Linear Algebra

Don H. Tucker

Copyright ©1998



Created July 17, 1998
Run July 17, 1998

TEX is a trademark of the American Mathematical Society.
ApS-BTEX is too.

Draft printing,
Copyright © 1998 by Don H. Tucker. All rights reserved.

This book was prepared by David Arceneaux. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written perrnission of the author. Printed in the United States of America.

This manuscript was prepared in IATEX 25 and ApqS-14TEX. Ilustirations were prepared in xfig 2.1 and exported into IATEX
with the sepic graphics macro library,

Mailbombs will be returned to sender.



Contents

1 Vector Spaces

2 Determinants

3 Dot Products, Norms, Geometry, etc.

4 A Return to Calculus
5 DBases

6 Eigenvalues and Eigenvectors

19
33
51
87
75



ii

Contents



Chapter 1

Vector Spaces

Definition 1.1. The statement that {X, &, +,-} is a vector (linear) space means that X is a collection of
objects, usually called vectors, @ is a scalar field (the real or complex numbers), called scalars as contrasted
to vectors, + and - are binary operations and the following hold between the objects in X and the scalars in
®. We assume that for each pair of vectors x and y in X, x + ¥ is uniquely defined and is again in X and
that if x € X and k € $, then & - x is uniquely defined and is a vector in X. Moreover,

{1}. x+y =y + x for each pair x and y from X.

(2). (x+y)+z=x+(y+z) forx,y and z in X.

(3). There exists © in X such that x + © = x for each x in X.

(4). For each = € X, there exists (—x) in X such that x + (-x) = 0.
(5). a-(b-x)=(ab)-x,¥x€X,ac &, and b € P.

6). a-(x+y)=e-x+a-y,¥xeX,ye€ X and a € .

(7)- (e+d)-x=a-x+b-x,¥x€X,a€®and be &.

(8). 1 x=x,¥xeX.

Remark. Absent something like (8), meaningful computations are not possible. Some refer to this definition
as 'the axioms for a vector space.” We will sometimes follow that convention.

Exercise 1.1.
(1). Show that if x +y = x + 2, then y = z.
(2). As a corollary to Exercise 1.1.1, show that © is unique, i.e., if X+ 0 = x = z + ©’, then @ = @',
(3). As another corollary to Exercise 1.1.1, show that for each x € X, (~x) is uniquely determined.
Example 1.1.
(1. {X,2,+,} = {R,R, +,-}, the ordinary real numbers.
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2 CHAPTER 1. VECTOR SPACES

(2). {C, |, +,}, the complex numbers over the real scalar field.
(3). {C,C,+,}. the complex numbers over the complex scalar field.

Remark. As we shall see later, Examples 1.1.(2) and 1.1.(3) are quite different vector spaces even though
the set X is the same in both cases.

(4). Fla,b] is the set of all real valued functions defined on the interval [a, b] with + defined by (f +g)(z) =
f(z) 4+ g(z), ® = R and scalar muliplication defined by (k - f)(z) = kf(z).

Exercise 1.2,
Show that {F[a,b], R, +, '} is a vector space.

(5). C™({a, b)) is the set of all continuous real valued functions on [a,b] with & = R and + and - defined
as in example 1.1.(4).

Remark. C'%([a,b]) is a subset of F([a, b]).

(6). D(la,b])(= CU}([a, b)) is the set of all continuously differentiable real valued functions on (@, b] with
®, + and - as in Example 1.1.(4).

(7). C™[a,b] is the set of all n-times continuously differentiable functions on [a,b] with &, +, and - as in
Example 1.1.(4).

Remark. F([a,b]) D C'9({a,5]) D> D([a,]) O ... D C*=1({e, b)) > C")([a, b))

Exercise 1.3.
Show that {C(")([a,b]), &, +, -} is a vector space, but don’t do it yet; it will be easier later.

Q

Before proceeding further, there are some manipulative matters to which we must attend, namely, those
arithmetic things having to do with 0,© and negative signs.

Theorem 1.1. Suppose X s a vector space over the scalor field &, x € X and a € &, then
(a). 0-x=0
(). a-©@=0
(c). (1) x =(-x)
(d). ifa -x=0, then eithera=0 orx =0.
Proof of Theorem 1.1.
(). By aziom (7) in Definition 1.1
0-x+0-x=(0+0)x=0-x
so that by axiom (3) we have
0-x4+0-x=0-x=0-x+0
and by Ezercise 1.1.{1),0 -x =8.



(b).
0:0+a-0=0¢-(0+0)=0-0=e¢-0+0
and by Ezercise 1.1, a- 0 = O.
(c).
x+{(-1)-x=1-x+(-1) x=[1+(-1)]'x=0-x =0 =x + (—x)
and by Erercise 1.1, (-1} -x = (~x).

(d). Suppose a #0, then L exists and

a

~(a-x)= % -6=0 by (b) above, then by aziom (5),
(l .a) x=0
a
1-x=0 so that by aziom (8),
x=0, ie, ifa#0, thenz =0,

Our next project is to make Exercise 1.3 and all similar exercises easy.

Definition 1.2. As subset V of X, where {X,®,+,-} is a vector space, is called a (vector) subspace of X
if {V,®,+,-} is also a vector space with the same element Q.

In general, to verify that a subset of a vector space is again a vector space, one would have to verify that
+ and - are still uniquely defined and that all eight axioms hold. Actually, as the next theorem shows, this
is much more than one really needs to do.

Theorem 1.2. If V is a (non-empty) subset of o vector space {X,®,+,-}, then {V,®,+,-} is a vector
subspace if and only if

(a). x+y e V,¥x,y €V and
(b)- a-x€V,Yaec® and¥x €V, ie, V is closed under vector addition and scalar multiplication.

Proof of Theorem 1.2. Suppose {V,&®,+,-} is a subspace, then clearly (a) and (b) hold by the definition.
Now suppose (a) and (b) hold and V C X, then since azioms (1) and (2) hold in X, they also hold in V
and the same is true of (7) and (8).
In order to obtain (3), we must show that @ € V. By (), 0-x € V,Vx but by Theorem 1.1, 0-x = O,
thus © € V and (3) holds. Note that (4) holds by (b) also since (—1).x = —x, again by Theorem 1.1. Aziom
(5) follows at once from (b). Aziom (6) holds in V by (a) and (b) and the fact that aziom (6) holds in X. N

Remark. Exercise 1.3 is now an immediate consequence of Exercise 1.2, Theorem 1.2 and elementary facts
from a first course in calculus, namely that if f and g are differentiable, then so is f + gand k- f where k
is any scalar.
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Example 1.2.

(1).

(3).

Suppose n is a positive integer and denote by P,, the polynomials of degree less than or equal n, i.e.,
all functions f(z) =ag +ajz+...+ a,z".

Note that P, is a vector space over R (or C) and is a vector subspace of each CY/(R);j = 0,1,2,...
and we have hierarchies of subspaces:

F({a, b)) 5 CO((a, b)) 5 -+ > C™)(la, b)) 5 C™*)([a, b)) > -+ 2 ¢ (fa, ) & () ¢ ((a, b))

n=0

00ciD) Pn-H ([ﬂ:b]) 2 Pn([av b]) 2 P]([a, b]) > PD([a’bD = ]R'

. The vector space R® consists of the n-tupples x = (z1.22,... ,7,) of real numbers with x -+ Y :

def d
(21,2200 1 Zn) + W1, Y20 00) T (T + 91, T2 + 4, - yZnt¥n)and a-x =a- (21,72,... ,2,) lef
(azy,az,,... ,az,) and © = (0,0,... ,0).

Since the real numbers are commutative, associative, distributive and so on, it is easy to see that R”
is a vector space.

C" is like R" except we use C rather than R Note that one could have either {C*,C, +,-} or,
{C" R,+,"} and as mentioned earlier, these have different characteristics.

9

Exercise 1.4.

().

(2).

(3)-

Determine which of the following sets are vector spaces with the given operations. For those that are
not, list the axioms that fail to hold.

(@) {(2.9,2) : 7,9, 2 real };(z,9,2)+ (=", ¢, 2') & (e 42,y v, z+2') and k(z,9,2) & (kz, ky, kz).
(b) {(z,z,...,z) € R* : z is real } with the usual R® operations.

(c) {z>0} withz-}-x’d:efm,zr a.ndk-,rdzeka_

(d) All 2 x 2 matrices of the form (2 }) with the usual matrix addition and scalar multiplication.
(e) All 2 x 2 matrices of the form (39) with the usual matrix addition and scalar multiplication.
(£) {f:R = R: £(2) = 0} with the usual F([a, b]) operations.
Which of the following are subspaces of R?:
(a) All vectors of the form (£,0,0)?
(b) All vectors of the form (£,1,0)?
(c) All vectors of the form (&1, &, &) with & = & + &?

Which of the following are subspaces of Pj:
(a) All polynomials ap + a7 + aaz? + azz? for which ag = 0?



(b) All polynomials ag + a1z + a22? + ezz® for which ap = 27
(c) All polynomials ag + a1z + axz? + azz® for which as = 0, and ag + a; = a;z?

(d) All polynomials of the form ap + a;z?

One of the primary games which mathematicians play is the study of properties which are preserved
under certain types of transformations or mappings or changes of variables. (Other scientists play similar
games by studying conservation laws in physics and so on.) The basic reason we are interested in such
things is that we can sometimes make an ugly problem pretty by a change of variables, then solve the pretty
problem and change the solutions back to the ugly case. The problem is that changing the variables just
might destroy the very property which we want to study. Therefore we need to know which transformations
preserve the properties we need most and we then study those particular transformations to learn as much
as we can about them.

The study of linear algebra is basically the study of such a collection of transformations, namely, the
study of those transformations of one vector space into another which are well enough behaved that the
algebraic structure is preserved by the transformation; more precisely:

Definition 1.3. Suppose {X,®,+, -} and {Y, d, -I-,'-'} are vector spaces over the same scalar field & and T
is a (function) transformation from X to Y such that

(a). T(x) +x2) = T(xl)-T-T(xg) and
(b). T{a-x)=a-T(x)
hold for & € ®,x,x;, and x; € X, then T is called a linear transformation.

Note. If T is a linear transformation, then T{fx) = T(0-x) = 0°T(x) = Oy always holds; i.e., linear
transformations always map © into .

Exercise 1.5.

(1). Show that the mapping Ty : f — % is a linear transformation of C"+)([a,b]) into C™({a, b)) for
n=01,2....

(2). Show that the mapping T} : f — f f(t)dt is a linear transformation of C(*}([a, 8]) into C"*+V)([a, b]).

Remark. We thus see that much of what is learned in the calculus is properly a part of linear algebra.
Moreover, what we learned in the way of manipulative skills we learned because we knew how to compute

d T
‘—i?);-, and f f(t)dt, knowing f, that is to say, we knew how to manipulate these specific transformations. This
a

raises the question whether we can do a similar thing in other cases. The answer is a qualified yes, ...,
sometimes.

Representations of Linear Transformations from 2" to K™

Case One: Suppose T is a linear map from B! to B' and set m = T'(1). Then if z € R,
y=T(x)=T(1-x) =T(x1) = xT(1) = x-m = mx, and the graph of T is a straight line through
the origin which has slope m.
This is why such transformations are called linear transformations in Definition 1.3.
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Case Two: Suppose T is a linear map from R® — R! and that we set ; = (1,0,...,0), e; = (0,1,0,....0),
.- en = (0,0,...,0,1) and then denote m; = T(e;),mz = T(es),... ,mn = T(e,). We may now
write, for x = (z1,... ,za)

y=T(x) =T(z1,%2,.-. ,Zn} = T((21,0,...,0) + (0,2,0,... ,0) +... + (0,0,...,0,z,))
=T(z1e1 + Zze2+ ... + Tpey) = T(z101) + T(z202) + ... + T{z,eg)
=z1T(e1) +z2T(e2) + ... + ZoT(en) = z1my + Zomg + ... + zom,

def
=T+ Eme+ ...+ Iamy = mex = (my,ma,... ,my)(z),2,... 1 Zn)

where we define the “dot” product of two vectors in K" by

mn
mex = (my,Ma,... ,Ma){T1,T2,.-. ,Tp) = Zm.z..
i=]

We now again have a “representation” for T given by
Yy =mx
very much like the Case One representation.

Case Three: Suppose T is a linear map from R® — R™ and that we set

T{e;) = (an,a2,... 1Gm1)
T(e2) = (a12,a22,...,6ma2)
T(ea} = (ain,G2n,--.,8mn).
Then if
Y = (#,¥2-.,¥m) =
T(x) = T(z1,T2,...,2a)=T (iziei) = iﬂ?iT(e‘)
i=1 i=1

n n n L
= Za:.-(al,-,ag,-, Go0 ,am.-) = (Z 1i¥i, Z 2T iy ens y Zam.z‘,)
i=1 i=1 i=1 i=]
= (¥1,¥2,--+ 1 Ym)-
Let's now write this out in greater detail.

Y1 = ani +a12Ts+ -+ aiaTy
Y2 = azx +aprz+ -+ aakn

Ym = GnZ1+Cp2T2+ -+ 2ppln.



Note that each of these y components is a dot product. We write it in shorter form or notation (fewer
H=!i a.rld H+” SignS)

" a1 41z ... Qp E
Y2 az1 4azz ... Q2 L3
Ym Bm1 @mz ... fmna In

I -l
T(e)) T(ez) --- T(en)

Or, in even shorter form as
T(x)=y=Mx

where the rows of the array M are used to form the dot product with x, the results of which are the
components of the y vector. The columns of the array M are the images of the vectors e; after T maps
them into Y. We write M = (a;;).

Definition 1.4. The array M is called a matriz. Note that it has m rows and n columns. We shall refer to
its shape by calling it an m x n matrix.

It is our intention to study such matrices. It is very important that we keep in mind that these matrices are
Jjust ways of writing formulas or representations for the linear transformations. It is really the transformations
which attract our interest and the matrices are simply pictures or devices for carrying out manipulations or
calculations on these functions. Such a collection of devices for calculations is usually called a “calculus”.
Let’s begin now to develop such a calculus.

Theorem 1.3. Suppose that each of Ty and Ty is a linear transformation Jrom X to Y and define (T) +
T2)(x) ff_ff T1(x) + T2(x), then define (aT))(x) défa (T1(x)) for each a € ®, then

(a). Ty + T3 is a linear transformation from X to'Y and

(b). o\ is a linear iransformation from X to Y.
Proof of Theorem 1.3.

(a).

(T1 + Tg)(X] + XQ) = Ti(x; + JC2) + Tp(x; + J(z)
= {Ti(x1}+ Ti(x2)} + {Ta(x;) + Ta(xa)}
{T1(x1) + Ta(x1)} + {T1(x2) + Ta(x2)}
(T1 + T2)(x1) + (T) + T2)(x2).
(T + T2)kx) = Ti(kx)+ Ty (kx) = kT (x) + kTo{x)
= k{Ni(x) + Ta(x)} = (T} + T2)(x).

il

(b). The proof is quite similar and is left as an ezercise.
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Exercise 1.6.

(a). Show that the arguments in Case One, Case Two, and Case Three above still work when applied to
spaces {C™,C,+,-} and that the same representations are obtained.

(b). What happens when one attempts those same arguments with {C("" , R, +, -}?

(c). Suppose T : R?* — R® in such a way that T'(e;) = (1,0,0) and T{es:) = (0,1,0). Write its matrix
representation.

(d). Suppose S : R® — R? in such a way that S(e;) = (1,0),S(ez) = (0,1), and S(e3) = (0,0). Write a
matrix representation for 5.

(e). Suppose S maps €* —+ € in such a way that 5(1,0,0) = (3,0,0); $(0,1,0) = (1,%,0) and S(0,0,1) =
(1,1,2). Write a matrix representation for S.

Remark (on Theorem 1.8). In case X = R® (or {C*,C,+,-}) and Y = R™ (or {C",C,+,-}), then T}
and T each have a matrix representation as an m x n matrix. Since every linear transformation has such a
representation, it follows from Theorem 1.3 that T} + T3 and a7} must also have such matrix representations.

Suppose that T} has as its matrix

A = (Ti(er), Ti(ez),... ,Ti(en)) = (ai;), i-e.,
Tifx) = Ax
and that T3 has as its matrix

B (T2(e1), Tz(ez), ... , To(en)) = (b;;).

Question: Can we obtain the matrices (T; + T2) and (aT}) from these two matrices 4 and B?
Answer: Let’s try.
The matrix for (T} + T3) is given by
(Th + T2)(e1), (Th + T2)(e2),... (1) + To)(en)
which (because (T7 + T3)(x) = T} (x) + T2(x)} is the same as
(Ti(e1) + To(ez), Ti(ez) + To(ez), ..., Ti(e,) + Ta(e,))

and we know all of these from the matrix 4 and the matrix B.



a1y a2 ... QG xr

a1 fz2 ... dzn T2
Suppose T(x) =

@mi Gm2 ... Qnp Tn

[ -l
Ti(e;) Th{ez) -+ Ti(e,)

by bin ... ba T3

b2l bgg a00 b2n )
and Tp{x) = .

bml bm2 s bmn I"

I o i
Ty(ey) Tz(ez)--- Tale,)

and thus if we add the corresponding columns, as above, we get that

ay; + by aiz2+biz ... ain+bin xy
azt +ba  apa+bn ... g+ b Ty
(T + )(x) =Ti(x} + To(x) = . . . .
mt +bm1 Gm2 +bm2 ... Gmn + bmn Tn

I Il
Ti(e1)+Ta(e2) Ti(ex)+Talez) -+ Ti(en)+Te(ey)
= {ai; + bij)x.

Definition 1.5. The sum of two matrices A and B is the matrix which represents the linear tranformation
which is the sum of those represented by 4 and B respectively.

We have just shown that this matrix is obtained by adding the corresponding entries in A4 and B, that
is if

A= (ﬂ.,‘j) and B = (b,'j), then A+ B = (a.;,- <+ b,’j)

Please note that this last formula is not a definition, rather it is a fect. We could have called it a Theorem.

Since the elements of these matrices are scalars, that is numbers, and numbers satisfy the commutative
and associative properties of addition, the matrices also satisfy these same properties. We now have addition
of matrices uniquely defined (they must be of the same shape, i.e, m x n) and also have that axioms (1) and
(2) for vector spaces hold. Very interesting. These hold for the linear transformations in general and for their
representing matrices when they ezist. What about axiom (3)? Does there exist a © or zero transformation
from X into Y which changes nothing when added to another transformation from X into Y? If so, what
must its matrix be?

We require a linear transformation  (script theta) such that

TH+d=T
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for every linear transformation T from X —+ Y. What does this mean? It means that
T+HX)=T(x)+9(x) =T(x)=Tx)+ 0O

holds for each x in X. Exercise 1.1.(1) tells us that
Hx) =0

must hold for each x and therefore ¥(e;) = © holds for each e; in R (or C*) when we apply the result to
that specific case. Thus the matrix which represents ¥ is an array whose columns contain only zeroes. We
shall call the resulting matrix ©, hoping no confusion will arise.

