Math $3210 \S 2$.	Final Exam
Treibergs	

1. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Show that f has a fixed point: there is $c \in[0,1]$ such that $f(c)=c$. Assuming in addition that f is differentiable at x and $\left|f^{\prime}(x)\right|<1$ for all $x \in(0,1)$, show that the fixed point is unique.
The existence of a fixed point is one of the standard applications of the Intermediate Value Theorem. Let $g(x)=f(x)-x . g(x)$ is a continuous function on $[0,1]$ because both $f(x)$ and x are continuous. If $g(0)=0$ then $c=0$ is the fixed point because $f(0)-0=0$. If $g(1)=0$ then $c=1$ is a fixed point since $f(1)-1=0$. Otherwise $f(0)>0$ and $f(1)<1$ so $g(0)>0$ and $g(1)<0$. Thus $y=0$ is intermediate between $g(0)$ and $g(1)$. By the Intermediate Value Theorem, there is $c \in(0,1)$ such that $g(c)=0$. For this c we have $f(c)-c=0$ so c is the desired fixed point.
The uniqueness of the fixed point follows from an application of the Mean Value Theorem. Suppose for contradiction that there are two different fixed point $c, d \in[0,1]$ such that $f(c)=c$ and $f(d)=d$. We show that this is impossible under the additional hypotheses. We may suppose $c<d$ by swapping names, if necessary. Then, by assumption, f is continuous on $[c, d]$ because it is a subset of $[0,1]$ and it is differentiable on (c, d) because this is a subset of $(0,1)$. Hence the hypotheses for the Mean Value Theorem hold. It says that there is a $\xi \in(c, d)$ such that

$$
d-c=f(d)-f(c)=f^{\prime}(\xi)(d-c)
$$

Taking absolute values and estimating,

$$
|d-c|=\left|f^{\prime}(\xi)\right||d-c|<1 \cdot|d-c|
$$

As $|d-c|>0$, this is a contradiction.
2. Let $f: \mathbf{R} \rightarrow \mathbf{R}$. Define the supremum of $f, \quad S=\sup _{x \in \mathbf{R}} f(x)$. Find $S=\sup _{x \in \mathbf{R}} \frac{x^{2}}{x^{2}+1}$ and prove your result.

The supremum of f is an extended real number S. If f is not bounded above on \mathbf{R}, then the supremum $\sup _{x \in \mathbf{R}} f(x)=\infty$. If f is bounded above on \mathbf{R}, then $S \in \mathbf{R}$ satisfies two properties:
(1) S is an upper bound for $f:(\forall x \in \mathbf{R})(f(x) \leq S)$, and,
(2) S is the smallest of upper bounds, or to put it another way, no smaller number is an upper bound: $(\forall \epsilon>0)(\exists x \in \mathbf{R})(f(x)>S-\epsilon)$.

We claim that $\sup _{x \in \mathbf{R}} \frac{x^{2}}{x^{2}+1}=1$. To see that 1 is an upper bound, we have $x^{2}<x^{2}+1$ for all $x \in \mathbf{R}$ so that $\frac{x^{2}}{x^{2}+1} \leq 1$ for all $x \in \mathbf{R}$. To see that there are no smaller upper bounds, choose $\epsilon>0$. Let $x=\frac{1}{\sqrt{\epsilon}}$. For this x,

$$
f(x)=\frac{x^{2}}{x^{2}+1}=1-\frac{1}{x^{2}+1}=1-\frac{1}{\left(\frac{1}{\sqrt{\epsilon}}\right)^{2}+1}=1-\frac{1}{\frac{1}{\epsilon}+1}=1-\frac{\epsilon}{1+\epsilon}>1-\epsilon
$$

3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) If $x>0$ then $x^{a} x^{b}=x^{a+b}$ for any $a, b \in \mathbf{R}$.

