
Math 5410 § 1.
Treibergs

Second Midterm Exam Name: Solutions
Nov. 1, 2017

1. Let A =

 1 2

−1 3

. Find etA.

Solving for eigenvalues,

0 = det(A− λI) =

∣∣∣∣∣∣∣∣
1− λ 2

−1 3− λ

∣∣∣∣∣∣∣∣ = λ2 − 4λ+ 5 = (λ− 2)2 + 1

so λ1 = 2 + i and λ2 = 2− i. The eigenvector

0 = (A− λ1I)V1 =

−1− i 2

−1 1− i


1− i

1


Put real and imaginary parts of V1 to form the columns of T . Checking that we get
R =

(
α β
−β α

)
where λ = α+ βi = 2 + i,

AT =

 1 2

−1 3


1 −1

1 0

 =

3 −1

2 1

 =

1 −1

1 0


 2 1

−1 2

 = TR

Now etA = etTRT
−1

= TetRT−1 and
(
α 0
0 α

)(
0 β
−β 0

)
=
(

0 β
−β 0

)(
α 0
0 α

)
so

etA = Te
t

(
α 0

0 α

)
e
t

(
0 β

−β 0

)
T−1 =

1 −1

1 0

 e2t

 cos t sin t

− sin t cos t


 0 1

−1 1



= e2t

− sin t+ cos t 2 sin t

− sin t cos t+ sin t

 .
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2. Let A =


0 1 1

0 0 1

0 0 0

.

Find a matrix T that brings A into canonical form. Check that your T works. Determine
whether the zero solution z(t) = 0 is stable for x′ = Ax. Explain why or why not.

Since A is upper triangular, its eigenvalues appear on the diagonal, λ = 0, with algebraic
multiplicity 3. Let us compute a chain starting from the eigenvector.

0 = (A− λI)V1 =


0 1 1

0 0 1

0 0 0




1

0

0




1

0

0

 = V1 = (A− λI)V2 =


0 1 1

0 0 1

0 0 0




0

1

0




0

1

0

 = V2 = (A− λI)V3 =


0 1 1

0 0 1

0 0 0




0

−1

1


Putting in the generalized eigenvectors as columns of T we check

AT =


0 1 1

0 0 1

0 0 0




1 0 0

0 1 −1

0 0 1

 =


0 1 0

0 0 1

0 0 0

 =


1 0 0

0 1 −1

0 0 1




0 1 0

0 0 1

0 0 0

 = TJ

The solutions are etAc = etTJT
−1

c = TetJT−1c which blow up as t → ∞ no matter how
small c = T (0, 0, c3) 6= 0 is, so z(t) = 0 is not stable. In fact, this follows from

etJTc =


1 t 1

2 t
2

0 1 t

0 0 1




0

0

c3

 = c3


1
2 t

2

t

1


which blows up as t→∞.
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3. Is there is a 2π-periodic solution? Prove your answer.

x′ = 2x+ y + sin t

y′ = 2y + cos2 t

Put

A =

2 1

0 2

 ; b(t) =

 sin t

cos2 t

 , z(t) =

x(t)

y(t)

 .

The system becomes

z′ = Az + b(t)

z(0) = z0

There is a 2π-periodic solution if for some initial condition, z0 = z(2π). By the variation of
parameters formula,

z(t) = etAz0 +

∫ t

0

e(t−s)Ab(s) ds

the equation z0 = z(2π) becomes

(
I − e2πA

)
z0 =

∫ 2π

0

e(t−s)Ab(s) ds

But A = 2I +
(
0 1
0 0

)
where 2I ·

(
0 1
0 0

)
=
(
0 1
0 0

)
· 2I so

I − e2πA = I − e2π(2I+(0 1
0 0)) = I − e4πIe(

0 2π
0 0 ) = I − e4π

1 2π

0 1

 =

1− e4π −2πe4π

0 1− e4π


which is invertible since its determinant is (1−e4π)2 6= 0. Hence, there is a periodic solution
to the system that corresponds to the initial value

z0 =
(
I − e2πA

)−1 ∫ 2π

0

e(t−s)Ab(s) ds.

4. Let A be an n × n real matrix. Consider the initial value problem for a matrix valued
function X(t). Find the first four Picard Iterates. Using induction, show that your guess is
correct. Find the limit and check that it solves the IVP.

X ′ = AX

X(0) = I.

Beginning at the initial iterate X0(t) = I, we do Picard iteration

X1(t) = I +

∫ t

0

AX0(s) ds = I +

∫ t

0

Ads = I + tA,

X2(t) = I +

∫ t

0

AX1(s) ds = I +

∫ t

0

A(I + sA) ds = I + tA+
1

2
t2A2,

X3(t) = I +

∫ t

0

AX2(s) ds = I +

∫ t

0

A

(
I + sA+

1

2
s2A2

)
ds = I + tA+

1

2
t2A2 +

1

6
t3A3,
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We guess that

Xn(t) =

n∑
k=0

1

k!
tkAk.

We have already done the n = 0 base case. Assuming it is true for n, the induction step is

Xn+1(t) = I +

∫ t

0

AXn(s) ds = I +

∫ t

0

A

(
n∑
k=0

1

k!
skAk

)
ds = I +

n∑
k=0

1

(k + 1)!
tk+1Ak+1

which equals

Xn+1(t) =

n+1∑
k=0

1

k!
tkAk

after changing the dummy index to k′ = k + 1. Thus the induction is proved. This is the
power series for matrix exponential, thus

lim
n→∞

Xn(t) =

∞∑
k=0

1

k!
tkAk = etA.

Because
d

dt
etA = AetA, and e0·A = I,

we see that the limit is a solution to the IVP.

5. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Invertible matrices A are generic in the real matrices.

True. To be generic means that the real invertible matrices are a dense open set
in the space of all real matrices. To see that invertible matrices are open, choose an
invertible matrix A. Then detA 6= 0. But the mapping A → detA is continuous, so
that there is a whole neighborhood of matrices around A which are invertible, namely,
for some δ > 0, if ‖A−B‖ < δ then detB 6= 0. To see that the invertible matrices are
dense, choose any real matrix A and any ε > 0. If A is not invertible, at least one of
its eigenvalues λi is zero. But we may choose a number t 6= 0 sufficiently small so that
‖tI‖ < ε and so that λi − t is nonzero for all i. Hence the matrix A− tI is ε close to
A and has eigenvalues λi − t which are nonzero, hence A− tI is invertible.

(b) Let A and B be real 2× 2 matrices. Then eA+B = eAeB.
False. Let A =

(
0 1
0 0

)
and B =

(
0 0
1 0

)
. Then AB 6= BA so we don’t expect the

conclusion. But we must check: A+ B =
(
0 1
1 0

)
so (A+ B)2n = I and (A+ B)2n−1 =

A+B. It follows that

eA+B =

1 + 0 + 1
2! + 0 + · · · 0 + 1 + 0 + 1

3! + · · ·

0 + 1 + 0 + 1
3! + · · · 1 + 0 + 1

2! + 0 + · · ·

 =

cosh 1 sinh 1

sinh 1 cosh 1


whereas

eA =

1 1

0 1

 , eB =

1 0

1 1

 , eAeB =

2 1

1 1

 ,

which is not the same as eA+B .

4



(c) Suppose that f : Rn → Rn is a continuous real-valued function. Then solutions of
ẋ = f(x) and x(0) = 0 are unique.
False. The IVP in R1 given by ẋ = 2|x|1/2 = f(x) and x(0) = 0 has continuous f(x)
but has two solutions x(t) = 0 and x(t) = t2 for t ≥ 0.
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