1. Find all critical points of the function \(f(x, y) = xy + \frac{4}{x} + \frac{2}{y} \) and classify each as a saddle, a local maximum or a local minimum.

Solution. First note that the function is undefined for \(x = 0 \) or \(y = 0 \), so we can assume that \(x, y \) are nonzero. The gradient is \(\nabla f = \left(y - \frac{4}{x^2}, x - \frac{2}{y^2} \right) \), so the critical values occur when
\[
\begin{align*}
y &= \frac{4}{x^2} \\
x &= \frac{2}{y^2} \\
x &= \frac{2}{16/x^4} \\
1 &= \frac{x^3}{8}.
\end{align*}
\]
This means that \(x = 2 \), which implies that \(y = 1 \).

The second partial derivatives are
\[
\begin{align*}
f_{xx} &= \frac{8}{x^3}, \\
f_{yy} &= \frac{4}{y^3}, \\
f_{xy} &= 1.
\end{align*}
\]
At the point \((2, 1)\), we have
\[
D = f_{xx}f_{yy} - f_{xy}^2 = (1)(4) - 1 = 3.
\]
Since \(D > 0 \) and \(f_{xx} > 0 \), the critical point \((2, 1)\) must be a local minimum. Therefore, \(f \) has a local minimum at the point \((2, 1, 6)\).

2. Tabitha wants to fence off a rectangular region using a brick wall on three sides and a wooden fence on the fourth side. The brick wall costs $10 per foot and the wooden fence costs $6 per foot. Suppose that Tabitha wants to minimize the cost of the enclosure for an enclosed area of 500 square feet.

(a) Draw and label with variables a diagram representing the problem and find the cost function \(C \) in terms of your chosen variables.

Solution. Let’s take a rectangular region of length \(x \) along the horizontal and length \(y \) along the vertical. We’ll assume that brick wall is along the two sides and the bottom edge with wooden fence along the top.

![Diagram of rectangular region with brick and wooden fences]

The top of the rectangle will cost 6\(x \) dollars, each side will cost 10\(y \) dollars, and the bottom will cost 10\(x \) dollars, so the total cost is \(C = 16x + 20y \).

(b) Use Lagrange multipliers to minimize the cost function \(C \) subject to the area constraint \(A = 500 \). Give the dimensions that minimize the cost as well as the minimum cost.

Solution. The area of the rectangle is \(xy \), so the constraint equation is \(xy = 500 \), which becomes
\[
g(x, y) = xy - 500 = 0.
\]
The gradients are
\[
\nabla C = (16, 20) \quad \text{and} \quad \nabla g = (y, x),
\]
so the Lagrange multiplier equations give
\[
\begin{align*}
16 &= \lambda x y \\
20 &= \lambda x y \\
xy &= 500
\end{align*}
\]
\[
\begin{align*}
16x &= \lambda xy \\
20y &= \lambda xy \\
xy &= 500
\end{align*}
\]
\[
\begin{align*}
y &= \frac{x}{5} \\
x = 25 \\
y = 20.
\end{align*}
\]
The optimal dimensions are \(x = 25 \) and \(y = 20 \) with a minimal cost of \(C = 16(25) + 20(20) = 800 \).
3. Find the mass of each of the regions below if each has the density function \(\delta(x, y) = 4 - 3y \).

(a) \[R = \left\{ (x, y) : 0 \leq x \leq 2, \frac{3x}{2} \leq y \leq 3 \right\} \]

Solution. As an x-simple set, the region is

\[
m = \int_R \delta(x, y) \, dA = \int_0^2 \int_{3x/2}^3 (4 - 3y) \, dy \, dx = \int_0^2 \left(4y - \frac{3y^2}{2} \right)_{3x/2}^3 \, dx = \int_0^2 \left(\frac{27x^2}{8} - 6x - \frac{3}{2} \right) \, dx = \left(\frac{9x^3}{8} - 3x^2 - \frac{3x}{2} \right)_0^2 = -6.
\]

(b) \[S = \left\{ (r, \theta) : 0 \leq r \leq 4, \frac{\pi}{4} \leq \theta \leq \frac{\pi}{2} \right\} \]

Solution. In polar coordinates, the region is

\[
m = \int_S \delta(x, y) \, dA = \int_{\pi/4}^{\pi/2} \int_0^4 (4 - 3r \sin \theta) \, r \, dr \, d\theta = \int_{\pi/4}^{\pi/2} \left(2r^2 - r^3 \sin \theta \right)_0^4 \, d\theta = \int_{\pi/4}^{\pi/2} \left(32 - 64 \sin \theta \right) \, d\theta = (32\theta + 64 \cos \theta)_{\pi/4}^{\pi/2} = 8\pi - 32\sqrt{2}.
\]
4. Consider the change of variables
\[x = u + v \quad \text{and} \quad y = u + 3v. \]

(a) The inverse change of variables transforms the parallelogram \(P \) in the \(xy \)-plane below into a rectangle \(R \) in the \(uv \)-plane. Draw the rectangle \(R \) on the \(uv \)-plane provided. Label the axes and points.

![Parallelogram P and rectangle R](image)

Solution. We can solve for the inverse function as follows:
\[
y - x = (u + 3v) - (u + v) = 2v \quad \rightarrow \quad v = \frac{1}{2}(y - x)
\]
and
\[
3x - y = 3(u + v) - (u + 3v) = 2u \quad \rightarrow \quad u = \frac{1}{2}(3x - y),
\]
so
\[
(u, v) = g^{-1}(x, y) = \left(\frac{1}{2}(3x - y), y - x\right).
\]
If we plug in the original vertices of the parallelogram, we get
\[
g^{-1}(4, 6) = (3, 1), \quad g^{-1}(8, 10) = (7, 1), \quad g^{-1}(8, 18) = (3, 5), \quad \text{and} \quad g^{-1}(12, 22) = (7, 5).
\]

(b) Take the integral
\[
\int \int_P (3x - y)(-x + y) \, dx \, dy
\]
and transform it using the change of variables above into an integral over \(R \). Evaluating the integral is optional (see part (c).)

Solution. The Jacobian of the transformation is
\[
J(u, v) = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \det \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} = 3 - 1 = 2.
\]
The numerator is equal to \(2u \). The denominator is equal to \((2v)^2 = 4v^2 \). And the region \(R \) is a rectangle in the \(uv \)-plane, so the integral transforms to
\[
\int \int_R \frac{3x - y}{(-x + y)^2} \, dx \, dy = \int \int_R \frac{2u}{4v^2} \, |2| \, dv \, du = \int_3^7 \int_1^5 \frac{u}{v^2} \, dv \, du.
\]

(c) (Bonus) Evaluate the integral.

Solution.
\[
\int_3^7 \int_1^5 \frac{u}{v^2} \, dv \, du = \int_3^7 \left(-\frac{u}{v} \right|_1^5) \, du = \int_3^7 \frac{4u}{5} \, du = \left. \frac{2u^2}{5} \right|_3^7 = 16.
\]
5. Consider the function $z = \frac{xy}{2}$ with domain $\{(x, y) : 0 < x \leq 8, 0 < y \leq 8\}$.

(a) Sketch the level curves for $z = 1, 2, 3, 4$ on the axes provided.

(b) Compute the gradient of z at the point $(2, 3, 3)$. Sketch the gradient on the graph above emanating from the point corresponding to $(2, 3, 3)$.

Solution. The gradient of z is $\nabla z = \left< \frac{y}{2}, \frac{x}{2} \right>$, so at the point $(2, 3)$, the gradient is $\nabla z = \left< \frac{3}{2}, 1 \right>$.