Solution of Quiz 4

1. Let \(\vec{F}(x, y) = \frac{y}{x^2 + y^2} \mathbf{i} - \frac{x}{x^2 + y^2} \mathbf{j} \) and consider \(C \) the curve defined by \(x(t) = \cos(t) \), and \(y(t) = \sin(t) \) for \(-\pi/2 \leq t \leq \pi/2 \). Compute \(\int_C \vec{F} \cdot d\vec{r} \).

\[
\int_C \vec{F} \cdot d\vec{r} = \int_{t=-\pi/2}^{\pi/2} \left(\frac{y}{x^2 + y^2} - \frac{x}{x^2 + y^2} \right) dt = \int_{t=-\pi/2}^{\pi/2} - \frac{\sin^2(t)}{\cos^2(t) + \sin^2(t)} dt - \frac{\cos^2(t)}{\cos^2(t) + \sin^2(t)} dt = \int_{t=-\pi/2}^{\pi/2} -dt = -\pi
\]

2. Let \(\vec{F}(x, y) = e^x y^2 \mathbf{i} + 2ye^x \mathbf{j} \). Find a function \(f \) such that \(\nabla f = \vec{F} \). Deduce \(\int_C \vec{F} \cdot d\vec{r} \) for any path \(C \) going from \((0,0)\) to \((3,4)\).

One can easily guess and check that \(f(x, y) = e^x y^2 \) is such that \(\nabla f = \vec{F} \). If this doesn’t seem obvious to you, you may compute \(f \) this way: \(f \) must satisfy \(\frac{\partial f}{\partial x} = e^x y^2 \) so \(f(x, y) = e^x y^2 + C(y) \) then \(\frac{\partial f}{\partial y} = 2ye^x \) has to be equal to \(2ye^x + C'(y) \) so \(C'(y) \) is zero, and \(C \) has to be a constant. Since we just care about finding one such function \(f \), we can take \(C \) to be zero, and check that \(\nabla (e^x y^2) = \vec{F} \). Then

\[\int_C \vec{F} \cdot d\vec{r} = \int_C \nabla f \cdot d\vec{r} = f(3,4) - f(0,0) = 16e^3 \]

3. Let \(C \) be the boundary of the triangle \(S \) with vertices \((0,0)\), \((1,0)\), \((1,1)\) oriented counterclockwise. Use Green’s theorem to compute \(\int_C (2xy + \arctan x) \, dx + (e^y^2 + x^2) \, dy \).

Green’s theorem says

\[
\int_C M \, dx + N \, dy = \int_S \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \, dA.
\]

Here, we take \(M = 2xy + \arctan x \) and \(N = e^{y^2} + x^2 \) so that \(\frac{\partial N}{\partial x} = 2x \) and \(\frac{\partial M}{\partial y} = 2x \), so we get

\[
\int_C (2xy + \arctan x) \, dx + (e^{y^2} + x^2) \, dy = 0.
\]

Note: here you see the point of Green’s theorem: just try to compute the integral directly!