True. This fact depends on how functions x^{a} are defined for arbitrary real numbers, not just integers of rational numbers. We have

$$
x^{a}=\exp (a \log x)
$$

so that the desired property follows from the corresponding property of the exponential function which in turn depends on an addition formula for the integral that defines natural logarithm. Indeed

$$
x^{a} x^{b}=\exp (a \log x) \exp (b \log x)=\exp (a \log x+b \log x)=\exp ([a+b] \log x)=x^{a+b}
$$

(b) For $f:[-1,0) \cup(0,1] \rightarrow \mathbf{R}$, such that f is integrable on $[-1,-\epsilon]$ and on $[\epsilon, 1]$ for every $0<\epsilon \leq 1$, suppose $\lim _{\epsilon \rightarrow 0+}\left(\int_{-1}^{-\epsilon} f(t) d t+\int_{\epsilon}^{1} f(t) d t\right)=0$. Then the improper integral $\int_{-1}^{1} f(t) d t$ exists and equals zero.
False. The limit is a Cauchy Principal Value which may exist without the function being improperly integrable. For example if $f(x)=x^{-3}$ then for $0<\epsilon \leq 1$ we have

$$
\int_{-1}^{-\epsilon} \frac{d t}{t^{3}}+\int_{\epsilon}^{1} \frac{d t}{t^{3}}=\left[-\frac{1}{2 t^{2}}\right]_{-1}^{-\epsilon}+\left[-\frac{1}{2 t^{2}}\right]_{\epsilon}^{1}=\left[-\frac{1}{2 \epsilon^{2}}+\frac{1}{2}\right]+\left[-\frac{1}{2}+\frac{1}{2 \epsilon^{2}}\right]=0
$$

so the limit is zero but the function $f(t)=t^{-3}$ is not improperly integrable. For the improper integral $\int_{-1}^{1} \frac{d t}{t^{3}}$ to exist, both limits to the left and right of zero have to exist by themselves, but neither do.

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0+} \int_{-1}^{-\epsilon} \frac{d t}{t^{3}} & =\lim _{\epsilon \rightarrow 0+}\left[-\frac{1}{2 t^{2}}\right]_{-1}^{-\epsilon}=\lim _{\epsilon \rightarrow 0+}\left[-\frac{1}{2 \epsilon^{2}}+\frac{1}{2}\right]=-\infty \\
\lim _{\delta \rightarrow 0+} \int_{\delta}^{1} \frac{d t}{t^{3}} & =\lim _{\delta \rightarrow 0+}\left[-\frac{1}{2 t^{2}}\right]_{\delta}^{1}=\lim _{\delta \rightarrow 0+}\left[-\frac{1}{2}+\frac{1}{2 \delta^{2}}\right]=\infty
\end{aligned}
$$

(c) If $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at all points, then $f^{\prime}(x)$ is continuous for all $x \in \mathbf{R}$.

FALSE. The differentiability of $f(x)$ at $x=a$ implies the continuity of f at $x=a$, but it says nothing about the continuity of the derivative. Here is the example discussed in class:

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

For $x \neq 0$ this is the composition of differentiable functions, so differentiable. At $x=0$ we use the fact that $|f(x)| \leq x^{2}$ for all x so f is stuck between a rock and a hard place. The difference quotients at zero satisfy

$$
\left|\frac{f(x)-f(0)}{x-0}\right|=\frac{|f(x)|}{|x|} \leq \frac{x^{2}}{|x|}=|x|
$$

which tends to zero as $x \rightarrow 0$ so that f is differentiable at zero and $f^{\prime}(0)=0$. Thus f is differentiable at all points. However the derivative is not continuous at zero. Computing the derivative at $x \neq 0$ we see that

$$
f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)+x^{2} \cos \left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)
$$

which does not have a limit as $x \rightarrow 0$ so it doesn't converge to $f^{\prime}(0)$. Thus f^{\prime} is not continuous at $x=0$.
4. Define: the real sequence $\left\{a_{n}\right\}$ is a Cauchy Sequence. Show that the sequence $\left\{a_{n}\right\}$ converges to a real number, $a_{n} \rightarrow L$ as $n \rightarrow \infty$ where a_{n} is defined recursively by starting with $a_{1}, a_{2} \in \mathbf{R}$ any two real numbers and

$$
a_{n}=\frac{a_{n-1}+a_{n-2}}{2}, \quad \text { for all } n \geq 3
$$

The sequence is a Cauchy Sequence if for every $\epsilon>0$ there is an $N \in \mathbf{R}$ so that

$$
\left|a_{m}-a_{n}\right|<\epsilon \quad \text { whenever } m, n \in \mathbb{N} \text { are such that } m>N \text { and } m>N
$$

