Math $5410 \S 1$.	Second Midterm Exam
Treibergs	
	Nome: 1, Solutions 2017

1. Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$. Find $e^{t A}$.

Solving for eigenvalues,

$$
0=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
1-\lambda & 2 \\
-1 & 3-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+5=(\lambda-2)^{2}+1
$$

so $\lambda_{1}=2+i$ and $\lambda_{2}=2-i$. The eigenvector

$$
0=\left(A-\lambda_{1} I\right) V_{1}=\left(\begin{array}{cc}
-1-i & 2 \\
-1 & 1-i
\end{array}\right)\binom{1-i}{1}
$$

Put real and imaginary parts of V_{1} to form the columns of T. Checking that we get $R=\left(\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right)$ where $\lambda=\alpha+\beta i=2+i$,

$$
A T=\left(\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
3 & -1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right)=T R
$$

Now $e^{t A}=e^{t T R T^{-1}}=T e^{t R} T^{-1}$ and $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha\end{array}\right)\left(\begin{array}{cc}0 & \beta \\ -\beta & 0\end{array}\right)=\left(\begin{array}{cc}0 & \beta \\ -\beta & 0\end{array}\right)\left(\begin{array}{ll}\alpha & 0 \\ 0 & \alpha\end{array}\right)$ so

$$
\begin{aligned}
e^{t A} & =T e^{t\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right)} e^{t\left(\begin{array}{cc}
0 & \beta \\
-\beta & 0
\end{array}\right)} T^{-1}=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) e^{2 t}\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right) \\
& =e^{2 t}\left(\begin{array}{cc}
-\sin t+\cos t & 2 \sin t \\
-\sin t & \cos t+\sin t
\end{array}\right)
\end{aligned}
$$

2. Let $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.

Find a matrix T that brings A into canonical form. Check that your T works. Determine whether the zero solution $z(t)=0$ is stable for $x^{\prime}=A x$. Explain why or why not.
Since A is upper triangular, its eigenvalues appear on the diagonal, $\lambda=0$, with algebraic multiplicity 3 . Let us compute a chain starting from the eigenvector.

$$
\begin{gathered}
0=(A-\lambda I) V_{1}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=V_{1}=(A-\lambda I) V_{2}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)=V_{2}=(A-\lambda I) V_{3}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
\end{gathered}
$$

Putting in the generalized eigenvectors as columns of T we check

$$
A T=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=T J
$$

The solutions are $e^{t A} c=e^{t T J T^{-1}} c=T e^{t J} T^{-1} c$ which blow up as $t \rightarrow \infty$ no matter how small $c=T\left(0,0, c_{3}\right) \neq 0$ is, so $z(t)=0$ is not stable. In fact, this follows from

$$
e^{t J} T c=\left(\begin{array}{ccc}
1 & t & \frac{1}{2} t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
c_{3}
\end{array}\right)=c_{3}\left(\begin{array}{c}
\frac{1}{2} t^{2} \\
t \\
1
\end{array}\right)
$$

which blows up as $t \rightarrow \infty$.
3. Is there is a 2π-periodic solution? Prove your answer.

$$
\begin{aligned}
x^{\prime} & =2 x+y+\sin t \\
y^{\prime} & =2 y+\cos ^{2} t
\end{aligned}
$$

Put

$$
A=\left(\begin{array}{cc}
2 & 1 \\
0 & 2
\end{array}\right) ; \quad b(t)=\binom{\sin t}{\cos ^{2} t}, \quad z(t)=\binom{x(t)}{y(t)}
$$

The system becomes

$$
\begin{aligned}
z^{\prime} & =A z+b(t) \\
z(0) & =z_{0}
\end{aligned}
$$

There is a 2π-periodic solution if for some initial condition, $z_{0}=z(2 \pi)$. By the variation of parameters formula,

$$
z(t)=e^{t A} z_{0}+\int_{0}^{t} e^{(t-s) A} b(s) d s
$$

the equation $z_{0}=z(2 \pi)$ becomes

$$
\left(I-e^{2 \pi A}\right) z_{0}=\int_{0}^{2 \pi} e^{(t-s) A} b(s) d s
$$

But $A=2 I+\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ where $2 I \cdot\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \cdot 2 I$ so

$$
I-e^{2 \pi A}=I-e^{2 \pi\left(2 I+\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)\right)}=I-e^{4 \pi I} e^{\left(\begin{array}{cc}
0 & 2 \pi \\
0 & 0
\end{array}\right)}=I-e^{4 \pi}\left(\begin{array}{ll}
1 & 2 \pi \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1-e^{4 \pi} & -2 \pi e^{4 \pi} \\
0 & 1-e^{4 \pi}
\end{array}\right)
$$

which is invertible since its determinant is $\left(1-e^{4 \pi}\right)^{2} \neq 0$. Hence, there is a periodic solution to the system that corresponds to the initial value

$$
z_{0}=\left(I-e^{2 \pi A}\right)^{-1} \int_{0}^{2 \pi} e^{(t-s) A} b(s) d s
$$

