Math 5410 § 1.
Treibergs

First Midterm Exam n

Name: Soluytions
Sept. 20, 2017

1. Consider the system

$$
X^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
a & b
\end{array}\right) X
$$

Sketch the regions in the ab-plane where this system has different types of canonical forms. In the interior of each region, sketch a small phase plane indicating how the flow looks.
Find the eigenvalues.

$$
0=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
-\lambda & 1 \\
a & b-\lambda
\end{array}\right|=\lambda^{2}-b \lambda-a
$$

Solving the quadratic equation

$$
\lambda=\frac{b \pm \sqrt{b^{2}+4 a}}{2}
$$

Thus the $a b$-plane is split into five regions by the parabola $4 a=-b^{2}$ and the coordinate axes. Note that $\lambda_{1} \lambda_{2}=\operatorname{det}(A)=-a$ and $\lambda_{1}+\lambda_{2}=\operatorname{tr} A=b$. Hence if $a>0$ the determinant is negative and the eigenvalues have opposite signs: the rest point is a saddle. If $4 a<-b^{2}$ then the roots are complex. If also $b<0(b>0)$ the rest point is a stable spiral (unstable spiral resp.) But if $-b^{2}<4 a<0$ the roots are real. If also $b<0(b>0)$ the rest point is a stable node (unstable node resp.)

Figure 1: $a b$ plane for Problem 1.
2. Consider the system

$$
X^{\prime}=\left(\begin{array}{cc}
1 & 2 \tag{1}\\
-1 & 3
\end{array}\right) X
$$

Find the real general solution. Determine the real canonical form $Y^{\prime}=B Y$ for system (1). Find the matrix M so that $Y=M X$ puts (1) in canonical form. Check that your matrix works.

Find the eigenvalues.

$$
0=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
1-\lambda & 2 \\
-1 & 3-\lambda
\end{array}\right|=(1-\lambda)(3-\lambda)+2=\lambda^{2}-4 \lambda+5=(\lambda-2)^{2}+1
$$

so $\lambda_{1}=2+i$ and $\lambda_{2}=2-i$. Solving for the λ_{1} eigenvector

$$
0=\left(A-\lambda_{1} I\right) v_{1}=\left(\begin{array}{cc}
-1-i & 2 \\
-1 & 1-i
\end{array}\right)\binom{2}{1+i}
$$

Thus a complex solution is given by

$$
\begin{aligned}
X(t) & =e^{(2+i) t}\binom{2}{1+i}=e^{2 t}(\cos t+i \sin t)\binom{2}{1+i} \\
& =e^{2 t}\left[\binom{2 \cos t}{\cos t-\sin t}+i\binom{2 \sin t}{\cos t+\sin t}\right]
\end{aligned}
$$

The real general solution is a combination of the real and imaginary parts of one of the complex solutions.

$$
X(t)=e^{2 t}\left[c_{1}\binom{2 \cos t}{\cos t-\sin t}+c_{2}\binom{2 \sin t}{\cos t+\sin t}\right] .
$$

If $\lambda=a+i b$ then the real canonical form is $Y^{\prime}=B Y$ where

$$
B=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right)
$$

There is a matrix T such that $B=T^{-1} A T$ and the transformation is given by $M=T^{-1}$. Indeed, if $Y=T^{-1} X$ then

$$
Y^{\prime}=T^{-1} X^{\prime}=T^{-1} A X=T^{-1} A T Y=B Y
$$

In fact, the matrix is given by the real and imaginary parts of the eigenvector

$$
T=\left(\begin{array}{cc}
2 & 0 \\
1 & 1
\end{array}\right), \quad M=T^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)
$$

To check, we compute

$$
A T=\left(\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right)
$$

which equals

$$
T B=\left(\begin{array}{cc}
2 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right)
$$

3. Let A be an $n \times n$ real matrix. Define "range A " and "ker A." Let A be an $n \times n$ real matrix such that ker $A=\{0\}$. From first principles, show that range $A=\mathbf{R}^{n}$ and, therefore $\operatorname{dim} \operatorname{ker} A+\operatorname{dim}$ range $A=n$.
The kernel is the nullspace defined by

$$
\operatorname{ker} A=\left\{x \in \mathbf{R}^{n}: A x=0\right\}
$$

The range is the image defined by

$$
\text { range } A=\left\{A y: y \in \mathbf{R}^{n}\right\}
$$

Suppose that the kernel is zero. That means that the only solution of

$$
A x=0
$$

is $x=0$. If we do elementary row operations R, the matrix A is reduced to a reduced row echelon form that has no free columns, otherwise there are nonzero null vectors. But an $n \times n$ reduced row echelon matrix with no free columns is the identity matrix

$$
R A=I
$$

We claim that range $A=\mathbf{R}^{n}$. To see this, we show that any $b \in \mathbf{R}^{n}$ is the image of some vector x under A. Such x satisfies

$$
A x=b
$$

Doing row operations

$$
x=I x=R A x=R b \text {. }
$$

Since we found an $x \in \mathbf{R}^{n}$ such that $b=A x$, any vector $b \in \mathbf{R}^{n}$ is in the range of A.
4. Consider the family of differential equations depending on the parameter a.