We show that the given $\left\{a_{n}\right\}$ is a Cauchy Sequence, thus convergent. To do this, we establish the recursion for the difference of consecutive terms, as in the homework problem. Thus for any $n \geq 2$ we have

$$
a_{n+1}-a_{n}=\frac{a_{n}+a_{n-1}}{2}-a_{n}=-\frac{1}{2}\left(a_{n}-a_{n-1}\right)
$$

It follows by induction that for every $n \geq 1$ we have

$$
a_{n+1}-a_{n}=\left(-\frac{1}{2}\right)^{n-1}\left(a_{2}-a_{1}\right)
$$

so that for every $n \geq 1$ we have

$$
\left|a_{n+1}-a_{n}\right| \leq\left(\frac{1}{2}\right)^{n-1}\left|a_{2}-a_{1}\right|
$$

Now it follows that $\left\{a_{n}\right\}$ is a Cauchy Sequence. Choose $\epsilon>0$. Let N be so large that $\left(\frac{1}{2}\right)^{N-2}\left|a_{2}-a_{1}\right|<\epsilon$. Then for any $m, n>N$ we have either $m=n$ so $\left|a_{m}-a_{n}\right|=0<\epsilon$ or $n \neq m$. By swapping names if necessary, we may assume that $m>n$. In this case, by constructing the telescoping sum,

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & =\left|\left(a_{m}-a_{m-1}\right)+\left(a_{m-1}-a_{m-2}\right)+\cdots+\left(a_{n+1}-a_{n}\right)\right| \\
& \leq\left|a_{m}-a_{m-1}\right|+\left|a_{m-1}-a_{m-2}\right|+\cdots+\left|a_{n+1}-a_{n}\right| \\
& \leq\left\{\left(\frac{1}{2}\right)^{m-2}+\left(\frac{1}{2}\right)^{m-3}+\cdots+\left(\frac{1}{2}\right)^{n-1}\right\}\left|a_{2}-a_{1}\right| \\
& =\left(\frac{1}{2}\right)^{n-1} \sum_{k=0}^{m-n-1}\left(\frac{1}{2}\right)^{k}\left|a_{2}-a_{1}\right| \\
& =\left(\frac{1}{2}\right)^{n-1} \frac{1-\left(\frac{1}{2}\right)^{m-n}}{1-\frac{1}{2}}\left|a_{2}-a_{1}\right| \\
& \leq\left(\frac{1}{2}\right)^{n-2}\left|a_{2}-a_{1}\right| \\
& <\left(\frac{1}{2}\right)^{N-2}\left|a_{2}-a_{1}\right|<\epsilon .
\end{aligned}
$$

As a curiosity, which is not part of the answer, we can compute the limit.

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} a_{n} \\
& =\lim _{n \rightarrow \infty}\left\{\left(a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right)+\cdots+\left(a_{2}-a_{1}\right)+a_{1}\right\} \\
& =\lim _{n \rightarrow \infty}\left\{a_{1}+\sum_{k=2}^{n}\left(a_{k}-a_{k-1}\right)\right\} \\
& =\lim _{n \rightarrow \infty}\left\{a_{1}+\sum_{k=2}^{n}\left(-\frac{1}{2}\right)^{k-2}\left(a_{2}-a_{1}\right)\right\} \\
& =\lim _{n \rightarrow \infty}\left\{a_{1}+\sum_{j=0}^{n-2}\left(-\frac{1}{2}\right)^{j}\left(a_{2}-a_{1}\right)\right\} \\
& =\lim _{n \rightarrow \infty}\left\{a_{1}+\frac{1-\left(-\frac{1}{2}\right)^{n-1}}{1-\left(-\frac{1}{2}\right)}\left(a_{2}-a_{1}\right)\right\} \\
& =a_{1}+\frac{2}{3}\left(a_{2}-a_{1}\right)=\frac{1}{3} a_{1}+\frac{2}{3} a_{2} .
\end{aligned}
$$

