∇f.