
Solutions to Exercises in Theory of Ordinary Differential Equations

1. Using the definition off , the definition ofy, the definition of partial derivative, and the second enumer-
ated property of flows, we have

f .y.t// D @'.s; y.t//

@s

ˇ

ˇ

ˇ

ˇ

sD0

D lim
h!0

'.h; y.t// � '.0; y.t//

h

D lim
h!0

'.h; '.t; x0// � '.0; '.t; x0//

h
D lim

h!0

'.t C h; x0/ � '.t; x0/

h

D @'.t; x0/

@t
D Py.t/:

The definition ofy and the first enumerated property of flows tell us thaty.0/ D '.0; x0/ D x0.

2. There are uncountably many solutions of the given IVP. Separation of variables shows that for each
intervalI on which a solutionx.t/ is positive there is a constantc � inf I such thatx.t/ D .t � c/2

for all t 2 I. Similarly, if x.t/ < 0 throughoutI, thenx.t/ D �.t � c/2 on I for somec � supI.
These two facts imply that any solution of the IVP is of one of the following 4 forms:

x.t/ WD 0;

x.t/ WD
(

�.t � a/2 if t < a

0 if a � t
.a � 0/

x.t/ WD
(

0 if t � b

.t � b/2 if b < t
.0 � b/

x.t/ WD

8

ˆ

<

ˆ

:

�.t � a/2 if t < a

0 if a � t � b

.t � b/2 if b < t

; .a � 0 � b/

It is straightforward to check that everyx.t/ of any of these forms is a solution of the IVP.

3. (a) Using Lipschitz continuity with respect tox, we have

U.t/ D jx1.t/ � x2.t/j D
ˇ

ˇ

ˇ

ˇ

�

a C
Z t

t0

f .s; x1.s// ds

�

�
�

a C
Z t

t0

f .s; x2.s// ds

�
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z t

t0

Œf .x; x1.s// � f .x; x2.s//� ds

ˇ

ˇ

ˇ

ˇ

�
Z t

t0

jf .x; x1.s// � f .x; x2.s//j ds

� L

Z t

t0

jx1.s/ � x2.s/j ds D L

Z t

t0

U.s/ ds:

(b) From the Fundamental Theorem of Calculus and (a), we haveV 0.t/ D U.t/ � V.t/. Also,

V.t0/ D " C L

Z t0

t0

U.s/ ds D ":

(c) Dividing by V.t/ and integrating gives

ln

�

V.T /

"

�

D ln

�

V.T /

V .t0/

�

D
Z T

t0

V 0.t/

V .t/
dt �

Z T

t0

L dt D L.T � t0/;

soV.T / � " expŒL.T � t0/�.



(d) For every" > 0, we haveU.T / � V.T / � " expŒL.T � t0/� ! 0 as" goes to0. SinceU.T /

is nonnegative by definition, this meansU.T / D 0, sox1.T / D x2.T /. SinceT 2 Œt0; t0 C b�

was arbitrary,x1 D x2 on Œt0; t0 C b�.

4. Let .x�; xC/ and.y�; yC/ be the domains ofx andy, respectively. Sinceh ı x is continuous, the IVP
(

j 0 D .h ı x/.j /

j.0/ D 0

has a solutionj , andj is increasing becauseh > 0. DefineY WD x ı j , and note thatY.0/ D
x.j.0// D x.0/ D a, and

PY .t/ D j 0.t/ Px.j.t// D h.x.j.t//f .x.j.t/// D g.x.j.t/// D g.Y.t//;

so Y satisfies the same IVP asy. By uniqueness, this means thatY D y on their common domain
of definition, soy.t/ D x.j.t// for t 2 dom.j / DW .j�; jC/, j ’s maximal interval of existence. By
definition, the range ofj is contained in the.x�; xC/, and by the maximality ofy’s domain, we know
that .j�; jC/ � .y�; yC/. We need to show that, in fact,.j�; jC/ D .y�; yC/; by a time reversal
argument, it suffices to show thatjC D yC.

If jC D 1, then we’re done, so suppose thatjC < 1. Then the results of this section applied to
thej -IVP imply thatj.t/ " xC ast " jC. Eitherx.Œ0; xC// is contained in a compact subset of�

or it isn’t. Suppose the first case occurs. Then the continuity of h on � implies that.h ı x/.Œ0; xC//

is bounded, soj 0.Œ0; jC// is bounded. SincejC < 1, this means thatxC < 1. This contradicts
the results of this section applied to thex-IVP. This puts us in the second case. Sincej.t/ " xC as
t " jC, we havey.Œ0; jC// D x.j.Œ0; jC/// D x.Œ0; xC//, which means that the continuous function
y can’t be defined atjC. Hence,jC D yC.