Thus L is an average of the starting numbers, as we might have expected.
5. Let $f, f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ be functions for $n \in \mathbf{N}$. Define: $f_{n} \rightarrow f$ converges uniformly on \mathbf{R} as $n \rightarrow \infty$. Prove that the sequence $\left\{f_{n}\right\}$ converges uniformly on \mathbf{R} as $n \rightarrow \infty$, where

$$
f_{n}(x)=\frac{x}{1+n x^{2}}
$$

$f_{n} \rightarrow f$ converges uniformly on \mathbf{R} if for every $\epsilon>0$ there is an $N \in \mathbf{R}$ so that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon \quad \text { whenever } x \in \mathbf{R} \text { and } n>N
$$

Sketch the functions! Here is the graph using Macintosh's Grapher.

Figure 1: Sketch of f_{1}, f_{2} and f_{3}.

We have $f_{n}(0)=0$ for all n and if $x \neq 0$ then $\lim _{n \rightarrow \infty} f_{n}(x)=0$ so f_{n} converges to $f=0$ pointwise on \mathbf{R}. If it converges uniformly then the limiting function has to be the same $f=0$.

We claim that $\left|f_{n}(x)-0\right| \leq \frac{1}{\sqrt{n}}$ for all x and n so that $f_{n} \rightarrow 0$ uniformly by the Weierstrass M-test. We give two proofs of the claim.
First proof of the claim uses calculus. The function $f_{n}(x)$ is odd so we only need to prove it for $x \geq 0$. We note that $\lim _{x \rightarrow \infty} f_{n}(x)=0$ and $f_{n}(x)>0$ for $0<x<\infty$ so there is an interior maximum. Differentiating,

$$
\frac{d}{d x} f_{n}(x)=\frac{\left(1+n x^{2}\right)-x \cdot 2 n x}{\left(1+n x^{2}\right)^{2}}=\frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}} .
$$

It is zero only when $x= \pm \frac{1}{\sqrt{n}}$ so there is only one max. Thus

$$
\left|f_{n}(x)-0\right| \leq\left|f_{n}\left(\pm \frac{1}{\sqrt{n}}\right)\right|=\frac{\left| \pm \frac{1}{\sqrt{n}}\right|}{1+n\left(\pm \frac{1}{\sqrt{n}}\right)^{2}}=\frac{1}{2 \sqrt{n}} \leq \frac{1}{\sqrt{n}}
$$

The second proof does the estimate one way for small x and another for large x. Indeed, if $|x| \leq \frac{1}{\sqrt{n}}$ then

$$
\left|f_{n}(x)-0\right|=\frac{|x|}{1+n x^{2}} \leq \frac{\frac{1}{\sqrt{n}}}{1+0}=\frac{1}{\sqrt{n}} .
$$

If $|x|>\frac{1}{\sqrt{n}}$ then $\frac{1}{|x|}<\sqrt{n}$ so that

$$
\left|f_{n}(x)-0\right|=\frac{|x|}{1+n x^{2}}=\frac{\frac{1}{|x|}}{\frac{1}{x^{2}}+n}<\frac{\sqrt{n}}{0+n}=\frac{1}{\sqrt{n}} .
$$

In both cases,

$$
\left|f_{n}(x)-0\right| \leq \frac{1}{\sqrt{n}}
$$

as claimed.
6. Let $f: \mathbf{R} \rightarrow \mathbf{R}$. Define: f is uniformly continuous on \mathbf{R}. Suppose that $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$ for any pair of real sequences such that $\left|u_{n}-v_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Show that f is uniformly continuous on \mathbf{R}.
f is uniformly continuous on \mathbf{R} if for every $\epsilon>0$ there is a $\delta>0$ so that

$$
|f(u)-f(v)|<\epsilon \quad \text { whenever } u, v \in \mathbf{R} \text { are such that }|u-v|<\delta \text {. }
$$