Note that the transformation ¥ maps the entire set X into the © element or origin in Y, and that the

resulting matrix formulation is
A+8=A4

so that axiom (3) is satisfied, both for the linear transformations and for their representing matrices when

such exist,

Part (b) of Theorem 1.3 establishes scalar multiplication uniquely and shows that the set of all linear
transformations from X to Y is closed under this scalar multiplication. Can it be that with this scalar
product in place, the remaining properties of a vector space hold, i.e., axioms (4) through (8)7

If s0 do these also hold for the representing matrices when such exist?

First let’s see what the matrix representation for (aT}) might look like.

Since (aT1)x = a(Ti(x)) for each x, we see that (aT1)(e;) = aTi(e;) and thus the matrix for a7}
has columns (aT)(e;),aTi(es),...,aTi{e,)) which is exactly the result of multiplying each element of the
matrix A which represents T} by the scalar a.

Definition 1.8. The scalar product a4 is the matrix which represents the linear transformation which is
a times the linear transformation which is represented by A.
We now have that if

A = (ai;), then ad = (aa;;).

This seems to suggest that axioms (4) through (8) may work out. The only question is what to do about
negatives of matrices. If we do it right, i.e., all axioms hold, then Theorem 1.1 will also follow and (c) of
Theorem 1.1 states that (—x) = (—1) - x, if we apply this to matrices, it tells us that we have no choice but
have that

(~4)=(-1)- A

and the right side of this expression being a scalar product, is already uniquely defined. In the case of the
general linear transformation we must use

(-T)=(-1)-T
as well and thus

(=T)(x) = (-1) - T(x).
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Theorem 1.4. Suppose that X and 'Y are vector spaces over the same scolar field ®, then the set L[X,Y]
of all linear transformations from X into Y is also a vector space over ®.

Exercise 1.7.
Prove Theorem 1.4

Remark. General representation results for linear transformations in L[X, Y] are not known. Site specific
cases are understood and such knowledge has made major contributions to the success of our modeling of
many aspects of the world around us.

Theorem 1.5. The set Myn of all matrices representing linear transformations in L[R",R™] (or L[C",C™])
is o vector space over R {or C).

Exercise 1.8.

(1). Prove Theorem 1.5

(2). Suppose L : R* — ®* in such a way that L(e;) = (1,2,3), L(e;) = (2,3,1), and Lies) = (3,1,2).
Write a matrix which represents L and use it to compute L(1,1,1).

(3). Show that the L in part (2) maps elements of the form (z,z,z) back into a scalar multiple of itself,
i.e., L(z,z,z) = a(z,z,z). Compute that scalar multiple.

(4). Show that vectors of the form (z,z,z) form a vector subspace of 3.

Remark. Exercise 1.8.(3) shows that L, restricted to this subspace, amounts to a simple scalar multiplication.
Question: Does this always happen in the case of matrices? We will revisit this question throughout the
course.

1 2 0 4 0 1
(5). Suppose A= [0 1 2] andB=|1 2 0].
021 0 31

(a). Compute 44 — B and 64 + 2B.

(b). Where does 44 — B map ;7

(c). Where does 64 + 2B map e;?

{d). Where does B map e;?

(e). Where does © map e;? Why? How do you know that?
(f). Where does A map e;? Where does it map e; + e3?

The Composition of Linear Transformations

Suppose we have two linear transformations S and T where §: X = Y and T : Y — Z where X,Y, and
Z are vector spaces over the same scalar field &.

As with other functions, we define (T ¢ S)(x) = T(S(x)), the composition of the two functions.

Proposition 1.1. The map T'S is a linear map from X into Z.
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Figure 1.1:

Exercise 1.9.
Prove Propasition 1.1.

Now suppose that X = R*, Y = R™ and Z = R?, then §,T and T o S have representations as matrices
which arem x n, ¢ x m and ¢ x n respectively. Denote the matrix for S by A and that for T by B. The
matrix for T o § has as its columns,

(T o S)(e;) = T(S(e,)) = BlA(e;)]
and A(e;) is the j** column of 4, i.e., the j** column of the matrix for T o S is given by
rZ bijai

by b2 - by ai; i

n
b1 b2 o bam | | @y sziﬂsj

i=} *

bql qu qu Qmj n

beias;
1 J

L i

n
thus the (i, j)-entry of the matrix for To S is 2. biray;. The resulting matrix
k=1

is usually denoted BA and its (i, j)-entry is the dot product of the i*h-row of B and the F*-column of A.
This matrix, which represents the composition of T" and S, is usually called the product BA. Referring back
to Figure 1.1, one can see that the reverse composition may not have meaning and indeed will not unless
X = Z. In that case, the diagram becomes as below in Figure 1.2 and the reverse composition is possible,
but T o S maps X into Xwhile So T maps Y into Y. In the case R*,R™ ,R? = R" the resulting matrices

have shapes BA.ls nxn Thus both are square but of different sizes unless X is Y.
ABism xm

If X =Y =R", then the question as to whether BA = AB is a meaningful question, but the answer in
general is not affirmative. Since it is seldom the case that two functions commute under composition, i.e.,
To8 # SoT, the product of their corresponding matrices suffers the same outcome, indeed, the product
commutes only if the functions commute, which is hardly ever.
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S
X Y
Figure 1.2:
Example 1.3.
IfA=(19);B=(}1) then AB=({}) and BA=(3}). Q

It is an interesting sport to find (or try to find) a class of matrices, say 2 x 2, all of which commute.

Now that we have a notion of product, at least in special cases, the question of division or inverses arises.
We must of course have an identity (or more than one) in order to consider the notion of inverse.

In Figure 1.2 above, if ST = Iy, the identity on the space Y we say that S is a left inverse of T and that
T is a right inverse of S, If T'S = Iy, the order is, of course, reversed.

Definition 1.7. If S € L[X,Y] and T € L[Y, X], we say that T is an inverse of S if and only if T is both
a left and a right inverse of S. In that case we write T = S~1,

Recall that by identity, we mean a transformation J which doesn’t change things, i.e., J(x) = x for every
x in the space. If X = R", then I(e;) = e; must hold and the matrix for I has e; for its j** column, e.g.,
the identity matrix on R? is

1 00
010]).
c 01

The next theorem contains some subtleties not appearant on first reading nor from the proof.
Theorem 1.6. If S€ LIX,Y)|, T € L[Y,X], and U € L[Y,X] end US = Ix end ST = Iy, then U =T.

Proof of Theorem 1.6. U=U -Jy = U{(ST)=(US)(T)=IxT =T. |
Remark. The subtlety occurs at the last step, namely (US)T = IxT = T. In order for this step to hold, it
is only necessary for US to behave like Ix on the range of T', not on all of X. This actually does occur.

Example 1.4.

1 0
In Exercises 1.6.(3} and 1.6.(4), (take X = R* and Y = R?) S = ((1) (1] g) and T = (0 1) and
0 0

1 040 1 0 0 10
TS=4{0 1 0} = Ix' 2 ie,thisisnot Is= (0 1 0], and ST = (0 1) = Ipa. O
000 R 001

One can check that as functions, S is not one-to-one and thus not invertible, but 7' is one-to-one and
does have a function as its inverse but this function does not have all of X in its domain, only the range of
T.
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S\}
T )

U

A A

Figure 1.3:

Corollary 1.7. If, in Theorem 1.6, X =Y and S has both a left and right inverse, then S is invertible.

Proof of Corollary 1.7. The left and right inverse are the same, hence are an inverse. |
We list some properties which hold (when they make sense) for all linear maps and also for their matrix
representations when there are such matrices.
1. A+B=B+A4
3. A(BC)=(AB)C
5. (B+C)A=BA+CA
7. a(B+C)=aB+aC
9. (af)-C =a(80) 1
11. A+90=0+A=4 1
13. A =04=0
Now that a product is possible in some cases, the result in Theorem 1.1{d) must be asked again. If we
know that the product is “zero,” can we conclude that a factor must be “zero”? The answer is sometimes,
but not always.

A+(B+C)={A+B)Y+C
A(B+C)=AB+ AC
(-4)=(-1)4
(a+B)C =aC +pC
a(BC) = (aB)C
A+(-A)=86

el i ]

Theorem 1.8. If A, B and C are linear transformations, A~ ezists and AB = AC, then B =C.

Proof of Theorem 1.8. Multilply AB = AC by A~!. |
Remark. We can not say that if 4 # 9, then B = C; indeed it may be a false statement.
Example 1.5.

IfA=(31),B

(3i), and C = (23), then AB = AC = (}4), but B # C. Now set D = 37) and
note that AD = @, but

but neither 4 = © nor D = 0. 0

Definition 1.8. If AD = O, then A is called a left zero divisor of D and D is called a right zero divisor of

A.

The burden of these remarks is that © is not the only non-invertible linear map and the only time that
we know we may “cancel” a factor is when we have an invertible map as the factor to be canceled.

Theorem 1.9.
(1). If both A and B are invertible, then so is AB and (AB)~! = B-1A-!,
(2). A™' is invertible and (A~1)~! = A.



(3). For any positive integer n, A™ is invertible and (A™)~! = (A~})".
1
{4). For any non-zero scalar k, (kA)™! = -I-C-A‘l.

Proof of Theorem 1.9, Just try them, they work. |
X

T (y)
Figure 1.4:

Now suppose T : X = Y is a linear transformation and we are given y in the range of T'; we wish to find
all those values of x such that

y =T(x}

Le., the entire pre-image of y under T. We will denote this preimage by T=1(y) even though we do not
assume T is invertible. We hope this does not lead to undue confusion. It is common practice.

Definition 1.9. Suppose T € L[X, Y], then the set {x|T(x) = ©} is called the kernel or nullspace of T and
is denoted by either ket(T') or A (T).

Remark. Note that the kernel of the operator Ty(f) = % in Exercise 1.5.(1) consists of exactly the constant
functions in F([a, b]).

Proposition 1.2. IfT € L[X, Y], then ker(T) is a vector subspace of X.

Proof of Proposition 1.2. Suppose x; and x2 are in ker(T') and a € ®, then
T(xy + %2} = T(x1) + T(x2) =0 + 0 = O and T{ax;) = aT(x;) = a® = O.

Thus by Theorem 1.2, ker(T) is a subspace. |
Let’s return briefly to the matter of zero divisors.

Example 1.6.

Suppose D = (3 3') and 4 = (3!), then AD = © = DA and neither A nor D is ©. Moreover,
Dx = (55')(53) = (**57) € ker(4) and Ax = (31)(Z}) = (22) € ker(D), i.e., D “projects” R? onto
ker(A) and A “projects” R? onto ker(D). A little thought shows that this characterizes the zero divisor

situation. 0

Proposition 1.3. AD = © if and only if A : Range(D) — © or eguivalently if and only if Range(D) C
ker(A).

Proposition 1.4. If T € L[X,Y] and x, is such that T(x,) =y, then for each x,€ ker(T}, (xp + x0) €
T=Yy).
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Proof of Proposition 1.4. T(x, +Xo) =y + 0 = y. |
A converse also holds, namely:

Proposition 1.5. If T'(x,) =y and T(xq) =y, then (x, — x,) € ker(T).
Remark. Propositions 1.4 and 1.5 show that two functions in F'([a,b]) have the same derivatives if and only

if they differ by a constant function, i.e., their difference lies in the kernel of e

Definition 1.10. If A and B are subsets of a vector space X, then

AGBBd=Ef{zEX | z=a+b, where a € A and b € B}

With Definition 1.10 we may now sum up the resuits of Propositions 1.4 and 1.5.

Theorem 1.10. If T € L[X,Y) and y € Range(T'), then T~(y) is given by Xp @ ker(T) where x,, is any
(particular) solution to y = T(x).

Theorem 1.11. If T € L[X,Y] and T is one-to-one, so that T~ erists as a function, not necessarily in
L[Y,X], then T~! is linear from Range(T) into X.

Proof of Theorem 1.11.
{1).

T™HT(x1) + T(x2)} = T~HT (% +%2)) = %1 + X2
= T7'T(x1) + T7'T(x2) =Ty, + Ty,

Il

Ty +y2)

(2).

T~ ay) = T~'aT(x)) =T (T(ax) = ax = aT ™! (T(x))
= al\(y).

Our next concern is to consider whether one can in fact solve
¥y =T(x), or y = Ax (if A exists)
in other words answer the question “Does a solution exist?”

Proposition 1.6. If A is invertible (or T is invertible), then y = Tx (or y = Ax) has ezactly one solution
for eachy in Y, namely x = T~y (or x = A-ly.)

Remark. In view of Theorem 1.10, Proposition 1.6 suggests that ker(T) = ker(4) = {©x}. This is in fact
true.

Proposition 1.7. If A~ (or T~!) ezists, then ker{A) = ker(T)) = {©}.

Proof of Proposition 1.7. Ax =0 = A 4x=A"10 =0 so x = O, |
Interestingly the converse is also true.
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Proposition 1.8. If ker(T') = {@}, then T~! emists, as a function (but is not necessarily in L[X, Y] since
Range(T') may not be all of Y), i.e., T is one-lo-one.

Proof of Proposition 1.8. Suppose ker(T') = © and that there erists two values x; and X2 such that
T(x1) =T(x3), then T(x; — X3) = 0, 1.e., (X1 — X2) € ker(T") = {O} so that x; = x». ]

Remark. T~ exists (as a function) if and only if ker(T) = {©} in which case y = Tx has exactly one
solution x = T"~!(y) provided y is in the range of T. In case y is not in Range(T), there is no solution.

Example 1.7.
Suppose T' € L[R*, ®°] such that T'(z;,23) = (z1,23,0). Then the matrix which represents T is given by

10
A=|0 1].
00

Now take y = (0,0,1) and y is not in the range of A (nor the range of T), T is one-to-one and ker(T) =
{(0,0)} = {®}. (1

Remark. In case T is not invertible and y is in the range of T, then y = Tx has infinitely many solutions,
xp @ ker(T")

Exercise 1.10.

(1). Find the matrix representations of the following linear transformations:

(a) T:R* 5 R2,T(zy,22) = (21,0)

(b) T: R = B3, T(zy,22) = (21,21 + o, T3)

(c) T:R® = R?, T(x1,22,73) = (421,225 — 3zy, 21 + 473)
(d) T:R' = RS, T, 22,23, %4) = (24, T1,T3, T2, T; — 23)

(2). Find the matrix representation for T : R* — R* which maps {1, z2) into

(a) its reflection through the origin.
(b) its reflection about the line y = —z.
(c) its projection onto the “y-axis”", i.e., onto (0, z,).

(3). Suppose S,T : R> — R? are defined by S(z1,22) = (x1,0) and T(zy,%2) = (T2,21). Do § and T
commute?

(4). Construct another example like Example 1.5, i.e., construct R, S and T such that RS = RT, but
S#T.

Proposition 1.9. If T € L[X, Y], then Range(T') is a vector subspace of Y.

Exercise 1.11,
Prove Proposition 1.9.

Let’s now summarize the results of Propositions 1.6 through 1.8 and the remarks related thereto.
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Theorem 1.12. Given T € L[X,Y] andy € Y, then y = Tx has a solution if and only if y is in the range
of T. Ify is in the range of T, then y = Tx has

(a). ezactly one solution if and only if ker(T) = {©} and
(b). infinitely many solutions in case ker(T) # {©}.

Remark. If ker(T) = {O}, then T has a left inverse defined on the vector subspace Range(T) of Y (see
Proposition 1.9 above.) This observation gives us the following Corollary to Theorem 1.11:

Corollary 1.13. If T € L{X,Y), then T has an inverse T-! € LIY,X] if and only if ket(T) = {©} and
Range(T) =Y.

Proof of Corollary 1.13. Define T~(y) to be the unique x such thaty = Tx. |

While this is all quite exciting, the only case so far in which we can actually write a formal solution to
y = Tx is the case of Proposition 1.6 and even in that case we have no way to obtain 7-! or 4~!. We will
now specialize to X =Y = R" and look for a method.

Remark. If ker{(T) # {©}, then infinitely many solutions exist and in general we require additional restric-

tions in order to deteremine a unique solution if that is desired. For example, if we require T4(f) = ;f_f =Er
T

there are infinitely many solutions, namely 1:- + k where k is a constant function in the kernel of Ty. If we
also wish our solution to have the value 6 when z = 0, then only ‘g—a + 6 will suffice.



Chapter 2

Determinants

Throughout this chapter we consider only linear transformations which are in either L[R",R*] or L|C*,C"].
Their matrix representations are thus n x n matrices and our attention will be directed to these representing
matrices since we may use the calculus we have developed to aid us in our computations.

Definition 2.1. An n x n matrix E is called an elementary matrix if and only if it can be obtained from
I, (the identity matrix on B") by an elementary row operation, i.e., by one of the following:

(2). muitiplying a row by a non-zero scalar

(b). interchanging two rows

(c). adding a non-zero multiple of one row to another row.
Example 2.1.

1 0 010 1 0 -4
(0 _4) isTypel, |1 0 0] isType2, {0 1 0 |is Type 3. 0
0 01 0 0 1

Note. Elementary row operations are also elementary column operations,

Theorem 2.1. Suppose E is an elementary m xm matriz, A 15 an m xn matriz and B is an n X m matriz,

(1). EA 1s the matriz obtained by performing on A the same elementary row operation that produced E

from L,,.

(2). BE i3 the matriz oblained by performing on B the same elementary column operation that produces E

Jrom I,.

Proof of Theorem 2.1. Do several ezamples; you'll understand. |

One of the main results of Theorem 2.1 is that elementary matrices are invertible. This will be quite
useful in our search fur an inverse of an n x n matrix A, that is, if it has an inverse. The following chart
indicates how this comes about.

19
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Row operation which produced E | Row operation which produced E~! | Type |

multiply row i by ¢ #£ 0 multiply row by % 1
interchange rows ¢ and j interchange rows ¢ and j 2
add ¢ times row j to row i add —c times row j to row i 3

Theorem 2.2. If A is an n x n matriz, the following statements are equivalent:
(1). A is invertible
(2). Ax = © has only the trivial (i.e, x = O) solution and

(3). A is row equivalent to to I, i.e, there exists a sequence E,Es,...,Ey of elementary matrices such
that (ExEx_,--- E\)A = I,, or equivalently stated, A=) = E By, --- E}.

Proof of Theorem 2.2.
{e)=>(b) fallows from Propasition 1.6.
{b)=(c} follows from Gouss-Jorden elimination and

{c)=>(a)} is essentially the definition of row equivalence.
|

Remark. For an n x n matrix A, ker(A4) = {©} (statement (b) of Theorem 2.2) implies A~! exists and since
A7) is a linear map from R* to R®, this implies that Range(A) is all of R®. Recall Corollary 1.13.

In applying Theorem 2.2 to say an equation AX = B. where X and B are of appropriate sizes and
we wish solutions X for several different values of B, we can use Gauss-Jordan to generate A~} as follows:
Write A[I,, in juxtaposition and then perform elementary row operations on A and I; simultaneously until
A is reduced to I, then I, is reduced to A~! as observed in part {(c} of Theorem 2.2.

Exercise 2.1.

