
Math 5410 § 1.
Treibergs

First Midterm Exam Name: Solutions
Sept. 24, 2014

1. For the differential equation, find the general solution. Find the Poincaré map. Show that
there is a unique 2π-periodic solution.

x′ = (1 + cos t)x+ 1.

Use the integrating factor µ(t) = exp
(
−
∫ t
0

1 + cos s ds
)

= e−t−sin t.(
e−t−sin tx

)′
= et+sin t

(
x′ − (1 + cos t)x

)
= e−t−sin t

Integrating,

e−t−sin tx(t)− e0x(0) =

∫ t

0

e−s−sin s ds

so the general solution has the form

x(t) = et+sin tx(0) + et+sin t

∫ t

0

e−s−sin s ds.

The Poincaré map is the value that the solution starting from x0 has at the time of one
period T = 2π. Hence

℘(x0) = e2π+sin 2πx0 + e2π+sin 2π

∫ 2π

0

e−s−sin s ds = e2πx0 + e2π
∫ 2π

0

e−s−sin s ds.

There is a unique 2π-periodic solution if there is exactly one starting value that returns to
itself after one period, namely, a there is exactly one solution to the equation ℘(x0) = x0.
This is a linear equation in x0 so it has the unique solution

x0 =
e2π

1− e2π

∫ 2π

0

e−s−sin s ds.

2. Suppose that a population grows according to the logistic model but is harvested at a rate
proportional to the population, where h > 0 is the harvesting parameter. Find the bifurcation
points and sketch the phase lines for values of h just above and just below the bifurcation
values. Sketch the bifurcation diagram for this family of differential equations. Is the initial
population exterminated or does it have a positive limiting value in these cases?

x′ = x(1− x)− hx.

The fixed points are solutions of 0 = x(1− h− x) which are x = 0 and x = 1− h. There is
one bifurcation at h = 1 which is of trans-critical type. In the x− h plane, the bifurcation
diagram consits of the lines x = 0 and x = 1 − h. For h > 1, the one zero is negative and
unphysical. Between the roots the right side is positive and the flow is increasing. At the
bifurcation point h = 1, the flow is decreasing on both sides and the rest point is neither
stable nor unstable. For h < 1 the rest points are zero and x = 1−h which is positive. The
flow is increasing to the left and decreasing to the right. The stable fixed points are red
and the unstable ones are blue in the diagram. The phase lines corresponding to the three
values h > 1, h = 1 and h < 1 are drawn showing the flows.

When the harvesting rate is small h < 1, then there is a stable positive equilibrium at
x = 1 − h. Otherwise the population decays to zero. Because zero is a rest point, the
extermination takes infinite time.
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Figure 1: Bifurcation Diagram and Phase Lines for Problem (2).

3. In the system, for which real values of k does the system have complex eigenvalues? real
and distinct eigenvalues? Identify regions of the k-axis where the system has similar phase
portraits. In each of the regions, what is the canonical form? For each, sketch the phase
plane showing the trajectories. Identify the regions in the k-axis where the system has
TOPOLOGICALLY CONJUGATE phase portraits.

X ′ =

(
1 k

2 3

)
X

The characteristic polynomial is

0 = det(A− λI) =

∣∣∣∣(1− λ k

2 3− λ

)∣∣∣∣ = (1− λ)(3− λ)− 2k = λ2 − 4λ+ 3− 2k.

Its zeros are

λ =
4±

√
16− 4(3− 2k)

2
= 2±

√
1 + 2k.

Thus the eigenvalues are complex if 1+2k < 0 or k < − 1
2 and the real part is 2. If 1+2k > 0

there are distinct real eigenvalues. For 0 < 1 + 2k < 4 the eigenvalues are both positive. If
1 + 2k > 4 then the square root exceeds 2 and the eigenvalues have opposite signs. Hence,
in the k-axis, the solutions are unstable spirals if k < − 1

2 . The solutions form an unstable
(improper) node if − 1

2 < k < 3
2 . The solutions are saddles if 3

2 < k.
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One negative and one positive eigenvalue if 3
2 < k.

The canonical form in case k < − 1
2 is the complex form with a = 2 and b =

√
−1− 2k. In

case − 1
2 < k we let λ1, λ2 = 1±

√
1 + 2k. If − 1

2 < k < 3
2 then 0 < λ1 < λ2 and the phase

portrait is an unstable (improper) node. If k > 3
2 then λ1 < 0 < λ2 and the phase portrait

is a saddle. The canonical forms are, resp.,

Y ′ =

(
a b

−b a

)
Y ; Z ′ =

(
λ1 0

0 λ2

)
Z; W ′ =

(
λ1 0

0 λ2

)
W.

The canonical forms with both eigenvalues with positive real parts are topologically con-
jugate. Thus if k < 3

2 then all phase portraits are topologically conjugate unstable points.
Also for 3

2 < k the phase portraits are all saddles, thus topologically conjugate to each
other, but not to the unstable points.
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4. Consider the scalar equation x′′− 4x′+ 4x = 0. Convert to an equivalent system X ′ = AX.
Find the eigenvalues and eigenvectors of A. Find a matrix T so that the change of variables
X = TY puts the system into canonical form Y ′ = BY . Check that your matrix does the
job by using your T to make the change of variables.

By letting y = x′ we get the system(
x′

y′

)
=

(
y

4y − 4x

)
=

(
0 1

−4 4

)(
x

y

)
.

The eigenvalues are gotten by solving

0 = det(A− λI) =

∣∣∣∣ −λ 1

−4 4− λ

∣∣∣∣ = (−λ)(4− λ) + 4 = λ2 − 4λ+ 4 = (λ− 2)2

thus we have a double eigenvalue λ = 2, 2. The eigenvector V for λ = 2 is found by

0 = (A− λI)V =

(
−2 1

−4 − 2

)(
1

2

)
.