5. (a) Suppose there existst � t0 such thatx.t/ � y.t/. By the continuity ofx andy there must be a first
such timet�. Sincex.t0/ D a < b D y.t0/, we knowt� > t0 andx.t�/ D y.t�/. Note that
Px.t�/ D f .t; x.t�// D f .t; y.t�// < g.t; y.t�// D Py.t�/, sox.t/ > y.t/ for t just smaller
thant�. This contradicts the definition oft�, and this contradiction implies the desired result.

(b) Given" > 0, set Qb D b C " and Qg.t; p/ D g.t; p/ C ", and let Qy be the solution of the IVP
(

PQy D Qg.t; Qy/

Qy.t0/ D Qb:

Sincef .t; p/ � g.t; p/ < Qg.t; p/ anda � b < Qb, the results of (a) imply thatx.t/ < Qy.t/

for every t � t0. By the Theorem on Continuous Dependence,Qy.t/ ! y.t/ as " # 0, so
x.t/ � y.t/ for everyt � t0.
(Note that Exercise 2 provides a counterexample to any purported proof that fails to utilize
Lipschitz continuity.)

6. Fix t 2 R, and consider the functiong W R
n ! R

n defined byg.p/ D f .t; p/. Let p; q 2 R
n and

˛; ˇ 2 R be given. Sincef is continuous, every IVP associated with the ODE has a solution, so we
can letx be a solution of the ODE satisfyingx.0/ D p and lety be a solution of the ODE satisfying
y.0/ D q. By hypothesis,̨ x C ˇy satisfies the ODE, so

g.˛p C ˇq/ D f .t; ˛p C ˇq/ D f .t; ˛x.0/ C ˇy.0// D f .t; .˛x C ˇy/.0//

D .˛x C ˇy/0.0/ D ˛ Px.0/ C ˇ Py.0/ D f̨ .t; x.0// C f̌ .t; y.0//

D f̨ .t; p/ C f̌ .t; q/ D ˛g.p/ C ˇg.q/:



This shows thatg is linear, sog 2 L.Rn; Rn/. SetA.t/ D g. This defines a functionA W R !
L.Rn; Rn/ satisfyingA.t/p D g.p/ D f .t; p/.

7. A suitable collection is:
8
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:

2

6

6

4

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

3

7

7

5

I

2

6

6

4

a 0 0 0

1 a 0 0

0 0 b 0

0 0 0 c

3

7

7

5

I

2

6

6

4

a 0 0 0

1 a 0 0

0 0 b 0

0 0 1 b

3

7

7

5

I

2

6

6

4

a 0 0 0

1 a 0 0

0 1 a 0

0 0 0 b

3

7

7

5

I

2

6

6

4

a 0 0 0

1 a 0 0

0 1 a 0

0 0 1 a

3

7

7

5

I

2

6

6

4

a �b 0 0

b a 0 0

0 0 c 0

0 0 0 d

3

7

7

5

; .b ¤ 0/I

2

6

6

4

a �b 0 0

b a 0 0

0 0 c 0

0 0 1 c

3

7

7

5

; .b ¤ 0/I

2

6

6

4

a �b 0 0

b a 0 0

0 0 c �d

0 0 d c

3

7

7

5

; .b; d ¤ 0/I

2

6

6

4

a �b 0 0

b a 0 0

1 0 a �b

0 1 b a

3

7

7

5

; .b ¤ 0/

9
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>

=

>

>

;

8. (a) The series formula gives

etA D
1

X

kD0

tkAk

kŠ
D

2

6

6

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

7

7

5

C t

2

6

6

4

0 0 0 0

1 0 0 1

1 0 0 1

0 �1 1 0

3

7

7

5

C t2

2

2

6

6

4

0 0 0 0

0 �1 1 0

0 �1 1 0

0 0 0 0

3

7

7

5

C t3

6

2

6

6

4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

7

7

5

C t4

24

2

6

6

4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

7

7

5

C � � �

D

2

6

6

4

1 0 0 0

t 1 � t2=2 t2=2 t

t �t2=2 1 C t2=2 t

0 �t t 1

3

7

7

5

:

(b) SinceA2 D 10A, Ak D 10k�1A for all k � 1, so

etA D
1

X

kD0

tkAk

kŠ
D I C

1
X

kD1

tk10k�1A

kŠ
D I C A

10

1
X

kD1

tk10k

kŠ
D I C A

10
.e10t � 1/

D 1

10

2

6

6

4

e10t C 9 e10t � 1 e10t � 1 e10t � 1

2e10t � 2 2e10t C 8 2e10t � 2 2e10t � 2

3e10t � 3 3e10t � 3 3e10t C 7 3e10t � 3

4e10t � 4 4e10t � 4 4e10t � 4 4e10t C 6

3

7

7

5

:

9. (a) Since etA and etB are contractions, the results of this section indicate thatthere are constants
k1; b1; k2; b2 > 0 such thatketAxk � k1e�tb1kxk andketBxk � k2e�tb2kxk for all x 2 R

n

andt � 0. If A andB commute, then so dotA andtB, so the lemma in Section 2.1 indicates
thatet .ACB/ D etAetB . Thus,

ket .ACb/xk D ketAetBxk � k1e�tb1ketBxk � k1e�tb1k2e�tb2kxk D ke�tbkxk;

wherek D k1k2 > 0 andb D b1 C b2 > 0. Thus,et .ACb/ is a contraction.



(b) Let

A D
�

�1 0

3 �1

�

andB D
�

�1 3

0 �1

�

:

The only eigenvalue ofA or B is �1, soetA andetB are contractions. On the other hand,

A C B D
�

�2 3

3 �2

�

;

which has1 as one of its eigenvalues, soet .ACB/ is not a contraction.

10. The listed alternatives are insufficient. To determine the correct list of alternatives, we view solutions
with respect to the basis corresponding to real canonical form. We first determine all possible asymp-
totic behaviors of solutions confined toEu, Es, or Ec .

If x.t/ is a solution inEu, then its components are all of the formp.t/eat .˛ cosbt C ˇ sinbt/ where
p is a polynomial anda > 0. Furthermore, ifb ¤ 0 (and˛2Cˇ2 ¤ 0 andp.t/ is not identically zero)
then there is a complementary component of the form˙p.t/eat .ˇ cosbt � ˛ sinbt/ with the same
p, a, b, ˛, andˇ. This tells us that eitherx.t/ is identically zero orx.t/ approaches0 ast # �1 and
diverges to1 ast " 1. Similarly, any solution inEs is either identically zero or converges to zero
in forward time and diverges to1 in backward time.

The analysis of possible behaviors for a solutionx.t/ in Ec is slightly more complicated. Each
component ofx.t/ is of the formp.t/.˛ cosbt C ˇ sinbt/ with p a polynomial, and for each such
component withb ¤ 0 (and˛2 C ˇ2 ¤ 0 andp.t/ not identically zero) there is a complementary
component of the forṁ p.t/.ˇ cosbt �˛ sinbt/ with the samep, b, ˛, andˇ. One possibility is, of
course, that all components are identically zero, sox.t/ is identically zero. If eachp.t/ is a constant
but there is some component that is not identically zero, then x.t/ is bounded and bounded away
from zero. If there is a nontrivial component whose polynomial is nonconstant, thenx.t/ diverges to
infinity in both forward and backward time.

We can now determine the behavior of arbitrary solutions by using the fact that each solutionx.t/ is a
sum of solutionsxu.t/ in Eu, xs.t/ in Es, andxc.t/ in Ec . By considering all possible combinations
of the behaviors noted above (and using the fact thatxu.t/, xs.t/, andxc.t/ lie in different subspaces
and therefore cannot cancel one another out), we see that Hirsch and Smale’s list will be correct if and
only if it is supplemented with the following alternatives:

(d) x.t/ D 0 for everyt 2 R;

(e) lim
t#�1

jx.t/j D lim
t"1

jx.t/j D 1;

(f) lim
t#�1

jx.t/j D 1 and there exist constantsM; N > 0 such thatM < jx.t/j < N for all t > 0;

(g) lim
t"1

jx.t/j D 1 and there exist constantsM; N > 0 such thatM < jx.t/j < N for all t < 0.

11. The trace ofA.t/ is �1=2 and the determinant is1=2, so the eigenvalues are.�1˙ i
p

7/=4, which each
have negative real part. Furthermore,

A.t/

�

� cost

sint

�

et=2 D
��

�1 1

�1 �1

�

C 3

2

�

cos2 t � sint cost

� sint cost sin2 t

�� �

� cost

sint

�

et=2

D
��

cost C sint

cost � sint

�

C 3

2

�

� cost

sint

��

et=2

D
��

sint

cost

�

C 1

2

�

� cost

sint

��

et=2 D d

dt

�

� cost

sint

�

et=2;



so
�

� cost

sint

�

et=2

is a solution that becomes unbounded in forward time.