(1). Use the method above to compute A~! for the following matrices:

010
(a.)A1= 1 00
0 01
01 2
(b) A2={2 4 3
43

3

1 01
(c) As=|-1 3 0
1 0 2

(2). Use the resuits in Exercise 2.1.(1) above to solve the following equations by Proposition 1.6.

()= G) = )- 6
(@) |y2] =A1 |22 | where [y2] = |0
Ys I3 Y2 0
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1
(b) ¥y = Ajx where y = (1
0

]

1
{c) y=A;x wherey = (2

1
(d) ¥ = Aox wherey = (0)

1

0
(e) y=A;x wherey = [1].

0

() Compare the solutions in (a}, (e) and (b). Explain.
(g) Solve A3x = ©, i.e., compute ker(A3). Explain.

Definition 2.2. Suppose S is a finite set. An ordering of the elements of S is called a permutation of S.

Example 2.2.

If § = {1,2,3}, then the permutations of § are (1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1). In
general, if S has n elements, then there are n! permuatations of S (there are n ways to select the first
element, (n — 1) ways to select the second and so on and only 1 way to select the last.) 0

Definition 2.3.

(a). Denote by II, the set of permutations of the integers{1,2, ... ,n}, then an element « = (ky, ks, ... , ky)
of IT, is said to have an inversion if there exists k; > k; for some i < j, that is, a larger integer precedes
a smaller one.

(b). A permutation is called even if its number of inversions is even and it is called odd otherwise. The
oddness or evenness of a permutation is called its parity.

Example 2.3.
In IT3 of Example 2.2, the permutations (1, 2,3), (2,3, 1) and (3,1,2) are even. The others are, of course,

odd. Q

Definition 2.4. For each permutation & in II,,,

8(k) = 0 if Kiseven
11 ifKisodd

Definition 2.5. Suppose 4 = (g;;) is an n x n matrix. The determinant of A, (denoted |A| or det{A)) is
given by

def
IA, =e Z (_l)ﬁ(ﬁ)alkl.azkn-.. clnk,
®ell,

where k= (k1. k2,... , ks) and the sum is taken over the n! permutations in II,,.
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Remark.  Ais 1 x 1,i.e, A= (ﬂn), then |A| =daz)-

IfAis2x2,ie, A= (a” %12 , then
az; Aagz

(-1)%a11822 + (—1)'a12az

a11G22 — Q12021

|4l

]

an 02 413
If4is3 x 3, i.e., A= Gzy Gz a23 ], then
A3y 0C32 a33

det(A) = ajia02a33 — ay1893032 — Q12001833
+a12aG2303)1 + G13G21032 — G13032203).

Notice that if A is 4 x 4, then det(A4) has 4! = 24 terms to compute. This can (does) quickly get out of
hand; we need a better way to cope than just following the definition.

Definition 2.6. Suppose A = (a;;) is an n x n matrix, then

(a). for each element a;; in A, the minor of a;; (i** row, j** column) is the matrix of order (n —1) x (n — 1)
which remains after striking out (deleting) the i** row and j** column of A. We denote this by M;;.

(b). The cofactor of a;; is Ay & (~1)+7 |43,

Remark. Notice that in the 3 x 3 case in the last remark above

Al = anlMn|— ai1z|Mia| + aia| M|
= a1 A1 + azdie + aadis.

This is usually called the cofactor expansion of A using the first row. Actually, we could have rearranged
the terms to get a cofactor expansion by any other row or column; for example we can rearrange to get

|Al = —az1(a12a33 — @13832) + B22(a11833 — @13031) — G23(@11032 — €12a3))
= andn +andzx +andos (2™ row)
or = @313 + aipAas + asgAas (3"‘ row)
or = ap A + a1 As + az da; (1** column) and s0 on.

It is a tedious (but not difficult) argument to show that in general,

Theorem 2.3. If A is any n x n matriz, then |A| can be ezpressed as a cofactor expansion using any row
or any column of A.

It is a tedious (but not difficult) argument to show that in general,

4] = einda +aipdio+ ...+ aindin (i** row)
= a1jA1j+agAz+.. . +anidn; (5" column)
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Exercise 2.2.

(1). Show that if & = (ky, ko, kg,... vkn) € U, and e = (kg ky, ks, ... +kn), then & and ¢ have different
parity.

(2). Show that if & = (ky, ks, k3,. .. vka) and ¢ = (ks ko Ky, ... +kn), then & and ¢ have different parity.
(3). Show that if k = (ky, ko, ks, . .. +kn) and any two elements are switched, then the parity is changed.

(4). Write down several examples in II5, compute the parity of each, switch two elements and compute the
new parity.

Definition 2.7. H Aisannxn matrix, A = (a;,), then the transpose A7 of A is the matrix {a;i).

Example 2.4,

a5, Mz ... Gim i an ... am
Qzy 4z ... Qi T Q12 Q2 ... Qup2

IfA=| . . |, then 4% = ] ; ) . Q
ni Qpn2 ... GQppy Aim 4am ... Onpm

Theorem 2.4. If A is an n x n matriz, then |AT| = |A|.

Proof of Theorem 2.4. By induction on n: [t is certainly true if A 151 % 1 since AT = 4 = ap.
Now suppose the result holds for all k x k matrices and that A is (k+1) x (k+1). Ezpand |A| by the
first row of A, i.e.,

|4l = 81| My1] — @12| Maa| + a3a)Mia| = ... & @y pgt [ My g |
but since each M;; is k x k, this is the same as
=ayy |M13;| —ar2 |M12;| + a3 IM1£| ~ e Eane 'M?:k+1 |
which 15 |AT| ezpanded by its first column. |
Definition 2.8. An n x n matrix A is said to be triangular if either
(a). a;; =0for i < j (lower triangular) or
(b). a;; =0 for i > j (upper triangular)
Theorem 2.5. If A is a triangular matriz, then det(A) is the product of the diagonal elements.

Proof of Theorem 2.5. If

Bnl @p2 ... ... QGpp
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and we ezpand |A| by the first row we obtain

Qa2 0 U |
Qa2 da3 0 e . .
4] = au| . . . Do it again!

. . .- ., 0

Gn2 Qps .. 0
aszs 0 0
Q43 Q44 0

= anax == 01107220 dnn-

0
n3 0

Remark. Our plan of attack on the problem of computing det{d) is to reduce the computation to the
computation of the determinant of a triangular matrix A’ where we know the relations between |A| and
|A’|. We will begin with A and perform elementary row operations on A, i.e., left multiply by elementary
matrices, and reduce A to A’. With this in mind, we then need to know the relation between |A| and |E- A
where FE is an elementary matrix. Sound the trumpets! String your bows, draw your weapons, here she goes!

Theorem 2.6. If A is an n x n matriz and E;; is an elementary Type 2 row matriz which interchanges row
i and row j, then |E Al = —1-|A|.
Proof of Theorem 2.8. Assume row ¢ end row j are switched by Ey;, then

A= 3 (=1 @k, - aoky - .. Gak - @k, - ee k)

xell,
where & = (ky, k2,... ,kiy... . Kj,...  kn) while
|EiAl = > (~1)°Nay, ... aj; - Qik; - ...~ Gak,)
k€T,

where £* = (ky, ke,... ,kj,... kis... . kn) i€, &* is k with k; and k; interchanged. By Erercise 2.2(3), the
permutations k* and k are of different parity and therefore by Definition 2.4, the definstion of §(k),

(=1)") = —(=1)°*") and therefore |A| = —|E; A|.

|
Corollary 2.7. |E;;| = |Eij - I| = =|I| = ~1 and therefore |Ei;A| = —1-|A| = |E;| - |A|.
Corollary 2.8. Same is true for interchanging columns.
Proof of Corollary 2.8. Apply Corollary 2.7 to AT. |
Theorem 2.9. If a row of A is multiplied by a nonzero constant a, sey
10 0
01 0
5 = .o o,
a 0
00 1
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then |E; A|l = a|A| = |E||4].

Proof of Theorem 2.9. Ezpand |E;A| by the it* row. [ |
Remark. The Theorem is also true if @ = 0! Proof: Look at the expansion!

Corollary 2.10. Same is true if “row” is replaced by “column” in the Theorem 2.9.
Corollary 2.11. If A has a row or column of zero elements, then |A| = 0.

(We already knew that since we could compute |4} by expanding by that row or column.)
Corollary 2.12. If E is an elementary Type 1 or Type 2 row matriz, then |EA| = |E| - 14| = |AE|.

Theorem 2.13. If a multiple of one row, (say the i*h) (or column) of A is added to another row (the j'*)
(or column) by an elementary Type 3 row matriz E, then |EA| = |AE| = |A| = |E| - A

Proof of Theorem 2.13. Write

211 a2 Q1n

@1 a2 Qin
EA=|. ... ... . . . ..
a; +aa  ajz +aap Qjn + Qdin

an) @n2 Onn

and expand this by the j** row. We obtain:

IEAI = (G.J'l + an.-;)Ajl + (ﬂjz + aa,-z)Ajg + ...+ (ﬂjn + aa,-n)Aj,,
= (andj +apdp +... +agndin) + alai di +aindin + ... + i Ain
= |A] + a4
where A is like A ezcept that both the i** row and the j** row are (@ir, @iz, ... ya:;). This means that

E,'J' - 4& = JI so that |E.‘_f..‘i| = |4‘II
and by Theorem 2.6, |E;; A| = —|A|, i.e., -|A| = |E;; - A] = |A| in which case |A] = 0 and thus

|[EA| = |Al + a|A] = |A|. To see that |E| = 1, again take A = I.

Corollary 2.14. If A has two rows (or columns) alike, then |4| = 0.

Corollary 2.15. If E is any elementary matriz, then |EA| = |E| - |A].

Theorem 2.16. (a). |E;;| = ~1 where E;; switched rows i and j
(b). |aE;| = a (aE multiplies row i by a)

(c). |E| =1 where E adds a multiple of one row to another.
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Proof of Theorem 2.16. Apply above theorems to A = I. i
Corollary 2.17. Elementary row operation matrices have nonzero determinants.

Recall that in Theorem 2.2 we listed three equivalent statements, one of which was that 4 is invertible.
We are now in a position to add a fourth statement to that list.

Theorem 2.18. If A is an n x n matriz, then the following statements are equivalent:
{a). A is invertible,

(b). Ax = © hes only the trivial solution,

fc). A is row equivalent to I,,, and

{d). det(A) #0.

Proof of Theorem 2.18. We have already shown that (a), (b) and (c) are eguivalent. Suppose (c) holds,
then there exist elementary matrices E\, Es, ... , Ey such that

Em'Em—l'---‘EZ'E1A=In
therefore
1=|Ia| = |Epn-En-t ... E1A| = |Ep| - {Em=t] +- .. - 4]

and the statement that the product is not zero is equivalent to the statement that |A| # 0 and (d) thus is

equivalent to (c).
|

Definition 2.9. A is called singular if A is not invertible.
Theorem 2.19. If A and B are n x n matrices, then det(AB) = [det{A)][det(B)).

Proof of Theorem 2.19. If B is singular, then by Theorem 2.18, there exists x £ © such that Bx = O,
thus ABx = A© = O so that AB is also singular, thus if |B| = 0 then |AB| = 0 also, and 0 = |AB| =
|A] - [B|(= |A[ - |0} so that the theorem holds.

If B is not singular, then B is row equivalent to I, i.c., there exist elementery matrices E,,... ,E,.,
such that

EpEm_1...E1B=1

and since each E; is invertible,

B = E.E7'.....E7? 30 that

Bl = |E{Y-...-|E7Y  and since

AB = AE['....-E;!
|AB| = |AET'.-...-E7Y but each of E; ! is an elementary matriz, thus
|[4B = |A|-|E*|-...-{EZ' = |A|-|B.
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Definition 2.10. Suppose 4 = (a,;} is an n x n matrix, then the (classical} adjoint of A is defined to be

An Aa ... Ap
Az Az ... Ap

Adj(4) = . .

Aln A2n ree Ann

where A,; is the cofactor of ay;, i.e., Ai; = (—1)"H|M,;|.

Theorem 2.20. If A is an n x n matriz then A(Adj(A)) = (Adj(A4))A = |A|1,.

Exercise 2.3.
Prove Theorem 2.20.

1
det(A)

Corollary 2.21. A is invertible if and only if det(A) # 0, in which case A~1 = (Adj(A)).

Exercise 2.4.
Prove Corollary 2.21.

Corollary 2.22. Suppose A = (ai;) is invertible, then AX = b, b = (b, by, ... yb,)T has as its only solution

T
A Az ... Ag by
1 1 A12 Agg ena Ang bg
x = A7'b=——(Adj(A)b = — . . . .
AdAR = s ]
Aln A?n e Ann bn
E3) biAyy +bodgy + ...+ bpdni
T2l _ 1 [ hAn+bdn ... +badn
Tn blAln + b2A2n +...+ bnArm
e 7 = blAlj + 62A1'24-:- A S bnAﬂj
a1y 0 b e agg
a2 -+ b oo @y
Il - anl P bn v e ann
s | 4]

where b is in the j** column of A instead of the regular column,

Remark. This last formula is commonly called Cramer's Rule.

Exercise 2.5.
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(1). For each of the following matrices A, compute Adj(A), |A| and A" if it exists:

L1s 1
A;':'-232,A-4==0
3 21 0

120

A3=(:]; 3) A4=001.

2 4 2

(2). Find ker(A, ), ker(Az), ker(As) and ker(A4).

2 3
2 1
1 3
01

(3). Solve

1

(a) Ayx=|0] and
0
0

(b) A;x = | 03], then write the solution to
1
1

(c} A1x = { 0|. Explain how you knew the answer.
1

1

3

DETERMINANTS

(4). Solve A;x = (2) using Cramer's Rule. Explain how you know in advance, from Cramer’s Rule, that

To = T3 =0.

(5). Show that if

ap e (@) _ (0

021 @22/ \Z2 Y2
has a solution, then (}}) is a linear combination of the columns (53 ) and (333
are the coefficients which makes them add to (¥} ).

(6). Does the same result hold if 4 is n x n?

(7). Does the same result hold if 4 is m x n?

) and that z, and z;

(8). What might a reasonable person call the set of all linear combinations of the columns of a matrix A?

Would “George” be a good name? Why?
(9). Is this set a vector subspace of R™ if A is {(m x n)? (Look at Theorem 1.2!)

(10). Now, what would be a good name for it?
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(11). Suppose we needed to solve an equation like

an @z ... Gin
any Qag noa aon
(1113"2!"'?551'“) 0 : .. . =(yl!y2|“-1yn)
Amy am2 ... Gma
then where must (y;,... ,yn) be? i.e., characterize the set of all possible y's, show that it is a vector

space and give it an appropriate name.
Our methods (so far) for constructing solutions to equations of the form
Ax =y

where A is an n x n matrix, involve computing determinants. This is very time consuming in that it involves
large numbers of computations. Recall that det(A) involves n! separate products each with n factors with the
factor (—1)°(%) and then all of these are added together. The computation of 8(x) involves n? comparisons
for each product so that the total number of computations is about

an+n?)=n(n+1) +n.

Even the most industrious, enthusiastic, eager calculating person would soon tire of this and (even if they
didn’t) with so many computations the round off errors would soon render the results meaningless, especially
if | A] is near zero.

Suppose you matrix A is 10 x 10 (small by today’s standards) and you data is accurate to 3 decimals
(fantastic in the real world.) There are about 4 x 10% operations with roundoff of about 10~3. This is
substandard if say |4] = 1. Can you imagine publishing a technical paper in which you report your results
as being

¢ = 1 + 400, 0007

As it happens, there is a way out of this dilemma in most cases {actually all cases if one is careful.) The

key is contained in the proof of Theorem 2.18 and is what you learned formally in high school algebra.

Suppose A is an n x n matrix. We may use elementary row operations E,... , Em to reduce 4 to row
echelon form

Eqp--Ey-ByA=U
where U is an upper triangular matrix. Since each E; is invertible, we may then write
A=E.E7'...EZ\U
Now let’s examine Ej EF ! and products of such ET 135 to see what
EfY E7t.. B

looks like,

Recall that there are 3 elementary matrix types and they have inverses which are of the same type as
themselves. (See the chart preceding Theorem 2.2). Recall also that this reduction process is a downwards
method, i.e., higher rows are used to simplify lower rows. Let’s consider the shapes of the elementary matrices
by types. Type 1 elementary matrices are diagonal hence they are both upper and lower triangular. Type 2
are neither upper nor lower triangular and Type 3 are lower triangular.
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Exercise 2.6.
Show that if A and B are both lower triangular, then so is A - B.

Now suppose we have used elementary row operation matrices to reduce A to upper triangular form:
En Epy---E1A=U
and that none of the E;’s are Type 2. Then
A= (E{'---E;NU=1LU
where L is lower triangular. Thus we have:

Theorem 2.23. If A is ann xn matriz which can be reduced to upper triangular form without interchanging
rows, then A can be factored

A=LU
where L is lower triongular and U is upper triangular.
Now suppose we wish to solve
Ax =y
where A has an LU factorization. Then

Ax=LUx=LUx]|=Lv=y

111 0 L 0 v

2y Iz 0 vg L
or . =14

Iy a2 lnn Un 240

which we can solve, row at a time by substituting in the pervious values, e.g., v, = ;’LI- etc. (This is called
1

forward substitution). Noew that we have v in hand, we solve

i U2 - Un Ty

L5
0 wup -+ uzy, Z2
= |
» . Ev
0 0 - wuy, Tn n

for 2, starting with z, and working our way back up. (This is called backward substitution.)
In case A requires an interchange of rows to put it into row echelon form, do that first, say Ej;A = B
where B is okay, then

Ax =y
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becomes
E,-J-Ax = E,'J'y or Bx = ¥y

where ¥ is the original y with y; and y; interchanged. Now do the LU factorization, solve for ¥, then since
Ej' = E;j we have that

y = Ey¥y.

In case A4 requires several interchanges of rows, one must keep good accounts so that the inversions can
be made in the correct order at the end. Computers can do this very well.

Exercise 2.7.

(1). Find an LU factorization for

2 01 1
A=]2 1 2| andthensolve Ax= [0].
211 2

(2}). Get a different LU decomposition for A.

(3). See if you can find an LU factorization for

0 01
A=1[0 1 1].
111

Can you prove that Bob Jones can’t find one?
(4). Rearrange the A in Exercise 2.7(3) so that you can solve
Ax =y

by an LU decomposition of the new equation, Ax = ¥, where A = E\E,E; A. How is ¥ related to y
in this case?



32

CHAPTER 2. DETERMINANTS



Chapter 3

Dot Products, Norms, Geometry, etc.

Dot Products

We have already seen that R® and C" are vector spaces. Our intent here is to find a way to use the vector
space structure to help us gain some control in computational matters concerning our intuitive geometric
sense in such spaces. Specifically, we want to find a way to use our ordinary 3 dimensional world intuition
to help us solve problems of a geometric nature.

