Correction of Quiz 3

1. (4 points) Consider the function $f(x, y, z) = x^3 - 2xy^2 + \frac{1}{z}$.

a. Compute the gradient of f at $P = (2, 1, 1)$.

$$\frac{\partial f}{\partial x} = 3x^2 - 2y^2, \quad \frac{\partial f}{\partial y} = -4xy, \quad \frac{\partial f}{\partial z} = -\frac{1}{z^2} \quad \text{so} \quad \nabla f(P) = 10\mathbf{i} - 8\mathbf{j} - \mathbf{k}.$$

b. Give an equation of the plane tangent to the surface with equation $f(x, y, z) = 5$ at $P = (2, 1, 1)$.

That’s the plane through $(2, 1, 1)$ normal to $(10, -8, -1)$ so it has equation

$$10(x - 2) - 8(y - 1) - (z - 1) = 0.$$

2. (5 points) Find all the local minima and maxima of $f(x, y) = x^3 + y^3 - 9xy + 27$.

A local extremum should satisfy $\nabla f(x, y) = 0$ i.e.

$$\begin{cases} 3x^2 - 9y = 0 \\ 3y^2 - 9x = 0 \end{cases}$$

From the first equation we get $y = \frac{x^2}{3}$, which we plug in the second equation to get $x^4 - 9x = 0$.

This last equation gives $x = 0$ or $x^3 = 27$ so $x = 0$ or 3. Using the first equation we find two solutions $(x, y) = (0, 0)$ or $(x, y) = (3, 3)$.

Now, to check whether those values are local minima, maxima, or saddle points (which are neither a local maximum nor a local minimum), we use the criterion of the second partials.

$$f_{xx} = 6x, \quad f_{yy} = 6y, \quad f_{xy} = -9$$

so $D = f_{xx}f_{yy} - f_{xy}^2 = 36xy - 81$. $D < 0$ at $(0, 0)$ so we have a saddle point there (it is neither a local maximum nor a local minimum), and $D > 0$ at $(3, 3)$ so f has a local extremum there, and it is a local maximum since $f_{xx}(3, 3) < 0$.

There is only one local extremum: it is a local maximum located at $(3, 3)$

Note that the function is not bounded on the plane ($f(x, 0)$ goes to $\pm \infty$ as x tends to $+\infty$ or $-\infty$). Therefore it has no global max and no global min.
3. (5 points) Compute the maximum and minimum of \(f(x, y) = x^2 + y \) on the ellipse \(x^2 + \frac{y^2}{2} = 1 \).

We use the Lagrange Method: we solve for \(x, y, \lambda \) in the following system of equations:

\[
\begin{align*}
2x &= 2\lambda x \\
1 &= \lambda y \\
x^2 + \frac{y^2}{2} &= 1
\end{align*}
\]

From the first equation we get \(x = 0 \) or \(\lambda = 1 \). If \(\lambda = 1 \), equation 2 gives \(y = 1 \), and third equation implies \(x^2 = \frac{1}{2} \) so we get two critical points \((x, y) = (\frac{1}{\sqrt{2}}, 1)\) and \((x, y) = (-\frac{1}{\sqrt{2}}, 1)\).

If \(x = 0 \) the third equation gives \(y^2 = 2 \) so we get two other solutions \((x, y) = (0, \sqrt{2})\) and \((x, y) = (0, -\sqrt{2})\). These four points are the four critical points.

Now since the ellipse is a closed bounded subset of the plane, and since \(f(x, y) \) is continuous, we know that it has a maximum and a minimum value. Those values have to be critical points, so we just have to compare the values of \(f \) at the critical points to know which is the minimum and which is the maximum. We get that \(f \) has its maximum at \((x, y) = (\pm \frac{1}{\sqrt{2}}, 1)\) where its value is 1.5 and its minimum at \((0, -\sqrt{2})\) where its value is \(-\sqrt{2}\).

Note: You could also use a parametrization of the ellipse by \(x = \cos t, \; y = \sqrt{2} \sin t \) and derive with respect to \(t \) using the chain rule to get the critical points.

4. (6 points) Let \(S \) be the triangle in the plane with vertices \(O = (0, 0), \; A = (2, 2), \; B = (2, -1) \). Compute \(\iint_S \sin(\pi x^2) \, dA \). Note: the order of integration is important to manage to get the result.

\[S \] may be described as

\[S = \{(x, y) \text{ s.t. } 0 \leq x \leq 2, -x/2 \leq y \leq x \} \]

Therefore,

\[
\iint_S \sin(\pi x^2) \, dA = \int_{x=0}^{2} \int_{y=-x/2}^{x} \sin(\pi x^2) \, dy \, dx = \int_{x=0}^{2} \frac{3}{2} x \sin(\pi x^2) \, dx.
\]

Here we recognize \(u \sin(u) \) up to a constant where \(u = x^2 \). Therefore,

\[
\iint_S \sin(\pi x^2) \, dA = \frac{3}{2} \left[\frac{-\cos(\pi x^2)}{2\pi} \right]_0^2 = 0.
\]