4. Let A be an $n \times n$ real matrix. Consider the initial value problem for a matrix valued function $X(t)$. Find the first four Picard Iterates. Using induction, show that your guess is correct. Find the limit and check that it solves the IVP.

$$
\begin{aligned}
X^{\prime} & =A X \\
X(0) & =I
\end{aligned}
$$

Beginning at the initial iterate $X_{0}(t)=I$, we do Picard iteration

$$
\begin{aligned}
& X_{1}(t)=I+\int_{0}^{t} A X_{0}(s) d s=I+\int_{0}^{t} A d s=I+t A \\
& X_{2}(t)=I+\int_{0}^{t} A X_{1}(s) d s=I+\int_{0}^{t} A(I+s A) d s=I+t A+\frac{1}{2} t^{2} A^{2} \\
& X_{3}(t)=I+\int_{0}^{t} A X_{2}(s) d s=I+\int_{0}^{t} A\left(I+s A+\frac{1}{2} s^{2} A^{2}\right) d s=I+t A+\frac{1}{2} t^{2} A^{2}+\frac{1}{6} t^{3} A^{3}
\end{aligned}
$$

We guess that

$$
X_{n}(t)=\sum_{k=0}^{n} \frac{1}{k!} t^{k} A^{k}
$$

We have already done the $n=0$ base case. Assuming it is true for n, the induction step is

$$
X_{n+1}(t)=I+\int_{0}^{t} A X_{n}(s) d s=I+\int_{0}^{t} A\left(\sum_{k=0}^{n} \frac{1}{k!} s^{k} A^{k}\right) d s=I+\sum_{k=0}^{n} \frac{1}{(k+1)!} t^{k+1} A^{k+1}
$$

which equals

$$
X_{n+1}(t)=\sum_{k=0}^{n+1} \frac{1}{k!} t^{k} A^{k}
$$

after changing the dummy index to $k^{\prime}=k+1$. Thus the induction is proved. This is the power series for matrix exponential, thus

$$
\lim _{n \rightarrow \infty} X_{n}(t)=\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} A^{k}=e^{t A}
$$

Because

$$
\frac{d}{d t} e^{t A}=A e^{t A}, \quad \text { and } \quad e^{0 \cdot A}=I
$$

we see that the limit is a solution to the IVP.
5. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Invertible matrices A are generic in the real matrices.

True. To be generic means that the real invertible matrices are a dense open set in the space of all real matrices. To see that invertible matrices are open, choose an invertible matrix A. Then $\operatorname{det} A \neq 0$. But the mapping $A \rightarrow \operatorname{det} A$ is continuous, so that there is a whole neighborhood of matrices around A which are invertible, namely, for some $\delta>0$, if $\|A-B\|<\delta$ then $\operatorname{det} B \neq 0$. To see that the invertible matrices are dense, choose any real matrix A and any $\epsilon>0$. If A is not invertible, at least one of its eigenvalues λ_{i} is zero. But we may choose a number $t \neq 0$ sufficiently small so that $\|t I\|<\epsilon$ and so that $\lambda_{i}-t$ is nonzero for all i. Hence the matrix $A-t I$ is ϵ close to A and has eigenvalues $\lambda_{i}-t$ which are nonzero, hence $A-t I$ is invertible.
(b) Let A and B be real 2×2 matrices. Then $e^{A+B}=e^{A} e^{B}$.

False. Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Then $A B \neq B A$ so we don't expect the conclusion. But we must check: $A+B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ so $(A+B)^{2 n}=I$ and $(A+B)^{2 n-1}=$ $A+B$. It follows that

$$
e^{A+B}=\left(\begin{array}{ll}
1+0+\frac{1}{2!}+0+\cdots & 0+1+0+\frac{1}{3!}+\cdots \\
0+1+0+\frac{1}{3!}+\cdots & 1+0+\frac{1}{2!}+0+\cdots
\end{array}\right)=\left(\begin{array}{cc}
\cosh 1 & \sinh 1 \\
\sinh 1 & \cosh 1
\end{array}\right)
$$

whereas

$$
e^{A}=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right), \quad e^{B}=\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right), \quad e^{A} e^{B}=\left(\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right)
$$

which is not the same as e^{A+B}.
(c) Suppose that $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a continuous real-valued function. Then solutions of $\dot{x}=f(x)$ and $x(0)=0$ are unique.
FALSE. The IVP in \mathbf{R}^{1} given by $\dot{x}=2|x|^{1 / 2}=f(x)$ and $x(0)=0$ has continuous $f(x)$ but has two solutions $x(t)=0$ and $x(t)=t^{2}$ for $t \geq 0$.