One of the most important and useful notions in this regard is the concept of a right angle, straight up,
that way etc. and this comes mainly (mathematically, that is) by way of the Pythagorean Theorem. In &2,
this theorem is extended to arbitrary triangles and becomes the Law of Cosines, that is, the Law of Cosines
is the Pythagorean Theorem corrected for the absence of a right angle. Since these two theorems involve not
only the notion of angle, but also the notion of distance, we will use the concepts as being familiar to the
reader as used in the plane, that is in B2

A

(0,1)
e 1.
(0,z)f = - - - - - - (z1,22)
L
=
e, ,0
by @0
Figure 3.1:

Consider now in 3.1, the line segment from © to the point x = (z1,22), complete with its arrow head
indicating direction. Perhaps a hand with index finger extended would be more suggestive, but its much
more bother to draw than the arrow head. We will continue to use the arrow head in what follows.

33
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One can see in Figure 3.1 that if we construct a rectangular coordinate system with origin at © and such
that the perpendicular projections of x onto the X, and X, axes fall at the points (z;,0) and (0, z;), then
e; = (1,0) on the X, axis and e; = (0,1) on the X, axis and the X, and X, axes are perpendicular.

The use of the line segment and arrow head is quite compatible with our tendency to be visual creatures
and our insistence on being able to “see” things. This insistence does cause some discomfort and trouble
in communication. The trouble is that we will wish to call things “vectors” which do not emanate from ©.
In Figure 3.2, we have two “vectors” which we will not wish to be considered as being “different” in our
discussions, even though they clearly represent two different line segments.

b
’* P/

11,2
T {2,1)
/ -é!——l—l—f—%—H%

1(0,-1)

¥

Figure 3.2: Figure 3.3:

We rationalize this behavior in the following way. A vector line segment has two end points, one with
an arrow head and one without. The one without the arrow head is written first, the one with the arrow is
written second as [(g, b); (c, d)i where the pairs (a, b) and {c,d) are the coordinates of the points in question.
If we translate the coordinate system so that the origin is moved to (a,b), i.e., (z; — a,72 = b) = (y1,42)
being the translation, then the “vector” has end points

[0,0 (c—a,d=B)]

and emanates from the origin in the new coordinate sysetm. We think of two “vectors” as being eguivalent
if after such translations, we get the same representations.

Example 3.1.
Consider the “vectors”

A= [1!2]; [3: and B = (0, -1); (2, 1)]

Translating each (by subtracting its tail from its head), we get

[(6,0%; (2, 2)] and [(0,0); (2, 2)]

for each, thus the “vectors” A and B are equivalent in our visualization. 1]



R]

Hereafter, we will not put quotation marks around the word vector, nor will we tell you whether we are
discussing the algebraic object or our fantasized visualization of it. We will probably be thinking of both
and so will you. Suppose now that we have two vectors in R®. Set A = (a;,az) and B = (b,by), then
A+B=(a1+bh,a2+b) and A - B = (a; — by, az — b2}, moreover, 2A = (2a,, 2a»).

aztba

b

az

Figure 3.4:

Thus, visually A + B is the main diagonal of the parallelogram with sides A and B and A — B is the off
diagonal with the arrowhead at A. The vector 2A is in the same directions as A but is twice as long.

The reader is advised that while we have illustrated these matters only in B2, similar discussions and
visualizations are possible in R® and higher. If these are new ideas for you, then you should do the next
several exercises.

Exercise 3.1.

(1). Suppose A = (3,2) and B = {2, —1). Draw these vectors in a coordinate system, compute and sketch
A +B,A - B, 3B and 2A - B, using the parallelogram method.

(2). Two vectors are said to be parallel if one is a non-zero multiple of the other. Show that A — B in
Exercise 3.1.(1) is parallel to (-2, —6).

(3). If you have three vectors in R?, say A, B, and C, does A + B + C correspond to a diagonal of some
sort as A + B does in R*? Explain and make sketches to illustrate.

By length of a vector x = (z;,z;) € R? we will mean that as given in the Pythagorean Theorem. We
will use double bars {|x|| to indicate this length and as pictured in figure 3.1,

Ixl|* = 2% + 23, or [x|| = (=3 + =)},
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(ﬂl,ﬂ!)

A =

Figure 3.5:

With this notion of length, the law of cosines applied to the triangle in figure 3.5 gives

ICIP = IA{? + IB{* ~ 2l|Al| - /B[] cos(g), that is , (bs — a3)? + (b2 — az)? =

and after squaring and canceling we get

a} +aj + b + b3 - 2||A|| - |IB|| cos(g)

—2a1by — 2azb2 = —2||A|| - ||B{| cos(8), or a1by + azb; = [[A{[{|B] cos(¢).

The same calculation carried out for a triangle formed by A = (ay,a.,... van); B = (b1, b2,...,b,) in

R" gives
a1by +azby + ... + anbn = ||A| - | BJ] cos(

whenever ||A|| and ||B|| are defined so as to
(b3 +...+ b2)* respectively.

Definition 3.1. If A = (a,,a,,... ,ag) and B
(A,B) = AB =a;b, + asbs +... + Anbn

is called the inner product or dot product of A
If A and B are in C*, then we define

AB = a1b +axbs + ...+ anh,.
In both cases, we define

A|* = A-A.

),

give us the lengths of A and B as (a? + ... + a2)¢ and

= (b1,b2,... ,by) are vectors in R™ then

and B.
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Remark. The complex conjugates are necessary in the C" case in order to have [|A|| = (A+A)* to be a non
negative real number, a rather desirable property for length to possess.
Theorem 3.1. Suppose A and B are in R* (or C*), then

(a). A<B=B-A; (A-B=BA)

(b). A«{(B+C)=A-B+ A+C; (Same)

(c). kK(A*B) = (kA)B = (A+kB); (A kB)

{d). A*A >0 unless A = O; (Same)

fe). A+A =0 if and only if A = O; (Seme).

Exercise 3.2.
Verify Theorem 3.1.

Since A B = ||A|l - ||Bj| cos(¢), we have that if neither A nor B is ©, then [[A]| - [|B|| # 0 and thus
ﬁ -Hﬁ-"- = cos(¢) and thus cos(¢} = 0 if and only if ¢ = F or ¢ = —7, in which case A-B = 0, thus we

have

Theorem 3.2.

AB=0ifandonlyif A=0 orB=0 or A 1L B.

A-B
The formula m = cos(¢) gives us a way to determine the angle between two vectors and this in

turn gives us a way to compute projections of one vector upon another. This latter is a procedure in great
use in mechanics.

A
¢

- AB > B

Figure 3.6:

The idea is to find A so that the perpendicular (orthogonal) projection of A onto B is AB. This means
that we need to find A so that

(A-)B)LB and that means
(A-AB)-B=0 ie.,
AB-ABB)=0 or
L _ AB _ [|AljB(lcos(¢) _ [|Alicos(s)

BB 1B Bl
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Then the projection of A onto B, denoted projg(A), is given by

AB
rojp(A)=B = —— | B.
projp(A) (nBuﬂ)

Since |laA|| = |a|-||A|| holds for each a € &, we have that

: |A-Bj |A-B
projg(A)|| = ———||B|| = T== = ||A]| - | cos(g)|,
this last expression being what one would expect from Figure 3.6. Notice that the vector A — AB i
perpendicular to B and it is

A-B

A- B=A-_——.
1B

B
and is called the normal to B. This is, of course, an abuse of the word “The”. There are many vectors which
are normal or perpendicular to B.

Returning to Figure 3.6, if we denote the vector AB by u and the normal vector A — AB by v, we see that
ulvand u+v=A.Itis this type of use which we see in mechanics problems where B is horizontal and
we desire the horizontal and vertical components of the “force” A, these are exactly u and v respectively.

Example 3.2.

Question: Suppose the force F is given by the vector (4, 3) in R2. What are the horizontal and vertical components
of F?

Answer: The horizontal component is the projection onto e; = (1,0) and the vertical component is F minus
Feeo _ (4,941,0) _4
erte;  (1,0)+«(1,0) 1
Ae; = 4(1,0) = (4,0). The vertical component is (4,3) — Ae, = (4,3) — (4,0) = (0,3). Of course we
already knew that, but it is reassuring that our methods worked.

the horizontal component. The horizontal component is Ae, where A =

9]

Example 3.3.
A ball is rolling under the influence of gravity along a plane of slope m. What is the acceleration of the
ball along the plane?

(1,m)

Figure 3.7:
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The only force on the ball is due to the acceleration of gravity which has 0 horizontal component and —g
vertical component, thus a = (0, —g). We want the component of this vector along the plane’s vector which
is B = (1, m) (it has slope m). Thus

_ (1,m)-(0,—g) _ —gm
(I,m)«(1,m) ~ 1+m?
= L - (1,m)
and AB = A(l,m) = T m? (1,m) = I 3
One should notice that 1(%:%5 is & vector of length 1 and is directed along the plane on which the ball

gn__ _ |-gm|

+m)E  A+m)l and a physicist would describe
m m

rests. The magnitude or length of the vector AB is

the vector AB as having magnitude u_fﬁz)_& and direction “down” the plane, the word down referring to
m
the minus sign in AB. Q

This example suggests the need for some simplifying terminology.
Definition 3.2.

(1). The statement that A is a unit vector means that Al = 1.

(2). The phrase “in the direction of A” refers to the unit vector H%T,, thus when we refer to a direction,

we really mean a unit vector.

Example 3.4.

1 1 2 3
The vector (1,2,3) has magnitude (14)* and direction —— 1,2,3) = (——,-—,——). Q
( ) A (14)* an v1d ( ) V14 14 14
Remark. The numbers 1 2 - are frequently referred to as the direction cosines of the vector We
' V14’ Vid' 11 i/ '

will see a motivation for this shortly.

To illustrate the utility of dot products and projections in geometric matters, consider a straight line in
the plane given by

ar+by +c =0,
and consider two points A = (z1,;) and B = (22, y2) on the line. We then have that

ary +bys+¢ =0 and
ari+bpn+c =0 sothat
a(gz —21) +b(y2— 1) =0 or
(a,b)'(z‘z—Ex,yz—y1)=(ﬂ-b)'(B"A) =0

so that the vector B — A which points along the line is orthogonal (perpendicular) to the vector (a,b). Stated
the other way, the vector (a,b) is a normal to the line az + by+e=0.
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AY
(a.b) ar+by+c=0

B (2, y2)

=
X

Figure 3.8:

Figure 3.9:

Let’s use this fact to derive a formula for the distance from a point to a line in the plane (shortest

distance, that is.)
Our idea is to project PQ onto a normal 7 to get proj,(PQ) and then get its length. Recall 5 = (a, b).

. PQ-nl _ la(zp—za) + blyug— ya)l _ lazo + byo F ¢
P = = = .
[prosn(PQ)] (=l (a2 + p2)} (a2 + b2)}

In an entirely analogous fashion, one can show that given a plane expressed by

ar+by+cz+d=0

that the vector (e, b, ¢} is normal to the plane and then derive a distance formula for the distance from a
point to a plane in R®.

Exercise 3.3.

(1). Find the shortest distance from the point (3,4) to the line y = z.
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(2). Find the point on the line y = x which is nearest the point {(3,4).

(3). Generalize what you did in Exercise 3.3.(2) to show how to find the point on ez + by + ¢ = 0 which is
nearest the point P = (zg, y3) not on the line.

(4). Derive a formula for the shortest distance from a point P = (zo,yo, 20) to a plane ax + by +cz+d =0
which does not eontain Py.

(5). Describe a method to locate the point on the plane in Exercise 3.3.(4) which is nearest Py.

Definition 3.3. Suppose X,;,Xas,...,X, are sets. By the Cartesian product of these sets, denoted by
n

X1 ®X;®- - ®X, = [] X;, we mean the set of all n-tuples (z1,%a,... ,x,) where z; € X;.
i=1

Example 3.5.

The usual Euclidean plane has as its objects R ® R. This is not the same as R2. The symbol R? has the
same objects as R ® R but it also has superimposed upon it the usual algebraic structure, i.e., as a vector
space R? = {R @ R; R, +,-} where = R and + and - have their usual meanings. 0

The dot product on a vector space maps the set X ® X into the scalar field ®, thus the “answer” is a
scalar, not in general , a vector, A natural question arises: Can one define a product which is vector
valued and if so can one do it in such a way as to make it useful? In case X = R3, the answer is
yes to both queries.

The usual way comes about from our knowledge of determinants. The notation is old and has become
standard. That notation is:

i = e = (1,0,0) (already we're in trouble.)
set j = e; = (0,1,0)
k = e = (0,0,1).

Definition 3.4. Suppose A = (a1,a2,a3) and B = (by, ba, b3).

i Jj k
AxB = |ay a3 a3
by b by

%l i(azbs = bas) — j(arbs — byas) + k{arhs — agdy),

where the determinant is a formal or symbolic way of thinking and the part following d:.‘gf is the actual
definition as a vector. The determinant notation is extremely useful and provides short proofs of most parts
of the next theorem.

Theorem 3.3.

{a) AxB=-BxA

(6. Ax(B+C)=AxB+AxC
fc) (A+B)xC=AxC+BxC
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(d). k(A x B) = (kA) x B = A x (kB)
fe) Ax@=0xA=0

f). AxA=0

(9). A{lAxB)=0

(h). Bo(A xB) =0

(i) liA > B2 = ||A|IBJi® - (A-B)* (Lagrange’s Identity)
' = ||l A|?[IB|I? sin*(¢)
Proof. The first 8 are immediate results from the properties of determinants and (i) is obtained by direct

expansion of the left and right sides. The second expression in (i) follows from the fact that A B =
lA[[|IBI} cos(¢). i

Corollary 3.4. ||A x B|| = ||A]|[|B|| sin{¢).

Remark. (g) and (h) of Theorem 3.3 show that the vector A x B is orthogonal to both A and B. In R® this
says (among other things) that A x B is perpendicular to the plane which contains the vectors A and B,
le., A x B is a normal to that plane. Corollary 3.4 shows that the magnitude of the vector A x B is the
same as the area of the parallelogram formed by edges A and B.

where ¢ is the angle between A and B.

, P
A
B ( ,CZ,Ca)
AxB
A+ B (8]
A
Alsin(g). -
...
i - A (a1, a2,a3)
B T 2]
(b1, b2,b3)
Figure 3.10: Figure 3.11:

Corollary 3.4 gives one cause to wonder whether one might use determinants to compute volumes and
areas in R® and R? respectively. Let’s look at this. Suppose we have three vectors in R A = (a1,0a2,03)
B = (b1, b2,b3) and C = (ey, ¢z, ¢3) and that they form the edges of a parallelepiped in R, i.e., none lies in
the plane generated by the other two.

G €2 3
Then C«(AxB) = [ay a2 a3
by by b

i

ICIl - I(A x B)|i cos{¢} by the definition of dot product and thus
[iCll cos(e)] | A x B} = |IC|| cos(#)|| A[{[|B]| sin{é) by Corollary 3.4

i
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But, {|C|| cos(¢) is the height of the parallelepiped determined by A, B and C {or the negative of that height
in case cos(¢) < 0}, and ||A||||B|| cos(#) is the area of the base, thus

C-(A x B) = +Volume of the parallelepiped.

Several questions immediately arise. Does this have an analogue in R* which gives area? What does the
= sign mean?

Let’s look first at the first question. How can one do this sort of thing in R? and get area? Can one do it
at all? What is the analogue? There's no cross product in R?. True, but there is a determinant. Suppose
A =(a1,02) and B = (b, b7) form the edges of a parallelogram in 2.

B= (bl!b2)

I

A= (alvaz)
Figure 3.12:
Then gll E;: = a1bz — azby = (a1, ;) *(bo, —b;) = A *B where B = (b2, —b1) is orthogonal to B, i.e.,
BB = 0, and moreover ||B|| = ||B|| = (52 + 52)}. Therefore,
iy o = =
b, b| = 4B = A[lIB] cos(¢} = || A]|[|B]| cos(¢)

where ¢ is the angle between A and B but B L B so that p=0= g where 0 is the angle between A and
B. Therefore cos(¢} = cos (0 + —g) = Fsin(#) and thus

a; ao

b byl IA[I!B| cos{¢) = F(|A||||B| sin{f) = +Area of parallelogramBA.

. a b o . .
Notice that :: b: = - ﬂi Z and similarly for the 3 x 3 determinants, thus the positiveness or nega-

tiveness of the number attained is determined by the order in which the vectors are “listed”.

Example 3.6.
Notice that |3 9| = 1 and |9 §| = —1, so that there’s something “different” about the set {(e1,e2) and the

set (Ez,el) in B2, 0
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Definition 3.5. Suppose that vy = (zy,,... yZ1a)y V2 = (T21,+. - 1 Z2n), ..« , Vi = (Tn1,-.. ,Znn) are vectors
such that the matrix

Vi In T2 -+ Tin
Va2 T21 T2 -+ Tom | .

V=| . |=] . . ] is non-singular,
Va Ini Thz " Tpn

te., |V] # 0. We say that V the set {v,,va,... +Vn} is positively oriented if |V| = det(V) > 0 and we say
that the set {v1,vs,...,v,} is negatively oriented if det(V) < 0.

Exercise 3.4.

(1). Show that in R", the set {e;,ez,...,e,} is positively oriented and that the “volume” of the unit cube
which they determine is 1.

(2). Show that in R", the set {e;,e3,e,¢eq4,... sen} is negatively oriented and the “cube” generated has
“volume” —1.

(3). What happens to the orientation of a set {vi,va,...,v,} if thereis an interchange of two elements in
the set? Why is that?

(4). Without computing the determinant, say what orientation the set {e1,e3,e2,e4} has in R!. What
about {ey,e3,ez,€,}? What about {ey, e;,e3,e2}? How did you know?

(5). Find the volume of the parallelepiped which has the origin and the points p; = (1,1,1};ps =
(0,1,2); ps = (1,0,2) as vertices. What is the orientation of the set {p1, P2, pP3}?

Remark. Recall that Theorem 2.4 states that |4] = IAT|, thus in Definition 3.5, it matters not whether we
write the vectors {vy,...,v,} as columns or as rows for the matrix V, it does matter of course if we perform
an inversion.

Exercise 3.5.
Shuwthatixj:k,jxk=ia.ndkxi=j,whilejxi=—k,kxj=—ia.ndixk=—-j.

Remark. This is known as the “right-hand-
rule.” See Figure 3.13. The thought being

if you curl the fingers of your right hand CD
in the direction from A over to B, then
your right thumb points in the direction of e
A xB. J

Figure 3.13:



i j k
Remark. If we had defined A ~ B = |b; by b3, then we would have i ~ j = =k; j ~ k = =i and
@) a2 ag

k~i=—j.

Exercise 3.6.
Show that with the vector product A ~ B rather than A x B, one actually has a left-hand-rule.

Equations for lines, planes and related topics

Suppose we wish an equation for a line in R* which passes through a point Py and a point Qp. The
vector

X =Po+ Qo — Pyp)

consists of Pg with a multiple of (Qo — Pp) added to it. In particular, in R®, say Py = {zo,y0, zp) and

. X = Po+1t{Qo — Pg)

Figure 3.14:

QD = (m!iylszl)! then
X=(z,42) = Po+t(Qo—Po)
= (zo, Y0, 20) + t(T1 — To, Y1 — Yo, 21 — z0)

or (in parametric form)

T = o+ t(:l.‘l - .’l?o)
¥y = Yo+ ty — o)
z = zp+ t(z1 — Zzo)-

Solving each equation for ¢, gives

= T~To Y= _ z—2p
Ty —Tg n—% 21— %
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which is called the symmetric form.
Clearly ¢ plays a multiple slope role in the parametric form and this is emphasized in the symmetric form.
An alternative way of thinking about this is that we have a line through Py “in the direction of Qg — Py.”