Using the recipe in the text, we choose any vector independent of V , say W =
(
1
0

)
and

compute

µV + νW = AW =

(
0 1

−4 4

)(
1

0

)
=

(
0

−4

)
= −2

(
1

2

)
+ 2

(
1

0

)
Then the matrix T consists of columns V and 1

µW , namely

T =
(
V ;

1

µ
W
)

=

(
1 − 1

2

2 0

)
.

The change of variable X = TY means

TY ′ = X ′ = AX = ATY =⇒ Y ′ = T−1ATY.

To see that it does the job,

T−1AT =

(
0 − 1

2

−2 1

)(
0 1

−4 4

)(
1 − 1

2

2 0

)
=

(
0 − 1

2

−2 1

)(
2 0

4 2

)
=

(
2 1

0 2

)
.

There is another recipe involving a cyclic vector U , namely a soluton

(A− λI)U = V =⇒
(
−2 1

−4 2

)(
0

1

)
=

(
1

2

)
.

Then the matrix T consists of columns V and U . In this case

T−1AT =

(
1 0

−2 1

)(
0 1

−4 4

)(
1 0

2 1

)
=

(
1 0

−2 1

)(
2 1

4 4

)
=

(
2 1

0 2

)
.

5. Show that the function

ϕA
(
t, (α, β)

)
= e−t

(
cos t sin t

− sin t cos t

)(
α

β

)
is the flow induced by the system

X ′ =

(
−1 1

−1 − 1

)
X.
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Find τ(α, β), the time at which the flow ϕA starting at the point (α, β) ∈ R2 meets the unit
circle S1. Find the flow ϕB

(
t, (γ, δ)

)
of the system

Y ′ =

(
−1 0

0 − 1

)
Y.

What is a homeomorphism h : R2 → R2 that shows the the systems are topologically
conjugate? What equation must h satisfy? (Simplify the formulas as much as possible but
you do not need to check that your equation holds.)

To see that ϕA is the flow of the system, we need to check that ϕA(0, (α, β)) = (α, β) and
that d

dtϕ
A = AϕA. First

ϕA
(
0, (α, β)

)
= e−0

(
cos 0 sin 0

− sin 0 cos 0

)(
α

β

)
=

(
1 0

0 1

)(
α

β

)
=

(
α

β

)
.

Second

d

dt
ϕA
(
t, (α, β)

)
=

d

dt
e−t
(

cos t sin t

− sin t cos t

)(
α

β

)
= e−t

(
− cos t− sin t − sin t+ cos t

sin t− cos t − cos t− sin t

)(
α

β

)
=

(
−1 1

−1 − 1

)
e−t
(

cos t sin t

− sin t cos t

)(
α

β

)
= AϕA

(
t, (α, β)

)
.

The system Y ′ = BY decouples into x′ = −x and y′ = −y so the flow is given by

ϕB
(
t, (α, β)

)
= e−t

(
α

β

)
.

The time τ(α, β) to reach the unit circle is the solution of

1 = |ϕA
(
τ, (α, β)

)
| =

∣∣∣∣e−τ( cos τ sin τ

− sin τ cos τ

)(
α

β

)∣∣∣∣
= eτ

√
(α cos τ + β sin τ)

2
+ (−α sin τ + β cos τ)

2

= e−τ
√
α2 + β2.

Hence τ = log r where r(α, β) =
√
α2 + β2.

Then the homeomorphism is defined by the recipe in the text

h(α, β) = ϕB−τ ◦ ϕAτ (α, β)

= eτ · e−τ
(

cos τ sin τ

− sin τ cos τ

)(
α

β

)
=

(
cos τ sin τ

− sin τ cos τ

)(
α

β

)
where τ = τ(α, β) for short.

It is a homeomorphism defined on all of R2. It must satisfy for all t, α, β ∈ R,

h ◦ ϕAt (α, β) = ϕBt ◦ h(α, β). (1)
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This completes the solutions of the exam. As an extra, we provide the check that indeed
equation (1) holds. First we recall that

τ
(
ϕAt (α, β)

)
= τ(α, β)− t.

This is because of the semigroup property

ϕAτ(α,β)(α, β) = ϕAτ(ϕA
t (α,β)) ◦ ϕ

A
t (α, β) = ϕAτ(α,β)−t ◦ ϕ

A
t (α, β).

It can also be seen by

r
(
ϕAt (α, β)

)
=

∣∣∣∣e−t( cos t sin t

− sin t cos t

)(
α

β

)∣∣∣∣ = e−t
√
α2 + β2

so that
τ
(
ϕAt (α, β)

)
= log(e−t

√
α2 + β2) = log(

√
α2 + β2)− t = τ(α, β)− t.

Now we check (1). Using τ ′ = τ
(
ϕAt (α, β)

)
= τ(α, β)− t and τ = τ(α, β) so τ ′ + t = τ ,

h ◦ ϕAt (α, β) =

(
cos τ ′ sin τ ′

− sin τ ′ cos τ ′

)
e−t
(

cos t sin t

− sin t cos t

)(
α

β

)
= e−t

(
cos τ ′ cos t− sin τ ′ sin t cos τ ′ sin t+ sin τ ′ cos t

− sin τ ′ cos t− cos τ ′ sin t − sin τ ′ sin t+ cos τ ′ cos t

)(
α

β

)
= e−t

(
cos(τ ′ + t) sin(τ ′ + t)

− sin(τ ′ + t) cos(τ ′ + t)

)(
α

β

)
= e−t

(
cos τ sin τ

− sin τ cos τ

)(
α

β

)
= ϕBt ◦ h(α, β).
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