12. By the results of this section, the equationPx D A.t/x has Floquet multipliers whose product is

exp

�Z 2�

0

.2 � cost C sint/ dt

�

D e4� :

Since this product is larger than 1, one of the Floquet multipliers must be larger than 1 in absolute
value. A theorem from this section says that this means that there is a nontrivial solution of the ODE
that grows in absolute value by a factor greater than 1 each2� units of time. This solution becomes
unbounded ast goes to1.

13.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a F F F F F T T T T T T T T T T T T T
b F F F F F F F F F T T T T F F F T T
c F F T T T F F T T F F T T T T T T T
d F F F F F F F F F F F F F T T T T T
e F T F T T F T F T F T F T F T T F T
f F T F F T F T F T F F F T F F T F T

14. Let f , g, andV be as in the hint, and consider the ODEPx D f .t; x/. Note that

Z t

0

Œg.�/�2 d� <

Z 1

0

Œg.�/�2 d� �
Z 1

0

e�2� d� C 2

1
X

nD1

2�n D 1

2
C 2 D 5

2
;

so

V.t; x/ D x2

Œg.t/�2

�

3 �
Z t

0

Œg.�/�2 d�

�

� x2

1

�

3 � 5

2

�

D x2

2
:

This shows thatV.t; x/ is positive definite. Also,

PV .t; x/ D 2xf .t; x/Œg.t/�2 � 2x2g.t/g0.t/

Œg.t/�4

�

3 �
Z t

0

Œg.�/�2 d�

�

� x2

D 2x2g.t/g0.t/ � 2x2g.t/g0.t/

Œg.t/�4

�

3 �
Z t

0

Œg.�/�2 d�

�

� x2 D �x2;

so PV .t; x/ is negative definite.

The ODE

Px D f .t; x/ D g0.t/

g.t/
x

is separable and its general solution isx.t/ D cg.t/. Thus, no solution of the equation except for the
zero solution converges to 0 in forward time. Hence,0 is not asymptotically stable.

15. Let V D x2 C y2. Note thatV is positive definite andPV D 2x Px C 2y Py D 2x.�x3 C 2y3/ C
2y.�2xy2/ D �2x4, which is negative semidefinite. This shows that.0; 0/ is Lyapunov stable.



Now letD be the closed disc of radius1 centered at the origin. The set wherePV D 0 lies on they-
axis, andPx is nonzero everywhere on that set except for the origin, so the union of the set of complete
orbits along whichPV D 0 is f.0; 0/g. By LaSalle’s Invariance Principle, the!-limit set of each point
in D is therefore contained inf.0; 0/g. We claim that, in fact, every solution starting inD converges
to 0 in forward time. If not, then there would be a sequence of arbitrarily late points on the orbit
bounded away from the origin, and some subsequence of this sequence would converge to an!-limit
point other than the origin. This can’t happen, so the claim holds, and the origin is asymptotically
stable.

16. (a) Defineh W R
2 ! R

2 by

h

��

x

y

��

D
�

x

y � 4x2=7

�

:

It is easy to check that

h�1

��

x

y

��

D
�

x

y C 4x2=7

�

;

soh is a homeomorphism. Furthermore,

h�1

�

F

�

h

��

x

y

����

D h�1

�

F

��

x

y � 4x2=7

���

D h�1

��

�x=2

2y � x2=7

��

D
�

�x=2

2y

�

D A

�

x

y

�

;

soh is a topological conjugacy betweenF andA.

(b) Defineh W R
2 ! R

2 by

h

��

x

y

��

D
�

x

y � x2=3

�

;

which is a homeomorphism with inverse

h�1

��

x

y

��

D
�

x

y C x2=3

�

:

Sinceh is differentiable, we can check whether it provides a conjugacy between the given flows
by checking thatF.h.u// D Dh.u/Au. Calculating,

F

�

h

��

x

y

���

D F

��

x

y � x2=3

��

D
�

�x=2

2y C x2=3

�

;

and

Dh

��

x

y

��

A

�

x

y

�

D
�

1 0

�2x=3 1

�

�
�

�x=2

2y

�

D
�

�x=2

2y C x2=3

�

;

soh is a conjugacy and the flows are conjugate.