Recall that the actual direction is given by ”g_o—_go_”_ See Definition 3.2,
g — Fo

Let’s look at this more carefully, e.g., visually.

B
Figure 3.15:
Suppose A = (a,,as,a3), then A ( oL g2 O3 ) is a point on the sphere of radius 1 centered
T IAT T \TAT JIAT faq) P
at the origin. Moreover, cos{a) = ——, cos(8) = —= and c05(7) = ;. This is the reason the components
@)= rap s6) = A7

of a unit vector are called the direction cosines of the vector as mentioned after Example 3.4.
If we had desired to write an equation for a line through Py = {0, 0, 20) in the direction A = (a,, a3, as),
ie., |A|l = 1, then we would have written

X = Py + A, or

(:z:,y,z) = (mﬂayﬂ’zﬂ)"'t(ﬂl'laZ!aH)
T = zxp-+ia

or ¥ = y+tas
z = zp+itas

T—To _Y-—Y _zZ—2p
(3] [15)] a3

ort =

where a;,02 and as are the direction cosines of A and af + o} +a2 = 1.
Now let's suppose we want a plane which contains Py = (20, %0, 20) and has normal 5 = (a, b, c). We
need that all vectors X in the plane have the property that 5 L (X — Py), that is

n{X-Py) =0
or X —-7Pp=0
or X = n*Py holds.



Figure 3.16:

Writing these in detail,

(a,b,¢)%(z — To,¥ — Yo, 2 — 20) =0
or a(z — zq) + b(y — yo) + c(z — z0) =0
orac+by+cz=azro+byo+czp=d
oraz+by+cz—d=0.

Exercise 3.7.

(1). In R®, write equations for a line through Py = (1,1,1) and Qp = (1,2, 3), in vector form, in parametric
form and in symmetric form.

(2). Find the distance from the origin to the line in Exercise 3.7.(1).
{3). Find the point on the line in Exercise 3.7.(1) which is nearest the origin.

(4). Find the direction cosines for the vector Qp in Exercise 3.7.(1) and then find the radian measure of
the direction angles a, § and .

(5). Write an equation for the plane through Py = (1, 1,1) with normal (0,1, 2), i.e., the line in Exercise
3.7.(1) is normal to this plane.

{6). Draw the plane in Exercise 3.7.{5) and the line in Exercise 3.7.(1) in the same figure.

Now let’s suppose that our given data for the plane is three points, rather than a point and a normal.
Denote the points A, B, C. There are several ways to attack the problem. One possibility is to attempt to
compute a normal the plane in question, then use that normal and either A or B or C for Py in the previous
case. For example, (A — C) and (B — C) are both vectors in the plane we seek and therefore, by Theorem
3.3, (A - B) x (B —~ C) = 7 is orthogonal to both of these vectors and thus a normal to the plane which

C
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they determine. We can therefore, use
X-(A-C)x(B-C)] A-(A-C)x(B-C)
or X:(A-C)x(B~-Q)] = B+(A-C)x(B-C)
or X [(A-C)x(B-C)] = C{(A-C)x (B-C)).

Another procedure would be to solve

3

for n (there are infinitely many solutions) and then write X = Cey (or A= or Bey).
We can of course apply this method in R® to find what is called an “affine subspace” through Py, which

is normal to 7, that is

n4(C - A)
7+(C - B)

X =Py

provided 1 and Py are known. One could not, of course, use cross product methods unless n = 3. One could,
given n points Py, P,, ..., P,,, consider the equations

n(Pp-P;)=0:=1,2,...,n-1,
solve for 5 and then write
X =Poey
for the affine subspace through Py, Py,...,Pa.
Exercise 3.8.
(1). Find an equation for the plane through the three points e;, es, and es.
(2). Find a normal to the plane in Exercise 3.8.(1).
(3). Find an equation for the plane through the three points (1,0,0), (1,1,0) and (1,1,1}.
(4). Find a normal to the plane in Exercise 3.8.(3).

Let's suppose we have, in R?, a plane P given by az + by + cz + d = 0 i.e., (z,y, z)*(a, b, ¢) = —d, where
1 = (a, b,¢) and that we have a point Py = (zg, Yo, z0) not on the plane P. We want to find the point Qon
P which is nearest Py and then find ||Py — Q||, i.e., how far Py is from the plane P.

Intuitively, we know that Py — Q should serve as 2 normal to the plane P. Let’s write an equation for
the line through Pg which is normal to P, i.e., the line through Py in the direction 5 = (a,b,¢). That line
is given by X = Py -+ tn = (zq, y0, 20) + £(a, b, c).

Let's now find where this line intersects P, i.e., find a value of ¢, say tp which puts X on both the line

and the plane, i.e.,

Xenp = (Po +tn)n = Py + tnen = Poen + to[In|I® = —d
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where 77 = (a, b,¢). This last equation tells us that
—d—Po'ﬂ_ Py +d

to = [l
lI=(1 [I=l1?
_axg +byg +czo+d
- a? + b2 + c?

azxg + by + czg - d
a? + b +c?

andthus X =Q =Py +in =Py — ( ) (e, b,¢) gives us the point Q and then

{a.'l.'g + byo + c2p + dI
(a'l + b2 + C2) ']

azo + byg +czo +d
"Q - Pﬂ” = . “':’”2 ’ l.”q” =

It is of some interest that this method works just fine in K" {(since it does not depend upon a cross
product) and can locate the point Q in an affine subspace S given by

Xnp=d

which is nearest a point Pg not in 8 and then one computes IQ — Pq||, the distance from S to Py. The
technique is the same. Consider the line [ through Py in the direction n, i.e.,

- - 4 H 2 d_PU-"
and determine ¢ = fo which puts X in 8, i.e., d = X5 = (Pg + ton) 5 = Py *n + to||7]|? so to = TETTE

d—P d—Po-r]
then Q = Pg + ton = Py + —“—"n”:”ﬂ and [|Q - Pyl = | ”TIIF ! :

Exercise 3.9,

(1). Find the point Q on the plane P given by 3z + 2y + 2 = 4 which is nearest to the origin (i.e.,
Po = @ =(0,0,0)) and then compute ||Q — Py, the distance of P from ©.

{2). Find the point Q on the plane given by = + y + z = —1 which is nearest the point Pg = (1,1,1) and
compute ||Q — Poll.

Remark. The technique just illustrated is used quite often to find the best approximation to a point Py from
some subspace or affine subspace which does not contain Py. One must, of course, have a dot (or inner)
product available,

Exercise 3.10,
(1). Show that A = (2,-1,1); B =(3,2,-1) and C = (7,0, —2) are vertices of a right triangle.

(2). Suppose x = (k,1) and y = (4,3). Find a value for k so that x L y. Find a value of k such that the
angle between x and y is §. Find a value of & so that the angle is oL

(3}). Establish the identity:
llx + I + lix = ¥IIP = 2lIx}|* + 2llyll*.

This is sometimes called the “parallelogram law”. Explain why this is done.
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(4).

{5).
(6).

CHAPTER 3. DOT PRODUCTS, NORMS, GEOMETRY, ETC.
Suppose x L y;, and x L y; and show that for al] scalars a and B, x L {(ay; + By2).(This idea was
used in the discussion preceeding Exercises 3.8.)
Suppose u = (—1,3,2) and y = (1,1, ~1). Find all vectors v such that u x v = y.
Show that if A = (ay,a2,a3); B = (b, bs,b3); and C = (¢, €3, £3), then

a1 az daz
h by bs
C €2 €3

A«{BxC)=

. Suppose that A, B, C are as in Exercise 3.10.(4). Show that

A x (B x C) = (A+C)B — (A-B)C.

Hint: Do it first for C = e;, C = e, and C = e then use linearity.



Chapter 4

A Return to Calculus

Much of what you learned to do in the calculus of functions of a single variable (single independent variable,
single dependent variable) could be done because you knew how to compute using the variables, i.e., in
¥ = f(z), one has an algebraic structure on the z's and an algebraic structure on the ¥'s. One of the major
reasons for the development of vector spaces is the need for such algebraic structures in the study of functions
of several variables, i.e., f: R® =4 R™ or

y = f(z)

where £ € R" and y € E™. One needs to be able to do computations, even if in less complete algebraic
structures than were available in the simpler cases.

For example, in computing a derivative of a function f at a point Ty, one considered a Fermat difference
quotient,

f(z) — f(=o)

p—— I'(za) + €e(z, 7q)

where €(z,z9) — 0 as (x — 2¢) — 0. In the vector case this is not possible since one can’t divide by a vector.
We can, however, rewrite this expression as

f(z) = f(zo) = f'(zo)(x — Z0) + €(z, Tp)(z — o)

and avoid the problem of division. Recall that f'(zg) is 2 number in the R! — R! case and thus F(xa) €
L[R!, R']. This is what we will do.

Definition 4.1. Suppose f : R® —+ R™ (or more generally, f + X = Y). The statement that f has
a Frechet differential (or derivative) A at 2o means that A € L[R*,R™] (or L[X, Y]) and there exists a
function ®(z, o) such that

f(z) — f(zo) = Az = z0) + ®(z, z0)]|z — 20|
where ®(z,z9) =+ © as z = .

Note. In case f: R' = R!, then A is a number and this is the usual derivative. If f:R* 5 R!, then A is
1 x n and is usually called the gradient of f.

al
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Our first task is to gain more explicit information about the derivative 4. We will usually denote it
Df(zg). Suppose f: R® -+ R™, then A = D f{zo) is an m x n matrix. We know that the columns are
given by {A{e1), A(ea),... ,A(en)} and thus we try to arrange things to obtain these. What we need is to
have (x — xg) = e; - € where € is a yet to be determined constant (scalar) which we can divide out. Suppose

Zo = (o1, %02, ... ,Ton), then we choose = = (e + zg;, T2, . - . yZTon) and we have

f(@) = f(zo) = fle+Zo1,%02,... ,Zon) — f(Zo1,To2,- .. , Ton)
= Az — zo) + B(z, z0)l|z — zo|| = A(€,0,0,...,0) + &(x, zo) €.
Simplifying by dividing by e, we have

f(z) = f(z0) fle + To1, %oz, ... ,Ton) =~ flZo1, %02, - - . , Ton)
€ (€ + z01) — zo;

= Aei + ¥(z, mg)lz—l.

Now as [lz — zg|] = [¢]| == 0, 1§1 remains 1 or —1 while ®(z,29) — 0, thus the right side becomes A(e,)

Nz}
which is the first column of A while the left side is, since flz)=(yeRM) = hfz)
Jm(2)
file+ zor, zo2, ... ,zon) fi(zor, zoz, ... ,Zon)
fa(e+ zo1, Zoz,... ;o) | _ | folZor,Zo2,-.. ,Ton) fie 701 209 1.0 20n)~ f1 (b a1 T0g e aon)
e+Zo1)~201
Fm(€ + 201, To2, - .. , Ton) fm (@01, T2, ... , Zon) - 2 °+’°"=°""‘('e+301_)_’2m L

(e+ zo1) — zm

w
573
)

- |7 ase— 0.

%LZ?- I=Zg

The ith column of A is computed by the same device and we see that

oo fh . f4
BB

fmle+201,202,... 1Z0n }— fm (#9201, 202, Zon }
(¢+zo1)—zm

az
z3 Bza b Zn

Dfm)=A=| % P T B
Yo G . Ga

and, if m > 1 this is called the Jacobian matrix, while if m = 1, we have D f(xp) = (3‘%, 3‘%{;,. .. ,3%{7)

which is as mentioned earlier called the gradient of f. Sometimes the Jacobian is denoted J ( %—Jﬁ-)
and the gradient is denoted Vf I::xu- The geometric significance of V f will be studied shortly.

=2z
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The usual relationships between the differentiation operation and the algebraic properties of the function
spaces hold. They are more complicated to prove than in the scalar cases (because one can not divide), but
do still follow in a rather straight forward manner.

Theorem 4.1. If f and g each map X into Yand k is a scalar, then D(f+g) = Df+Dg and D{kf) = kDf.
Proof of Theorem 4.1. Straight forward computation. |

Exercise 4.1.
(1). Suppose g{z;,Z2,23) = 2 — 27,23 + cos(zz). Compute Dg.
1

fl(zllz2!z3i£4) Iy +3I‘2I4 +I§
(2). Suppose f = | fo(z1,Z2,%3,24) | = | zi +22 —23 ). Compute Df.
f3(xl:I2yISsm‘|) .

¥} — 2}
(3). Suppose g : R™ — R" and f: R® — R®, both being differentiable. Compute a formula for D{f(g)),
i.e., obtain the form of the Chain Rule.

Remark. There are now various forms of products possible. The next exercises address some of these cases.
(4). Suppose g: R* — R! and f: R* - R™. Compute D[g(z)f(z)].
(5). Suppose g: R" — R™ and f: R* — R™. Compute D[g(z)f(z)].
(6). Suppose g: R" — R% and f: R® — R?. Compute D[g{z) x f(z)).
Suppose f : R* &+ R! and consider the set (z,y, z) such that f(z,y,2) = k (a constant). Such a set is
called a level set or surface. Consider a point Py on the surface and a curve € = (z{t), y(t), z(t)) lying in the

surface, i.e., f(z(t),y(t),z(t)) = k, and containing the point Pg. The function f(C(t)) = k maps R' — R!,
but is the composition of f : R® & R! and € : R' = R®. the chain rule (Exercise 4.1.(3)) tells us that

#CW) _
L = sype)

z'(2)
where Df is a 1 x 3 matrix, namely (gﬁ, %é, %{) = Vf and DC is a 3 x 1 matrix, namely (v‘(t)) so that
(¢

df(C() _ _ TN ofde Ofdy 8fd:
—a (DFNDC) = (fz1 fys £2) (!zf') = 57 dt 55 + B2 gt

(This is sometimes called the directional derivative of f in the direction of € at the point Pg.) but since
F(C(t)) = k a constant, ﬂ%‘iﬂ =0, i.e,, (gﬁ, %f, %f) *(2'(t),y'(t), 2’ (t)) = 0. This tells us that the vector
V f is perpendicular to the vector (z'(t),y'(t), z'(t}) which is tangent to the curve C(t). However, the curve
C(t) was arbitrarily selected, so that V f is orthogonal to the tangent plane to the surface at Py. This is just

another way of indicating that Vf is normal to the surface at Py. This gives us a way to write equations
for tangent planes to surfaces at given points if the surface is described by

flz,y,2) =k
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Figure 4.1:

Recall that a plane through Py can be described as all points X such that
X =Py
and in this case n = Vf|p , i.e.,
(©:9:2)* (f2, fyr ), = (%0140, 20)*(fr Sy £, OF (2 — %) frlpy + (v — wo)fylp, + (2 — z0)f:|p, = 0.

As it happens, this aspect of V f has other interesting and useful properties. Returning to the directional
derivative of f in the direction of the curve C at Py, namely

df(gt(t)) o= g_-::_x'(t) + %y,(t) + g—‘:z'(t) = VfL'(t)

IV - IIC (#)1f cos(8)

where ¢ is the angle between V£ and the tangent direction of the curve €. Let's assume that e =1
(we could alter the parameterization of the curve C and get this anyway), then

2 = 19 costo)

and this is mazimum when cos(¢) = 1, i.e., when ¢ = 0: it is minimum when cos(¢@) = —1, i.e., when ¢ = 7.
UPSHOT: The direction of maximum rate of change of the function f is the direction of V f and the maximum
rate of change is ||V f{|; the minimum rate of change is —||V f|| and is in the opposite direction.



Exampie 4.1.

Suppose f(z,y,2) = 2° - 3zy + z* and Pp = (1,1,1). Then f(1,1,1) = —1 and the level surface S of f
which contains Py is 2° — 3zy+ 2% = —1. Vf = (2z — 3y, -3z, 2z) and Vf|p, = (=1,-3,2) which is normal
to S at Py and the tangent plane at Py is then

(z-1(-D+@y-1(=-3)+(2-1){2) =0.
The maximum rate of change of f at Py is || Vf|p,_ || = V14 in the direction 5-]1;- and the minimum rate of

change of f at Py is || Vf|p, || = —v1d in the direction =XL. 0

We have thus seen that the ideas developed so far are useful for certain types of mirimax problems. Let’s
look at yet another example of this type.

Suppose we are asked to find the extreme values of a function
u= f(z,y,2)
subject to the condition that the points (z,y, z) being considered are on the surface S:
g(z,y, z) = k (a constant).
Assume that we have located such a point Py and that it isn’t a boundary point of the surface S, then
at Po, Vg is orthogonal to the surface S and along any curve C = (z(t), y(t), z(t)) on the surface S which
contains Py, ﬁ%‘—mlp = 0 because we are at an extreme value of f, i.e., 5'% = (Vf)+(z'.y,2z') = 0 and

0
therefore V f is also normal to the surface S at Py, since the curve € is arbitrary.
This tells us that both Vg and V f are normals to the surface § at Pg and therefore there must be some
number A such that

3% _%
A Valy, i, (2L 0L A1\ _ (3 09 2 of _ \20
Vflpu _’\ VgIanl'e's (BI! ayl az) P, - A (azf ay? az) or J gg’ Ag‘g d
A = A an
0z 0z
\g(z,y,2) =k

must all hold at any extreme values of f on the surface S. This gives us four equations in the four unknowns

Z,¥,z, A which we need to solve in order to get the coordinates of the potential extreme values points.
gi{zy,7)=k;
gal{z\y,z)=kz

and have V f orthogonal to the tangents to all such curves (but then so are Vg,, and Vg2) so that V£ must
lie in the vector subspace spanned by Vg, and Vg, (recall Exercise 3.10.(4)), that is, there are constants A;
and A; such that

{Vflp,, = A1 Vailp, + A2 Vg2|p, and

In case we have, say two constraints, then we consider curves C which lie in both surfaces {

9=k

g2 =k
and we again have as many equations as unknowns. The same argument works for any (integer) number of
independent variables and constraints. We thus see that it is rather a naturally occuring idea to want (or
need) to write one vector as a linear combination of other known vectors. We will pursue this further in the
next chapter.
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Example 4.2.
Find the extreme values of
u= f(z,y,2) =2z — 3y + 4z
at points on the unit sphere g(z,y,z) = 22 + 2 + 22 = 1. Vf =1(2,-3,4) and Vg = (2z,2y,2z) and thus

Vf = AVyg becomes

2= A2z
-3 =A%y
4= )A2z.

Squaring each side of these three equations and adding, we obtain

29 = A?4(z? + y® + z%) = A%4 and therefore A = —:Ez—-‘/ig

— (2.-34)

IfA= @, then we have Py = (zo, 40, 20) = vt

HA= 22@, then we have P; = (z1,1,2;) = = 2‘;93‘4 .

