1. Consider the two vectors in \mathbb{R}^3 given by $a = \langle 2, 2, 1 \rangle$ and $b = \langle 0, 3, 4 \rangle$.
 (a) Find the projection of a onto b.
 (b) Find the equation of the plane through origin that contains the vectors a and b.
 (c) Carefully sketch a, b, and $\text{pr}_b(a)$ on the xyz axes.

2. Consider the surface given in spherical coordinates by $\rho = \csc \phi$.
 (a) Find the equation for the surface in cylindrical coordinates.
 (b) Find the equation for the surface in Cartesian coordinates.
 (c) Describe the surface and provide a rough sketch of the surface.

3. The equation $2x + y - 2z^2 = -2$ represents a surface in \mathbb{R}^3. The intersection of the surface with a plane gives a curve. For each plane listed below, find the equation of the resulting curve and sketch it on axes.
 (a) xy-plane
 (b) xz-plane

4. Consider the curve in \mathbb{R}^3 given by $r(t) = \langle t, t^2, 4/t \rangle$ for $1 \leq t \leq 3$, as pictured below.

 (a) Compute the point p on the curve corresponding to $t = 2$. Label the point on the graph above.
 (b) Compute the tangent vector v to the curve at $t = 2$. Carefully draw the vector on the graph above.
 (c) Find the equation of the tangent line to the curve at $t = 2$.

5. Consider the following curve in \mathbb{R}^3 and its derivatives given by
 \[r(t) = \langle \sqrt{3} \sin t, \sin t, 2 \cos t \rangle, \]
 \[r'(t) = \langle \sqrt{3} \cos t, \cos t, -2 \sin t \rangle, \]
 \[r''(t) = \langle -\sqrt{3} \sin t, -\sin t, -2 \cos t \rangle. \]
 (a) Find the point r, the tangent vector r', and the acceleration vector r'' at $t = \pi/3$.
 (b) Find the unit tangent vector T at $t = \pi/3$.
 (c) Find the curvature κ at $t = \pi/3$.