$$
x^{\prime}=x^{3}+4 x^{2}-a x
$$

Find the bifurcation points. Sketch the phase lines for values of a just above and just below the bifurcation values. Sketch the bifurcation diagram for this family of equations. Determine the stability type of the rest points for each a.
Factoring,

$$
x^{\prime}=x\left(x^{2}+4 x-a\right)=f(x, a)
$$

The bifurcation curves are the solutions of $f(x, a)=0$ which are the curves $x=0$ and $a=$ $x^{2}+4 x=(x+2)^{2}-4$. Thus $x=0$ is a rest point for all values of a and $x=-2 \pm \sqrt{a+4}$ are two more rest points for $a>-4$. Thus there are two bifurcation points at $(a, x)=(-4,-2)$ and at $(a, x)=(0,0)$. As a increases from $-\infty$, a rest point appears at $a=-4$ which splits into a stable and unstable rest point for $-4<a$ giving a fold type bifurcation. Then as a increases through $a=0$, a stable and unstable rest point collide and "bounce," giving a transcritical bifurcation. The phase lines are indicated for some typical a values in Fig. 2. Since $f(x, a)$ goes from negative to positive at $x=-2 \pm \sqrt{a+4}$ when $a>0$, these are both unstable. $x=0$ is stable for $a>0$ and unstable for $a<0 . x=-2+\sqrt{a+4}$ is stable for $-4<a<0$ and $x=-2-\sqrt{a+4}$ is unstable for $a>-4$. The flow directions are indicated on the $a=$ constr. lines for some typical values of a. When $a<-4$ when $x \mapsto f(x, a)$ is an increasing function which is negative for $x<0$ and positive for $x>0$. Thus flow is away from the rest point. When $-4<a<0, x \mapsto f(x, a)$ goes from negative to positive to negative to positive so flow is to the left for $x<-2-\sqrt{4+a}$ and $-2+\sqrt{4+a}<x<0$ and to the right otherwise making the rest points $-2-\sqrt{4+a}$ and 0 unstable and $-2+\sqrt{4+a}$ stable. When $0<a, x \mapsto f(x, a)$ goes from negative to positive to negative to positive so flow is to the left for $x<-2-\sqrt{4+a}$ and $0<x<-2+\sqrt{4+a}$ and to the right otherwise making the rest points $-2 \pm \sqrt{4+a}$ unstable and 0 stable.

Figure 2: Bifurcation Diagram and Phase Lines for Problem (4).
5. Find the flows ϕ_{t}^{X} and ϕ_{t}^{Y}. Find an explicit congugacy between the flows and check that your conjugacy works.

$$
X^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
0 & -3
\end{array}\right) X, \quad Y^{\prime}=\left(\begin{array}{cc}
-2 & 0 \\
0 & 2
\end{array}\right)
$$

If the flow starts at (a, b) at $t=0$, the flows are given by solving the systems

$$
\phi_{t}^{X}\binom{a}{b}=\binom{e^{t} a}{e^{-3 t} b}, \quad \quad \phi_{t}^{Y}\binom{a}{b}=\binom{e^{-2 t} a}{e^{2 t} b}
$$

Notice that the incoming and outgoing axes are different, so we seek a homeomorphism that swaps the two directions. We look for p and q so that

$$
h\binom{x}{y}=\binom{\operatorname{sgn}(y)|y|^{p}}{\operatorname{sgn}(x)|x|^{q}}
$$

Then flowing first and then applying the map yields

$$
h \circ \phi_{t}^{X}\binom{x}{y}=\binom{\operatorname{sgn}(y)\left|e^{-3 t} y\right|^{p}}{\operatorname{sgn}(x)\left|e^{t} x\right|^{q}} .
$$

Applying the map first and then flowing yields

$$
\phi_{t}^{Y} \circ h\binom{x}{y}=\binom{e^{-2 t} \operatorname{sgn}(y)|y|^{p}}{e^{2 t} \operatorname{sgn}(x)|x|^{q}}
$$

For these to be equal we need

$$
3 p=2, \quad 2=q \quad \Longrightarrow \quad p=\frac{2}{3}, \quad q=2
$$

so

$$
h\binom{x}{y}=\binom{\operatorname{sgn}(y)|y|^{2 / 3}}{\operatorname{sgn}(x)|x|^{2}}
$$

Checking,

$$
h \circ \phi_{t}^{X}\binom{x}{y}=\binom{\operatorname{sgn}(y)\left|e^{-3 t} y\right|^{2 / 3}}{\operatorname{sgn}(x)\left|e^{t} x\right|^{2}}=\binom{e^{-2 t} \operatorname{sgn}(y)|y|^{2 / 3}}{e^{2 t} \operatorname{sgn}(x)|x|^{2}}=\phi_{t}^{Y} \circ h\binom{x}{y} .
$$