There u(Py) = f(z0,30,20) = V20 and u(P,) = f(zy,y1,2) = —v/29.

Since these are the only candidates for extreme values, u(Pg) is the maximum value and u(P,) is the
minimum value, 0

Exercise 4.2.

(1). Find the points on the unit sphere g(z,y,z) = 2% + y? + 22 = 1 where u = flz,y,z) = 2% + 292 + 22
acheives maximum values and minimum values and find those values. CAuTION: There are infinitely
many critical points!

(2). Find the points on the unit sphere where u = f(z,y,2) = 2y — 3z + 4z achieves its extreme values and
find those values.

{3). A manufacturer has total capital 1 (measured in millions of dollars) and expenses z,y, and 2, also
measured in millions of dollars. It has been determined that the company’s profits are given by
u = f(z,¥,2z) = 2° + 3zy + 2z. How should the 1 million doliars be allocated in order to maximize

profits and what is the maximum profit?

NOMENCLATURE: The method just described is usually called the method of Lagrange multipliers, the
function f whose extreme values are sought is called the utility function, the g’s are called constraints and
the A’s are called the Lagrange multipliers.
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Bases

Definition 5.1. Suppose {v;,vs,...,Va} are vectors in some vector space X. The symbals
Span{v,va,... ,vp}or [{vi,v2,...,v,}]
denotes the set of all linear combinations

vy +cava 4o +CpVn

of the vectors {vy,va,...,v ]}

Theorem 5.1. Span{v;,va,...,vs.} 5 a veclor subspace of X,

Proof of Theorem 5.1. Span{v,,vs,...,v,} is closed under addition, and scalar multiplication, thus
Theorem 1.3 completes the argument. |

In as much as the combinations involve a fair amount of computation, it is natural to wonder whether
one could reduce the work by dealing with fewer vectors, i.e., is it possible that one could throw out some of
the v’s and have the same subspace for Span{vy,va,... ,v,}?

If one of the vectors, say v», is a linear combination of the other vectors, we could just throw that one
out and still have enough to get the job done.

Definition 5.2. A set of non-© vectors {v;,vs,... ,v,} in a linear space X are called linearly dependent
if and only if one of them is a linear combination of the others.

Theorem 5.2. A set {vy,va,...,Vy} is linearly dependent if and only if there exist constants ¢, ca,... ,Cn
such that not all of the c;’s are zero and

C1Vy 4+ Cava + -+ eV = 6.

Proof of Theorem 5.2. Suppose {v1,vz,...,v,} are dependent, then one of the v’s, say v, is a linear
combination of the others, i.e., va=¢yvi+cava+--+epvp and thuseyvy = 1-va+esvat -+ v, = O
and (—1) # 0. The converse is also triviel, |
Definition 5.3. A set of non-© vectors {vi,vs,...,v,} in a vector space X is called linearly independent

if and only if it is not linearly dependent.

57
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Corollary 5.3. A set {v;,vs,... »Vn} is linearly independent if and only if
vy +cavad it opv, =0
wmplies that all of the ¢, ’s are zero.

Definition 5.4.
(1). A set of vectors {vy, vy, ... »Va } in a vector space X is called a basis for X if and only if {vy,vo,... ,v,}
is linearly independent and Span{vi,vs,... yVn} is X,
(2). A vector space X is said to be finite dimensional if and only if it has a basis which is a finite set of
vectors. It is called infinite dimensional otherwise.
(3). The dimension of a vector space is the number of vectors in a basis for the space.

Remark. Part (3) of Definition 5.4 requires that we prove that
Theorem 5.4. All finite bases for a given vector space have the same number of elements.

Proof of Theorem 5.4. Suppose {X1,X2,... yXny.-- 1Xm} 28 another set of vectors in X, m > n, then

X; = cnvitcnvet-o- 4oy

X2 = caVi+caava+---+ 0V,

Xn CniVy +CpaVe + -+ - 4 vy

Xm = CmiVi+tcmave—+-+ -+ CunVn.
Now suppose that
kixy + koxg + -+ knXg + - 4 bk = 9,
e,
kifeuvy +eove + -+ einvp) + - + km(cmi1vi +cmava + -+ + CpVn) = O

(krery +kzear + -+ o k€ )V1 + o+ + (ki1 + kacan + - + kmtmn)vn =0
and since the {vy,va,...,v,} set is linearly independent, Corollary 5.9 says that the coefficients are all zero,
ie,

ky 0

c c c ks 0

kiciy +kaca1 + -+ ke = 1 ta S ) .

kiciz + kecaz + - - o+ ke = G2 c22 Crm2 : :
or . =

.................... : k|7 o0

klcl“ + sz2n to+ kmcmn = Cip C2n Cmn -

ko 0

Since m > n, the matriz of cij 9 is singular and thus the kernel is not identically @, i.e., the matriz-vector

equetion has a non-trivial solution and thus the set {x1,%2,...

+Xny+- 1 Xm} i3 linearly dependent. [ |
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Corollary 5.5. If {x1,X2,... ,Xn} oand {y1,¥2,...,¥m} each span the same subspace, the larger set is
linearly dependent.

Corollary 5.6. Any two bases of a finite dimensional vector space have the same number of elements.

Corollary 5.7. The spaces R" and C* are of dimension n.

Proof of Corollary 5.7. Count the elements of the basis {e;,ey,... ,e,}. n
Corollary 5.8. If{vi,vs,...,v,} is a linearly independent subset of a vector space X of dimension n, then
it is a basis for X.

Corollary 5.9. If {v{,Vvs,...,vn} is a set which spans an n-dimensional vector space X, then it is a basis
Jor X.

Corollary 5.10. If r < n and {v;,va,...,v,} is ¢ linearly independent set in an n-dimensional vector
spuce X, then {vi,va,..., v} can be extended to a basis for X. .

€
Lemma 5.1. If {x1,X2,... ,Xn} i5 a set of linearly independent vectors and v € Span{x,, xa,... ,X,}, then
{x1,%X2,... , Xy, v} i3 linearly independent.

Proof of Lemma 5.1. Suppose {x,Xz2,...,X,, v} is linearly dependent. Then there ezist apv + c;%; +
odexe = @ Ifap # 0, then v € Span{x),x2,...,X,} which is false, thus ag = 0 and thercfore
1X) + €aXg + -+ crXp = O, the ¢; 's are not all zero, thus {x1,X3,... ,X.} i5s linearly dependent, also false.
Thus it is not true that {v,x1,Xq,... ,X,} is linearly dependent. [ |
Proof of Corollary 5.10. Span{x;,x2,...,X,} is not all of X since r < n. Choose a vector v in X not
in the span of {X|,X2,...,%.}, then {X1,X2,... ,X,,V} is linearly independent. Repeat the procedure until
n vectors are collected. |

Definition 5.5.

(1). Suppose A is an m x n matrix. The vectors which form the rows of A4 are called row vectors of 4 and
the columns are called column vectors of A.

(2). The subspace spanned by the row vectors of A is called the row space of 4 and the subspace spanned
by the columns of A is called the column space of A. The row space is in R®, the column space is in

E™,
Remark. This definition reflects back on Exercises 2.5.(5)-(11). We will now expand upon your discoveries.

Theorem 5.11. Given a malriz A, elementory row operations give rise to o new matriz with the same row
space as the matriz A. Sinmilar remarks hold for columns, mutatis mutandis

Proof of Theorem 5.11, Just do it. ]
Theorem 5.12. If A is an m xn matriz, then the row space and the column space have the same dimension.
Proof of Theorem 5.12.

@11 01z ... Gin b (b1, 012, ... Byg)

_ @21 @ ... G b (b21,b22, - - ., b2n)
Write A = , _ . _ and suppose that ]

AGml Gm2 ... Onn bk (bkl,bkz,----bkn)
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15 a basis for the row space of A (of dimension k), then the rows of A can be written

ry = (811,012,... y@in} = enby +c1pba + - - + e by
= cri{bu1, biz, ..., bin) + e12(bar, boo, ..., ban) + - + c1p(bry, bya, ..., byn)

so that

e = enbyy +cpzbg; + -+ +epbgy
21z = €1ibi2 + e52b2e + - - - 4 g1 pbye

.....................

G1n = cn1byg + c12ban + ¢+ - + c1bgy,

and thus, from column i and the first row of A we may write a;; = ci1by; + c1aby; + -+ + €1xby; in general
we have from column i of A, going down one row at a time

a1 c ¢ e
a1i = enby; + e12bgi + -+ + cixbyg a;t. f;: c;z c;:
ay; = enby; + caobg; + - + cop b or .t = by; .. +by | +.__+b&
O : : : b
ﬂ-"c bi; + ¢paba; + - - - + b Omi Cni Ca2 Cnk
o T kDb = by;Cy +bgiCy + -+ - + by; Gy,

and thus the vectors {C1,Cy,... ,Ci} form a set which spans the column space of A, therefore the dimension
of the column space 1s less than or equal k, the dimension of the row space.

The same argument, starting with columns, gives the reverse inequality and thus we have that the row
space and the column space have the same dimension. |

Definition 5.6. The dimension of the row (column) space of a matrix A is called the rank of 4.

Remark. It follows from Theorem 5.11 that if A is reduced to row echelon form, then the non-zero rows of
the reduced matrix span the row space and thus Theorem 5.12 shows that the number of non-zero rows is
the rank of A.

We can now add to our list of equivalent statements about the invertibility of an n x n matrix A.
See Theorem 2.18 and Corollary 2.22.

Theorem 5.13. If A is an n x n matriz, then the Jollowing statements are equivalent:
(1). A is invertible

(2). Ax = © has only the zero solution (ker(A) = {0})

(3). A is row equivalent to I,

(4). Ax =Db has a unigue solution for esch b € R*(C")

(5). A has rankn

(6). det{d)#0

(7). The row vectors of A are linearly independent
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(8). The column vectors of A are linearly independent.

Now suppose A is an m x n matrix, b € R™(C™) and consider the equation Ax = b,

an @1z ... Gn x by
a1 Az ... G Tq b2
@1 Gm2 ... Ogmp In b

which we can rewrite as

ay a2 Gin by
21 22 G3n ba

T B + ) 5 + - + In = 8 1
2m1 m32 Qinp bm

thus we may obtain a solution if and only if the vector b is in the column space of the matrix A.

Theorem 5.14. The equation Ax = b has a solution if and only if b is in the column space of A,
In the same manner we can show that the equation x™ A = b” has a solution if and only if bT is in the
row space of A.

Finding a New or Better Basis

It is often the case that we have one basis for a vector space, but find that another may Suit our purposes
better. The word better here almost always has computational overtones and frequently is realized only
after some algebraic or geometric insight is obtained. In order to make these remarks have more meaning,
we need to look more closely at where we have already been in order to have some notion as to where we
might go next. The basis {e,,ey,... ,e,} which we have used thus far has properties, not yet probed, which
have contributed much to our past successes. Let’s probe. Theorem 3.1 serves as a motivation.

Definition 5.7. Suppose X is a (real or) complex vector space. An inner product {~,-) on X is a (real or)
complex valued function on X x X such that

(1). {x,¥) = {y,x)

(2). (x+y,2) = (x,2) + {y,2)

(3). (ox,y) = a(x,y)

(4). (x,x} > 0and {x,x) = 0if and only if z = ©.

Note.

{i). (x,0)=(x,0-x)=(0-x,%x) =0(x,x) =0

(i1). (x,ay) = (ay,x) =Q(Y1x) =a-(y,x) ZE(x'Y>
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(). (x,y +2) = {y +2,x) = {y,x) + (2,x) = {y,x) + {2,%) = {x,y) + (x,2).
Thus while the inner product is linear in the first variable, (ox + By, z) = alx,z} + B{y,2), it is
conjugate linear in the second variable, i.e.,

(x,ay + fz) =@ (x,y) + B {x,2) .
In case X is a real vector space, the conjugates may be ignored.
(iv). The dot product on R® and on C" ig an inner product.

{v). Suppose X is the set of complex valued continuous functions on the real interval [, b], with scalar field
C and the usual operations. {f,g) = f: f(z)g(z)dz is an inner product on X. If p(z) > 0 on {a,b], then

{f,9) p = I : F(z)d(z)p(x)dz is also an inner product on X. The function p is called a weight function
for the inner product.

Definition 5.8. A set {v),vs,...,v,} in a vector space X which has an inner product {:,-) is called an
orthonormal system in X if and only if

(1). (vi,vi) =1 (normalized) and
(2). {vi,v;) =0if i # j (orthogonal).

This is usually written as (v, v;) = §;; where d;; is called the Kronecker delta function and has the value
1if i = j and the value 0 if i # j. We abbreviate this by saying the system is an ONS,

Exercise 5.1. Show that {e;,e,... ,e,} is an ONS in both R* and C".
Theorem 5.15. If {v),vs,...,v4} is an ONS end x € Span{v,, va,... »Vn}, then

X = z {x,v:) vi.
=1
Proof of Theorem 5.15. Write x = ¢,vy + -+ + ¢, Va, then (x,vi) = 1 {vi,vi) + e {va,vi) + -+ +
i Vi, Vi) + -« + ¢ {Vn, v;) and all terms on the right are zero save the i**, so (x,v;} = ¢; {(vi,vi) =¢;. &
Definition 5.9. The coefficients (x,v;) are called the Fourier coefficients of z relative to {vi,ve,..., v}
Exercise 5.2.
(1). Show that if x = (z,23,... ,,), then for the ONS {ei,es,... e}, {x,€) = =;.

(2). Suppose X is the vector space of continuous real {or complex) valued functions on [0, 2] with (f, g} =
o f(z)g(z)dz. Show that {sin(z),sin(2z),...} = By is an ONS in X.

(3). Show that B2 = {1, cos(z),cos(2z),.. .} is an ONS in the same X.
(4). Show that B; U By = {1, cos(x),sin(z), cos(2z), .. .} 15 an ONS in the same X, i.e.,

2
[ sin(mz} cos(nz)dz = 0 for all m and n.
0
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{5). Use the results of Theorem 5.13 to show that a set of vectors {vi,va2,...,v,} forms a basis in R
(C") if and only if the matrix A whose columns are the vectors {vi,va,...,vp} is invertible, i.e.,
det{A) # 0.

(6). Use the results of Theorem 5.13 again to show that if {vi,va,...,vn} is a basis for R* (C"), then
it can be changed, reversibly, into the system {ei,es,....e,} which is an ONS; i.e., every basis
{v1,va,..., vz} in R® (C") can be transformed into an ONS on B (C"), indeed into the standard
{El, €a,... ,e.,} basis.

The result in Exercise 5.2.(6) raises the question as to whether one can do a similar thing in every inner
product space. To answer this question in the affirmative is the burden of our next efforts. The procedure
we follow is usuvally called the Gram-Schmidt process. The idea is to begin with a linearly independent
set {V1,Vz,...,Vn,...}, hopefully a basis and from this set construct a new set, say {X;,Xz,...} which is
an ONS and which has the same span as {v1,v2,...}. The method .is based upon the idea of “orthogonal
projections™ which played a prominent role in Chapter 3.

Theorem 5.16. Suppose {x;,xa,... yXn} 15 an ONS in an inner product space X and Y = Span{x;},.

Suppose u € X end u ¢ Y, then u may be written as u = Y1 +y2 where y, € Y and y, is orthogonal to
every vector in Y. (This is written y; L Y.) Moreover, y, = YLl x)x €Y andys = u - ¥1- This
representation is unigque.

Proof of Theorem 5.16. It is clear that Y1 15 in Y since it is a linear combination of {xX1,%2,...,%,}
and that with y, =u—y,, u =y, +y,. At issue then is whether Y2 =u—y, is orthogonal to Y. Suppose
Y =37, ¢;X; and consider

{(y2,¥) = <u =Y (X)X, ZC:‘X;)

i=1 i=1

= <u,ZCij> = ZZ(u;xi)Ej (xi’xj)

J=1 i=1 j=1
n n
= <l.l, Z CJ'XJ'> - Z {u, x_,') ¢
=1 =1
n n
= <u,chx_,-> = <u,2cjx,-> =0.
=1 J=1
Suppose there are two such decompositions, i.e., U =y, +y; = z; +2z; where y: and z; are in'Y and z, and
Yz are orthogonal to Y. Then y, —z, = 2o — ¥2 and the left side is in Y and the right side is orthogonal
to Y, therefore (y) — z;) L (22 — y2), but, since (¥1 — 21) = (23 — y2), this says that the inner product
(Y1 —21,¥1 — z;) = 0 and this by Definition 5.7.(4) says that y, —z, = © = zg — yo which implies that
Y1 =2 and y2 = z;. [ |

Definition 5.10. Suppose M is a set in an inner product space X. The orthogonal complement M+ of M
is the set of all vectors x such that (x,m) = 0 for each vector m € M.

Exercise 5.3. Show that M is a subspace of X. Hint; Check Theorem 1.2,

Remark. Theorem 5.16 now says that every u € X has a unique decomposition u = y; + y, wherey, € Y
and yp € YL,
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Definition 5.11. Suppose X is an inner product space, Y = Span{x,,xz,... ,Xn} where {x1,%2,...,x,)
is an ONS, then in the unique decomposition u = y; + y2 with y; € Y and y» € Y2, the vector y; =
2oizq (1, %) x; is called the orthogonal projection of u onto Y. It is denoted projy (u).

Remark.
(1). This shouid be co d with the f la projg(A) = A-B B=(A,B) B where B is in the
| o e compared Wi fhe Tormuta prolet = i 7 = W) e v g
role of ﬁ ezcept, recall that (x;,x;) = 1 in the above case since {x;,x2,...,X,} is an ONS.
3y <t

(2). Reread the remark following Exercise 3.9.(2) on page 49. It would be very interesting, if true, that
projy (u) is the best approximation to u from the space Y in the inner product space X. In order for
this to have meaning, best approximation is to mean that the vector (u— projy(u)) = ys is of minimal
size, whatever that means. We need of course to have some sort of “norm” on the inner product space
X for this to be meaningful, where norm is some sort of generalization of |JAJj?> = A+A in an inner
product space.

Definition 5.12. Suppose X is a vector space. The statement that || - || is a norm on X means that || - || is
a function from X into the non-negative reals such that

D). Ixll =0 lIx||=0iff x = ©

(2). llex|l = |e] - [|x|| and

(3)- e+ ¥l < lixl| + lI¥ll-
Theorem 5.17. Suppose X is an inner product space and ||x||* = (x,x), then
(1). 1{x, 3} < [1x[}}yl

(2). llx+yli < [l + Iyl

(3). |Ix]l < {|x+ Ay|| for every A € C if and only if x Ly, i.e., {(x,y) = 0.

Remark. The inequality (1) is called the Cauchy-Schwarz-Bunyakowski inequality. We will denote it simply
C-S. Statement (2) says that || - || satisfies the triangle inequality (3) in Definition 5.12. Clearly ||ax||?* =

(ax,ax) = ja|® {x,x) = |af? ||x||> and thus (2) of Definition 5.12 also holds. Thus [l = {(x, x)* defines a
norm on the inner product space X.

Proof of Theorem 5.17. Suppose A € C and consider
0< (x+Ay,x +Ay) = {x,x) + (x,Ay) + (Ay,x) + {Ay, Ay)

0 < flx + Ayll* = [IxI|* + X {x, ¥} + Mx, ¥} + A + Iy}

or
= [ix]I? + 2Re(A {x,¥}) + | A ||y I?

set a = (X,y) then this becomes

0< llx+Ayll* = lixll* + Re(Ac) + [A]® (Iv]I*. (5.1)
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Now assume x Ly, i.e, a =0, then we have 0 < |lx + Ay = ||x||? + | A [ly]|2 = l|x||* so that (3) holds if
y L x. Then part (1) becomes 0 < ||x]| - |ly|| and is trivial.
Note that if y = ©, then both sides of C-S are zero and (1) holds trimally. In this same case {2) becomes

lIx]| < [}x]l, also trivial. Part (8) is the same.
-

Now suppose y # O anda # 0. Set A = W' then (5.1) becomes
—0& ] la*  Jaf?
0<|lx+ Ay|]® = x2+2Re(—)+|-—- 2o x| - 2—= + ——
e+ ™ = Il ) T | = I =200 +
2 2 |a|2
or 0 < |lx + Ay{]* = i|x|[* - IE’ (5.2)

2
thus, ﬁ;x# < |IxI1? or |(x,¥)I* < [IX|12lly]? from which (1) follows at once. Using this in (5.1) gives
0+ M9l = I +2Re( (x,3)) + AP I3 .
< el + 2 A [l - Wy ll =+ 1A lly 7 = [l 1A] < (vl
from which (2) follows for A = 1. If we return to (5.2) we see that for a # 0, ||x + Ay||® > [x]|? and (3)
Jails, thus (8) holds only ifa =10, i.e., x L y. |
Remark.

(1). For real vector spaces X, (5.1) becomes 0 < A?||y]|? + 2A(x,y) + ||x||? and this requires that the
quadratic have non-positive discriminant. This is exactly what Theorem 5.17.(1) asserts.

{2). Theorem 5.17.(3) gives an affirmative response to the question asked concerning best approximation,
but only for a very limitied case. Suppose our ONS contains only the vector y and then Y = Span{y}.
Suppose x € Y and u = x + Ay, then u — Ay = x and in order that x be of minimum norm among
all such vectors {u 4 Ay; A € C}, we must have x L y and if x 1 y, then it is of minimum norm.
The problem is that this answers the question only for the case that Y is one dimensional. The next
theorem takes care of the arbitrary finite dimensional case.

Exercise 5.4.

(1). Show that if {x,y) = 0 then |jx + y||*> = [|x|[* + ||y[2. You will no doubt recognize this as the
Pythagorean Theorem and the proof is easy.

(2). Show that in an inner product space X if [|x + yl|? = |ix||? + |}yi2, then R({x,¥)) = 0, thus in a real
inner product space the Pythagorean Theorem holds exactly. Is it true in a complex inner product
space?

(3). Develop (find) a formula for {x,y) in terms of || - ||.

Theorem 5.18. (Projection Theorem). Suppose {x;,Xa,... ,Xn} is an ONS in an inner product space X
and Y = Span{x;}.,. fue X andu gy, then projy(u) is the point in Y which is nearest to the point
u, i€,

lla - projy (u)]| < [ju - yi|
Jor ally € Y, y # projy (u).
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Proof of Theorem 5.18. From Theorem 5.16, we know that u has a unique representation u = projy (u) +
y* where y*; i.e., (u—projy(u)) € Y. Now supposey € Y (anywhere in Y ) then u—y = (u—projy (u))+
(projy(u) ~ y), then (u - projy (u)) € Y and (projy(u) —y) € Y, since the decomposition is unigue.
2 . . . .
lu-yll" = {u-y,u-y)=((u-projy(u)) + (projy (u) — y), (u — projy (u)) + (projy (u) - y))
= {(u - projy(u)), (u - projy (1))} + ((u — projy (u)), (projy (u) ~ y))
+{(projy (u) - y), (u - projy (u))) + {(projy (u) — y), (projy (u) — y)} .

The second and third terms on the right side are zero since (projy (u) — y) L (u — projy(u)), thus we have

llu = ¥I* = llu - projy (u)[|? + {lprojy (u) ~ y|f?

Thus ||u — projy (w)|i* < [lu~ y||* with = holding only when ||pron(u)— Y3l = 0. Thus Jju — projy (u)]| s
minimum among all vectors of the form (u — y). |
The Gram-Schmidt Process
Theorem 5.19. Suppose {v;,vs,... 1 Vn} i8 an ONS in an inner product space X, then {vi,ve,...,v,} 15

linearly independent. .

Proof of Theorem 5.19. Suppose c;v; +cavg + +-- + €aVn = 6, then by Theorem 5, ¢; = {@,v;) = 0,
thus by Corollary 5.9, the result follows. |

Corollary 5.20. If {v;,vs,... 1 Vn} i3 an ONS, then it 15 ¢ basis for Span{vy,va,...,vp}.

Suppose now that we have a basis {v,v,,... »Vn} for a subspace Y of an inner product space X. We
desire to construct a new basis for Y which is an ONS because it is much easier to compute coefficients,
near points, etc. with an ONS. In order to be certain that we do not stray outside the subspace Y, we will

use only linear combinations of the vectors {viyve,...,vu}.
Now since v, is a perfectly nice vector but not necessarily normal, we will normalize it and use that

vector

¢ ]
IR
[vall

as the first element in our new ONS. Clearly (u;,u;) = 1. We need a new vector uz which is such that
{(ur,uz) = 0, {uz,uz) = 1 and such that {u1,u;} has the same span as {v1,vz2}; this last part is so we don’t
stray. The Projection Theorems 5.16 and 5.18 tell us the way.

Project v, onto Span{u;} and we get

vi = (vz,u)uy +(v2 = (vo, 1) - 1y)
= Y1+Y¥2

where y; € Span{u;} and y; € [Span{u; }]‘L Now we normalize y2 and call that u,, ie.,
= (va—(va,u)uy)

liva = (v, us) my|”

a2
We now have (u;,uz) = 0 and {uz,u;) = 1. Continue the process by projecting vz onto the Span{u,,u;}
to get

= V3 = [{va, wi) up + {v5,uz) ug)
> vs = [{va,u1) uy + {va, uz) uy]||
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and finally
. = Vn — :',‘=_11 {Va, ;) 1;
n = = ]
(Vo — iy (Ve wid |
and the set {u;,uz,... ,u,} is an ONS with the same span as {v,,Va,... ,Va}, i.e., it is a basis for Y which
is an ONS.

We now have the following result.

Theorem 5.21. Every finite dimensional vector space with an inner product has an ONS for a basis.

Cavrion: If in the Gram-Schmidt process we permute the vectors {vy,va,...,v,} before we start we, in
general, do not get the same ONS we would have gotten if we had not permuted them. We lower our risk if
we consider a basis as being ordered.

Exercise 5.5.

(1). Set v; = (1,0,1) and v = (1,1,0). Set Y = Span{v,,vs}. Use the Gram-Schmidt process starting
with v, to obtain an ONS {u;,uy} for Y.

(2). Same setup as part (1) but start with v, instead of v and obtain an ONS for Y, say {x;,x2}.
(3). Compute the orthogonal projection of e, i.e., projy(e;) using {uy, u2}.
(4). Compute projy (e;) using {x,x2}.

(5). Use the results of part (3) to compute a third vector ug so that {u,,uz,u3} is an ONS, hence a basis
for R3.

(6). Use the results in part {4) to compute a third vector x3 so that {x;,xz,x3} is an ONS, hence a basis
for R3.

(7). Explain why uz = x3. Should you have expected this?
(8). What is the distance from e, to Y?

(9). Suppose X is Py (second degree or less polynomials with (f, g) = f_ll Ff(t)g(t)dt.) The set {vy,v2,v3}
is the set of polynomials {1,¢,#2}. Use the Gram-Schmidt process to construct an ONS.

(10). Same as Part (9) except {f,g) = fy f(t)a(t)dt.

Our experience so far with bases has been mostly with R® (and €*.) Most vector spaces actually reduce
to these cases in practice, in fact, all finite dimensional spaces do. To see why, suppose we have a vector
space X with basis {v1,va,... ,Va} and let's see how to represent the space as R® or C".

Theorem 5.22. If B = {vi,Vvs,...,Vs} ts a basis for X, then there is ezactly one way to write a given
vector x € X in the form of o linear combination of these basis elements

x=cvy+cevet .+ cpVy.
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Proof of Theorem 5.22. Suppose x = c1v| + cavy + -+ + CaVn = Vi + @ava + -+ + apv,,, then
(cr—a)vi+(c2+a)va+---+ {cr — an)v, = © and since {vi}l=, is a basis, it is @ linearly independent
set and therefore by Corollary 5.9, (c; — ;) = (c2=as)=--=(cp - ap) =0. |
Remark. Since, given X, a basis B and the uniqueness for each x of x = ¢; v, +cavo + -+ ey vy, if we think
of the right side as (1, ¢2,... ,cp) (1,09, . .., Un), recognizing the slight abuse of the dot product notation,
we see that we might consider the 1 — 1 identification of the vector x € X with the vector (¢, ¢y, ... ,Cn) in
®", 1.e., K" or C* depending upon which scalar field X has.

Definition 5.13. If X is a vector space with basis B = {vi}i,, then for each vector x € X, the unique
vector x € $* such that x = c{v,,va,... Vnl=covi+eve+ oo+ cnVp is called the coordinate vector
of x relative to the basis B. One of the standard notations for this vector is (x)g = (e1,¢2y... ,6,). Some
writers write [x]p = (¢1,¢2,... ,60)T = (x)g. Some writers use both notations (as we just did).

An immediate question is whether this 1 — 1 identification of X with ®" preserves the algebraic structure
and does an inner product, if one exists, translate into a dot product in $".

Theorem 5.23. Suppose B = {vi}l, ts a basis for a vector space X, x =30 a;v; andy = S by,
e, (x)p = (a1,6z,... ,a,} and (¥)B = (b1,ba,... ,by), then (x+y)B = (a1 + by, + by, ... 8n + by) and
ifk € ®, then (kx)g = (kay, kas, ... ykap). Furthermore, if B is an ONS in an inner product space X, then

n n i
*¥) = (X)s*()B = 3 a:b;, ond thus [|x — y||x = [Z lei - b,-|2J = ||{(x)B — (¥)Blen.

i=] =1

Exercise 5.68. Prove Theorem 5.23.

Remark. We may therefore manipulate X, relative to the basis B as though it were in fact ®" since this
identifiction is a 1 — 1 map. Notice that we could even use the identification map to re-norm the space X in
such a way that B becomes an ONS by defining

xy) ¥ eI,
Then since (v;)g = e; € ",
(V,‘,Vj)x = e,--ej = Jij.

This may, of course change the original notions of orthogonality in X if there were any such notions

already in place.
We may also use these tricks to represent linear maps between finite dimensional vector spaces as matrices.
These matrices will, of course, depend upon the choice of basis elements.

Example 5.1.
Let's carry out the above identification process for a specific case of a finite dimensional vector space, P,
the polynomials of degree not greater than n. Since each such polynomial p has a representation

pt) =ag+ayl+--- +aut",

if we chose as a basis {1,¢,2,.., 11"} = Bat1, (0ne must prove that these are linearly independent!) then
we may think of

P(t) = (ﬂoﬂlhﬂz: Ha !aﬂ) '(1: 3 t2’ ety tn)
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and identify p with the point (aq, @1, 82,... ,as) in C**1. Let’s carry this identification to a little finer detail.

If (p(t)s = (ao,@1,82,...,a4), then
(the = e €C, e,
(s = e
(the = e
(tn)ﬂ = En4i1.

Example 5.2.
Choose By = {1,t,t2,...,t"*!} as a basis in Pyqy and Bnyy = {1,4,¢%,... ,1"} as a basis in P,.
Suppose we have done this and made the identifications P,y ~ C**? and P, ~ C*1,

d
di

Figure 5.1:

then since we already have observed that % is a linear map of Py, into P, {see Exercise 1.5), it

follows from Theorem 5.23, that there is an induced linear map from C"*? into C**!, call it D, such
that if g(t) = bp + byt + ... + bay1t"! 50 that (@)B.,. = (bo,b1y-..,bnt1) € T2, then ${g(t)) =

by + 2bot + - -+ {n + 1)by 1 t™ and thus (-4-%%1)3 = (by,2b2,... ,(n+ Dbyyy) € C**! and D is described
n1
by

Db, b,... sbpg1) = (b3,2bg,... ,(n+ Dbpyy).

therefore D has a matrix representation which is (n + 2) x (n + 1) and can be written down if we compute
(D(e1), D{e2),... ,D(ent2)).

We saw in Example 5.1 that in Py, (any m) (t)g,.,, = €i41, i.e., the polynomial vi4 (8} = =0+0-¢t+

s 1t 0 = (ei41)%(1, ¢, ... ,t"*!) and since %(t‘) = it~ = (ie;}+(1,1,...,t"), D(e't?) = (i)e;
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fori=1,2,3,.... Moreover since ditl =0,D(e;} = O, therefore the matrix for D becomes

the matrix whose columns are (D(ey), D(ez),.. aD{ens2)) = (0,1 -€;,2-€5,3- €3,...,(1n+1)e,)

0100 --- 0
00 210 ... 0
=10 0 0 3 - 0
0000 -+ n+1

Exercise 5.7.

(1). Show that the set {1,t,..., t"*+1} is linearly independent and thus forms a basis for Fry1. Hint: Use
Corollary 5.3 and the fundamental theorem of algebra.

(2). Find the point in C®) whose coordinates are the same as those of p(z) = 4 - 32 + 52° - 102° in P;,
i.e., compute (p(z))s,-

. . . d . .
(3). Write the matrix D which represents e FPs = Py and use it to compute the coordinates of the

derivative of p(z) in part (2). Verify the result by directly differentiating p(x) and determining (%) :
By

(4). Compute the matrix 7 which corresponds to the map Z(p(z)) = foxp(t)dt (which maps P,, into P,,,),
l.e., Z maps Cnyy into Cnyy by mapping

(p(m))Bn+1 - (I(p(m)))n,.”.

(5). Compute the matrix products ZD and DT and comment on the existence of inverses.

The last two examples and the exercises which follow them raise the natural question: Suppose we have
a new, nicer basis, how does this change of basis change our coordinates in C* and what does it do to our
matrix representations for linear maps?

Let’s check it out.
Suppose

B = {v(,v2,...,v,} is a basis (old) for X
and B'= {u,u,,... ,u,) is another basis (new) for X.

Question: If we know, for a given vector x € X, (x)g, can we find a way to simply write down (x)g:?



Let’s try it. First let’s express each of the vectors in B’ in terms of the original basis B:

u; =pvy+preve + -+ Prava
Wy = po1vy +Paava + -+ PanVn

Up = Pn1V1 + PnaVe + - + PraVa

u; Vi
uy Va

or . | =P]| . |.Nowsuppose
Up Vn

(x)B = c1V1 +c2va + - -+ + cnVy is known, then

(x)pr = a1uy +azuz + -+ +aply
== ﬂl(PuVl + p1ave + .- +p1nvn) + e+ an(pnlvl + prove + - +pnnvn)
= (@1p1) + azpa1 + -+ GuPn1)Vi + -0+ (@1Pn1 + G2Prz + ¢+ ArPan)Vn
= V) +cava+ -+ €V,

and since the representations are unique by Theorem 5.22, we have that

Pua; +pa1az + -+ pPp1ap =€)
D120y -+ poods + -+ + Prolp = C2

Pin@) + Pondz <k -+ + Ppplly = Cn
or PT[x]g: = [x]B.

Now, again by Theorem 5.22 since B and B’ are both bases and the representations exist uniquely, by
Theorem 5.13 det[P7] # 0 and thus PT is invertible and

[x]p: = [PT]"'[x]e.

Definition 5.14. The matrix PT is called the transition matrix from basis B’ to basis B. Naturally (PT)~!
is the transition matrix from B to B’.

By Theorem 5.23, the algebraic and inner product structures are preserved by the coordinate maps
x = (x)B. Suppose both B and B’ are ONS bases, then the vectors {(u;)s}i., are an ONS in C" and these
are the rows of the matrix P and the columns of PT. Therefore

PTP = (((w)p, (0;)B)) = (8;) = In.
We have thus proved:

Theorem 5.24. The transition mairizc P from one ONS to another satisfies P~ = PT ie., its columns
{and rows) form an ONS.
Remark. Such a matrix is called an orthogonal matrix.

Now suppose that we have two finite dimensional vector spaces X and Y with bases B = {x;}7, and
V = {y;}7L, respectively and a linear transformation T from X to Y. Under the basis B, we may consider
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Figure 5.2:

X as R* or C* and under the basis V we may consider Y as R™ or C™ and therefore we may consider T as
an m X n matrix A which maps

y=Tx
as [ylv = Alx]s.

Now suppose we make a change of basis in either X or Y (perhaps both). How does this change the
matrix representation A4 of our lnear transformation T'?

Let's do one change of basis at a time and check it out.

First, let’s make a change of basis in X, say from B to B’ with transition matrix P7, i.e.,

[x]ps = (PT)"![x]g,
then we'd need a new matrix B such that
Blxle = Alx]s

holds for all x € X, i.e., Blx]g: = B[PT]‘I[x]B and if we do this for [x]g = e, e,,... yen we have that
(column by column)

B(PT)"' = Aor B= APT.
Let’s check. Suppose B = APT then
Bx]a: = (APT)[x]a = A(PT[x]s) = Alx]m, done.

Suppose instead that we made a change of variable in Y, say from the basis V to V' with transition
matrix Q7 ie, [y]ly = @7)lylv or QT[y}y- = [¥lv. How does this affect A? Again, let’s check.

Alx]s = [y]v = QT[y]vr 50 that [QT]‘IA[x]B = [y]v' and therefore our new matrix is [QT]“A.
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What if we did both? Easy; first the change of basis in X gives us APT and following this by the change
in Y gives us [Q7]1APT.

The challenge in this business is to find P and @ so that the resulting matrix for T is nice in some sense
for the problem we want to solve, say [Q7]"'APT, is diagonal, so that it is then trivial to solve equations
like Dx = y by just writing down the solution. In general we wish to make our manipulations easy and
hopefully the physical or geometric interpretations of our results are also easy and straightforward.

in case X =Y and the same change of variables is made in the domain and range versions of the space,
our new matrix for T' becomes (PT)~1 APT,

Definition 5.15. Two n x n matrices A and B are said to be similar if and only if there exists a non-singular
matrix S such that

S~'AS = B,(or A= SBS™").
In the event that this is true, we write A ~ B.

Exercise 5.8.
Show that if A, B, and C are n x n matrices, then

(i) A~A
(ii). if A~ B, then B ~ 4
(iti). if A~ B, and B ~ C, then A ~ C.

Definition 5.16. Suppose S is a set. The statement that ~ is an equivalence relation on the elements of 8
means that

{(i). If A € S, then A ~ A holds
(ii}). If A ~ B, then also B ~ A holds
(iii). If A~ B, and B~ C, then 4 ~ C.
Remark. Exercise 5.8 shows that similarity is an equivalence relation on the n x n matrices.

Definition 5.17. Suppose ~ is an equivalence relation on a set § and z € S. By the symbol % we mean
the set of all elements in S which are equivalent to z. The set X is called the equivalence class of x.

Exercise 5.9.
Suppose ~ is an equivalence relation on a set S and that z and y are elements of §. Show that the sets
¥ and ¥ are either mutually exclusive or identical.

Remark. Exercise 5.9 shows that an equivalence relation partitions a set into disjoint sets, the individual
sets having only elements which are indistinguishable under the given equivalence relation.

If we apply this idea to the case of (n x n) matrices with similarity as the equivalence relation, then we
are identifying all matrix representations of a given linear transformation as an equivalence class. To see
this, suppose that T' maps R" into R® and A represents T relative to a set of basis elements V, i.e., y = T'x
becomes [y]v = A[x]v.
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Then if we make a change of variables with transition matrix PT to a basis V', i.e,,

[X]v = (PT)‘I[x]v, then
A[x]v = [y]v becomes
APT[x]y: = [y]v and then
(PT)TAPT[x}vs = (PT)"}[y]v or
Blx]v: = [ylv/

where B is the matrix representing T relative to the basis V' and A and B are similar.

Theorem 5.25. If A and B are similarn x n matrices, then they are different representations for the same
linear transformation, the representations being relative to different sets of basis elements.

CAUTION: One n x n matrix A can represent many different linear transformations on X if one keeps the
matrix A fixed while changing the basis elements in X.

Example 5.3.
Choose A = (; §) in advance of any choice of X or its basis V, and hold 4 fixed

Case One: X =P,V = (vy,v3) = (L,£). Then (p(t))v = (&1 + cot)v = (v +eva)v = (c1,¢2) and A(E)) =

:112 (e2) = (3?1-'-;-24?5 ) and T(p) = (¢, + 2e2)vy +(3c; + deg)ve = (o + 2e2} + (3e; + deg)t.

Case Two: X =P, V! = (v{,v}) = (1+¢,¢), then (v = (a1 +c2t)ve = (arvy + (e2 — e )vadve = (1, €2 — c1)

and A(e,%e, ) = (33) (ea7e,) = (280352) and (—c1 + 262)V] + (—c; + dea)vh = (&1 + 2c2)(1 +2) +
(—e1 +4e2)t = (~¢; + 2¢2) + (—2¢1 + 6c,)t which is not the same as T(p).

Q

Exercise 5.10.

(1). Show that the n x n © matrix always represents the © linear transformation on X, no matter what
ordered basis one chagses.

(2). Show that the n x n identity matrix always represent the identity transformation on X, no matter
what ordered basis one chooses.

(3). Find the transition matrix which changes the basis V = {v1,v2) = (1,2) into the basis V' = (v}, v}) =
(1+¢,1) in Example 5.3 above.

(4). Suppose p(t) = 3 + 4¢; find (p)v and (p)v- as in Example 5.3.

(5). Find the transition matrix for the change of coordinates in P, which changes from {1,¢,%} to {1,1+
t,1+4t+ 8%}

(6). Find the transition matrix for the change of basis from (e;, ez, e3) to the basis U = (u;,uz, ;) where
u; =(1,1,1), uz = (1,2,2) and uz = (1, 2, 3). Compute the U coordinates of the vector (1,0,1); i.e.,
compute (1,0, 1)y and also (0,1, 0)y.

(7). Suppose the matrix 4 = ( (]1) g é) represents the linear map L relative to the standard basis (e, ez, e;).

Find the matrix which represents L relative to the basis U in 5.10.(6) above.
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Let’s now summarize the things we have learned concerning bases and how they effect and affect the

matrices which represent linear transformations.

Theorem 5.26. Suppose B and B' are two ordered bases for a vector space X of dimension n and T ts a
linear transformation from X into X,

Suppose PT is the transition from B' into B and A is the matriz representing T with respect to B, then
the matriz which represents T with respect to B 13

[PT]='APT

and thus is a member of the equivalence class of all matrices similar to A,
Conversely, suppose the n x n matriz A represents T with respect to the ordered basis B and that

A=S87145,

then if we define a new ordered basis B' by STB then A represents T relative to the basis B'.
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Chapter 6

Eigenvalues and Eigenvectors

Equipped with the information of Chapter 5, we now want to to make a change of variable which will render
our n X n matrix representation A of the linear transformation T as nice as it can possibly be in so far as

solving

y:

Ax

is concerned, namely, we would like it to be diagonal after we have made the change of variable. What does

this entail? Under what circumstances can it be done?

Suppose there exists a non-singular matrix § such that

§S~'AS=D=

A 00
0 X O
0 0 0

then AS = SD. Let's write

In
S2n
Inn
d1n I
Q25 821
Qnn Sny

0
0

An

, then we have

812 -+ 8in
822 -+ 82p
Sp2 Snn

LIY
81

8n1

312
829

Sn2

Son 0 A
Snn 0 O

A1811
A1321

2812
Az822

A18n1 A2sn2

o oo

>
E]

AnS1n
AnS2n

Andnn
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so that each column, say the j!*, satisfies a relation

835 815

82j 82
Al T =

Sni 8ny

With this motivation, we make our first definition.

Definition 8.1. Suppose A is an n x n matrix, (real or complex, we make no distinction). A scalar } is
called an eigenvalue of A if and only if there exists a non-© vector x such that

Ax = Ax

Such a vector x is called an eigenvector of A belonging to the eigenvalue . The space spanned by the
collection of all eigenvectors corresponding to a given eigenvalue is called the eigensubspace corresponding
to A. We usually denote it by E,.

Exercise 6.1.
(1}. Suppose A is an n x n scalar matrix with eigenvalue A. Show that E, is indeed a subspace of ®".
(2). Show that if A; # A2 and each is an eigenvalue of the n x 1 matrix 4, then E,, NE,, = {0}.

Notice that Ax = Ax has a non-trivial solution x if and only if (A = AIx = © has a non-© solution and
this happens if and only if (4 — AI) is non-singular and this occurs if and only if det(4 -~ AI} = 0. This latter
equation is called the characteristic equation of A and det(4 — AT ) is called the characteristic polynomial of
A

In short, the eigenvalues of A are the roots of the characteristic polynomial of 4 and, for this reason, are
frequently referred to as the characteristic roots of 4 or the characteristic values of A; sometimes one sees
the word proper used instead of eigen or characteristic.

In summary, (recall Theorem 5.13):

Theorem 6.1. For an n x n matriz A, the following statements are equivalent.
(1). X is an eigenvalue of A
(2). (A— Al)x = © has a non-trivial solution
(3). N(A-AI)Z0©
(4). A— X is singular
(5). det(A—AI) =0.

Remark. We could, no doubt, add to the list in Theorem 6.1 if we worked at it.
Now suppose A = (a;;) is an n x n scalar matrix with characteristic polynomial p(A), ie.,
an—-A ap - 8in
@21 ap—A - a2y

p(A) = det(A - AI) =

Gn) Gn2 <t Gpp— A
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It follows from the definition of determinant that the only term involving more than (n — 2) of the diagonal
elements will be (@11 — A}as2 — A) -+ - {(@nn — A), and when one expands this, the coefficient of A" is (—1)";
thus if A1, Ag,..., A, are the eigenvalues of A, then

PA=(DMA=A) - (A=22) - (A=) = (2 = A)- (A2 = A) -+ (An = A).

Moreover, it follows from this and the definition of p(A) that the constant term in the polynomial, i.e.,
One can also see that the coefficient of {—A)""! is

Z a;; (trace of A or Trace{A))

1=]
which is, of course, the sum of the roots of the polynomial, i.e.,

VI T W :Za,,- = Trace({A).
1=1

Now let’s return to the question of similarity transformations and ask: When can we make a change of
variables and make A nice? Where by nice we mean diagonal, i.e., we want

S'AS=D, or A=SDS™.

A matter of major importance in this is an extension of Exercise 6.1.(2), having to do with the distinctness
of the eigensubspaces.

Theorem 6.2. IfA(, A2, ... , A are distinct eigenvalues of an nxn matriz A with corresponding eigenvectors
X1,X2,y... Xk, then X1, Xa,... ,X are lineorly independent.

Proof of Theorem 6.2. Denote by r the dimension of Span{x,,Xa,... ,Xx} and suppose thatr < k. Reorder
the x 's if necessary so that X;,Xa,... ,X, are linearly independent and thus Spu{x,,X2,... , X, Xr41} must
be linenrly dependent by Theorem 5.4. Therefore there exists a non-trivial set {¢1,¢2,... ¢, Crq1} of scalars
such that

e1Xy + CoXa + - + CrXy = =Crp1Xrt1 F O (6.1)
and thus not all of {c1,c2,...,¢;} can be zero. Apply the matriz A to equation (6.1) and we get
ciAx) + 2 Axs + - e AXp + Crp 1 AXp g = O
il Or Cy M Xy + CadaXz + - o+ CrArXy + Crat Arg1 Xpg1 = ©.
Now subtract )\,.,.l}umes (6.1) from this last equation and we obiain
e1(A = Arpr)x1 +e2(A2 = Arg)xz + -+ + e (Ar — Apgt)x, = ©
which, since (A — Ar4+y) # 0, shows that indeed {x),X2,... ,X,} are linearly dependent. |

Definition 8.2. An n x n matrix 4 is said to be diagonalizable if and only if there exists a diagonal matrix
in its equivalence class under similarity, i.e., there exist a diagonal matrix D and a non-singular matrix &
such that

S"1AS = D.

If this occurs, we say that “S diagonalizes A."
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Theorem 6.3. Annxn matriz A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof of Theorem 6.3. Suppose A has n linearly independent eigenvectors x;,Xa,... , X, with correspond-
ing eigenvalues Ay, Az, ... , A, (not necessarily distinct!) Let S be the matriz whose j** column is x5, and
the j** column of AS is Ax; which is given by Ax; = Ajxj, te.,

A O 0
0 A -~ D

AS = (AX],AXQ,... ,Axﬂ) = (I\IXI,AQXQ,-.. ,/\,,x,,) = (X],X2,... ,x,,) : . . . = SD,
0 0 An

therefore S™1AS = D.
Conversely, suppose A is diagonalizable, then there ezist a diagonal matriz D and a non-singular matrir
S so0 that

AS =8D.
Call the columns of S, x;1,%2,... ,%, and the elements of the diagonal D, A1, )g,... , A,. Our equation now
becomes

(Axl,sz,... ,Axn) = (xlt\l,X2t\2,... ,x,,A,,) or Ax, = ,\,-x,.

Since S in non-singular, it is of rank n and the columns {x1,%2,... ,x,} are linearly independent. |

KRemark. (1). If A is diagonalizable, then the column vectors of the diagonalizing matrix S are eigenvectors
of 4 and the diagonal matrix D has elements which are the corresponding eigenvalues.

(2). If A has n distinct eigenvalues then it is diagonalizable.

(3). The diagonalizing matrix is not unique since any multiple (non-zero) of an eigenvector is also an
eigenvector and moreover we could reorder the columns of S and obtain a reordered diagonal matrix.

(4). If A is diagonalizable, then A can be factored into
A=8DS™L.
This last remark may seem inane, but it happens to be very useful.

Exercise 6.2.
(1). Show that if A is SDS~!, then A™ = $D™S-! where

AP0 - 0
D 0 A* ... 0

n
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{(2). Suppose S~!AS = D as in part (1) where

M 0 - 0
0 A -~ O
D=|. . | X
0 0 - A,
Show that, at least formally,
et 0 0
$2 3 n 0 et ... 0 .
T+ A+ A+ AP A .. =8| . o s
2! 3! nl : : S
)] 0 ghnt

Recall that in the case of complex space C*, the dot product becomes
ab = a;1b; +agbs + - + anby,
and, if we write this as a matrix product, it becomes
ab’ .
Some authors write b¥ instead of b' where the H stands for Hermitian.

Definition 6.3. A matrix M is said to be Hermitian if and only if M = MH(= HT).

Notice that for real matrices, M¥ = MT and in this case, Hermitian means symmetric.
Hermitian matrices have many very nice properties. Physicists like them a lot for the following reason.

Theorem 6.4. The eigenvalues of an Hermitian matriz are real and the corresponding eigenvectors of dis-
tinct eigenvalues are orthogonal, i.e., the eigenspaces of distinet eigenvalues are orthogonal.

Proof of Theorem 6.4. Suppose A is an Hermitian matriz; (A, X) is an eigen pair. If

a = x" Ax, then
=o' = (x7Ax)7 = xPAHxHH = xH Ax = o

and thus a is real. It follows that a = x¥ Ax = x¥ Ax = M||x||* and therefore A = Taz— ts real.

If (A1,xy) and (Ag,x3) are eigenpairs and A} # Ay then (Ax; W xy = xfT A%y = x{ dox2 = Az (%2, %))
and A {X2,X1) = (X2, \1X,) and therefore, since (X3, \1%;) = (Ax;)¥ x5, we have (A — A2) {x2,%;) =0 end
since A; # A2, we must have x2 1 X;. |

Definition 6.4. An n x n matrix U is said to be unitary if and only if its columns form an ONS in C".

Remark. Notice that U is unitary if and only if U¥ U = I, (this is analogous to u® = 1 for complex numbers)
and then, since the column vectors are orthogonal, U must be non-singular, of rank n and so on.

Suppose U is unitary, hence non-singular and UU¥# = I = UHU and consider U as a “change of

variables” on the space X (change of basis if you prefer). Then (Ux, Ux) el (Ux) «(Ux) = (Ux)"(Ux) =

(xHUH)(Ux) = x¥[UHU]x = x¥x = x*x = {x,X), i.e., U preserves the inner product, hence all distances
and all angles.
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A real unitary matrix is called an orthogonal matrix. See Theorem 5.24 and the remark following.

Corollary 6.5. If the eigenvalues of an Hermitian matriz A are distinct, then there exists a unitary mairiz
which diagonalizes A.

Proof of Corollary 6.5. Let (i, x;) be the eigen pairs for A and set u; = ]I%-T and U be the matriz whose
columns are the u; ’s. |

Theorem 6.8. (Schur’s Theorem) For each n x n matriz A, there erists ¢ unitary matriz U such that
UHAU is upper triangular.

Proof of Theorem 6.8. The proof is by induction on n.

For n =1, there’s naught to do!

Assume the Theorem holds for all k x k matrices and assume A tobe (k+1) x (k+1). Let A\ be
an eigenvalue for A and x; a corresponding eigenvector of norm 1. Now use Gram-Schmidt to consiruct
{x2,%3,... ,Xe41} 50 that {x;,x,,... +Xi41} 15 a basis for C*+1. Denote by W the matriz whose i** column
15 X;, then W 1s unitary.

The first column of WH AW will be WHAx, = WHA %, = MWHx, = ey, this last equality because
W is unitary. Therefore,

A\ 0 --- 0
H =
WHAW = : M
0
where M is k x k. By our induction hypothesis, there ezists a unitary matriz Wi which 15 k x k such that
VAMV, =T,
where T is upper triangular. Set
1 0---0
v 0
= Vi ,
0
then V i3 unitary and
A1 0---0 A 0.0
0 0 def
HyrH — = L€
VIWHAWY = VHEMY, | = : T, =T
0 0

where T' is upper triangular. Set U = WV, then U is unitary because
URU = (WVEWV = vEWHWY = I,

This factorization is called the Schur decomposition of A.
In case A is Hermitian, then T will be diagonal.
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Corollary 6.7. If A is Hermitian, then there exists a unitary matriz U that diagonalizes A.
Proof of Corollary 6.7. There ezists a unitary matriz U such that UH AU = T where T is upper triangular
then
TH = [UH AU]" = UM ABURH —yH gy = T

50 that T is both upper and lower iriangular, therefore diagonal. [ |
Remark. One should notice the remarkable likeness of the proof of Corollary 6.7 and the proof in Theorem
6.4 of the fact that & = a.
Exercise 6.3.

(1). What does the above remark suggest?

(2). Calculate a unitary matrix which performs a Schur decomposition on the matrix

12
=i %)
Hint: The proof of Theorem 6.6 tells much more than the statement of the theorem.

Now let's summarize and reexamine what we have learned.
If A is Hermitian, then there exist a unitary U and a diagonal D such that

A=UDUH

the diagonal elements of D are eigenvalues of 4 and the columns of I7 are the corresponding eigenvectors
which have been normalized. This says that A has n linearly independent eigenvectors (which generate an
ONS.)

This is essentially an ideal situation for we can write, for each x € X,

X =(x,u;}u; + (X, uz) us + -+ + (x,u,) u, and then
Ax = (x,w1) Ay + (X, u2) Ao ++ -+« + (x,1,) Aqu,

and calculations are rather easy.

As it happens, there are non-Hermitian matrices whose eigenvectors form a complete ONS. For example,
skew symmetric and skew Hermitian matrices have this property, i.e., those matrices A such that A¥ = — A4,

In general, if A has a complete orthonormal set of eigenvectors and U is the matrix whose columns are
these vectors, then the change of basis under I gives

A=UDUH
where D is the diagonal of eigenvalues of A arranged according to the columns of /. Notice that these
eigenvalues may be complex (and probably are) and therefore
DH £ p,
thus A" = (UDUH)# = yHH pHYH — ypHyH 4 4,
However, AA# = (UDUR)(UD¥U¥) = UDDHU¥
and A" A = (UDUH)y¥ (UDUH) = yDH pyH
|Ar[® 0
and DD = Dp¥ =
0 [An?
so that A% 4 = 447,
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Definition 6.5. A matrix A is called normal if and only if A¥ 4 = 444,

We have just shown above that the existence of a complete orthonormal set of eigenvectors implies that
A is normal, in fact, we have proved the following theorem in one direction.

Theorem 6.8. A matriz A is normal if and only if A has a complete (n of them) orthonermal set of
eigenvectors.

Proof of Theorem 6.8. By Schur’s Theorem {Theorem 6.6), there ezists a unitary U and an upper
triangular T such thal

T =U"AU.
CLAIM 6.1. T itself 1s normal if A 13 normal.
Proof of CLAIM 6.1.
THT = (UTARUWUH AU) = UH A AU = UH AARU = UN AUUH AHU = TTH.

|
Now if we compare the diagonal elements of TTH with those of THT we see as follows:
tu tz 0 ba) ftn 0 -0 0 tu 0 - 0 tiy tiz -+ hin
0 ta - fon||ti2 t22 -0 0 tia fo2 -+ 0 0 t2 -+ fon
0 0 "t tnn ?ln E2n too El'm El'n E2n T Zrm. 0 0 Tt tun

so that along the dicgonals we have:
[t + laal® + o+ + i = Jt0af?

30 that in the first row of T, all terms save t); are zero. The second diagonal elements are
Jizzl” + ltasl” + -+ + [taal® = [tral” + [tz2l® = O + Jt2al

and thus the second row is all zeroes, save tyz, etc. It follows that T' is diggonal, and thus A = UTUH =
UDU¥H and the theorem then follows from the remarks preceding Definition 6.5. 1