The condition gives a sequential characterization of uniform continuity. Its proof is almost the same as the proof that the sequential condition for continuity at a point a implies continuity at a.
One proves the contrapositive statement: if f is not uniformly continuous on \mathbf{R} then the sequential condition does not hold. The negation of uniform continuity is: there is $\epsilon_{0}>0$ such that for every $\delta>0$ there are $u_{\delta}, v_{\delta} \in \mathbf{R}$ such that $\left|u_{\delta}-v_{\delta}\right|<\delta$ but $\left|f\left(u_{\delta}\right)-f\left(v_{\delta}\right)\right| \geq \epsilon_{0}$. Take $\delta=\frac{1}{n}$. Then there are sequences $u_{n}, v_{n} \in \mathbf{R}$ such that

$$
\left|u_{n}-v_{n}\right|<\frac{1}{n}
$$

so that $\left|u_{n}-v_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$ but

$$
\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \geq \epsilon_{0}
$$

so that $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right|$ does not converge to zero as $n \rightarrow \infty$. In other words, it is not the case that $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$ for any pair of real sequences such that $\left|u_{n}-v_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.
7. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement. Let f, g be differentiable on $(-1,1)$ such that $g(x) \neq 0$ and $g^{\prime}(x) \neq 0$ for all $x \in(0,1)$. If $\lim _{x \rightarrow 0+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ then $\lim _{x \rightarrow 0+} \frac{f(x)}{g(x)}=L$.
FAlse. All of the hypotheses of l'Hôpital's Rule are not met. e.g., taking $f(x)=2+x$, $g(x)=3+x$ we have f and g differentiable, g and g^{\prime} nonzero on $(0,1)$ with

$$
\lim _{x \rightarrow 0+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0+} \frac{1}{1}=1 \quad \text { but } \quad \lim _{x \rightarrow 0+} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0+} \frac{2+x}{3+x}=\frac{2}{3}
$$

(b) Statement. If $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at 0 and $f^{\prime}(0)>0$ then there is a $\delta>0$ such that $f(x)>f(0)$ whenever $0<x<\delta$.
True. Use the definition of differentiable: the limit exists and equals $f^{\prime}(0) \in \mathbf{R}$:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)
$$

Apply the $\epsilon-\delta$ definition of limit: for every $\epsilon>0$ there is a $\delta>0$ so that

$$
\left|\frac{f(x)-f(0)}{x-0}-f^{\prime}(0)\right|<\epsilon \quad \text { whenever } x \in \mathbf{R} \text { such that } 0<|x-0|<\delta
$$

In particular, if we choose $\epsilon=f^{\prime}(0)$ and take the corresponding $\delta>0$ we have

$$
\frac{f(x)-f(0)}{x-0}-f^{\prime}(0)>-\epsilon \quad \text { if } 0<|x-0|<\delta
$$

In particular

$$
\frac{f(x)-f(0)}{x-0}>f^{\prime}(0)-\epsilon=0 \quad \text { if } 0<x<\delta
$$

Thus $f(x)-f(0)>0$ if $0<x<\delta$.
(c) Statement. If $f:[0,1] \rightarrow \mathbf{R}$ is integrable, then $\frac{d}{d x} \int_{0}^{x} f(t) d t=f(x)$ for all $x \in(0,1)$.

False. In the Fundamental Theorem of Calculus II, the integral is differentiable only at points of continuity of f. So to answer the question, we need to construct a counterexample. Let

$$
f(x)= \begin{cases}-1, & \text { if } x \leq \frac{1}{2} \\ 1, & \text { if } x>\frac{1}{2}\end{cases}
$$

Then f is integrable and

$$
F(x)=\int_{0}^{x} f(t) d t=\left|x-\frac{1}{2}\right|-\frac{1}{2}
$$

which is not differentiable at $x=\frac{1}{2}$.
8. Let f be a bounded function on the closed bounded interval $[a, b]$. Define what it means for f to be integrable on $[a, b]$ and what the Riemann integral of f on $[a, b]$ is. Complete the statement of the theorem.
[Of several possible answers, select the one you prefer for the third part of the problem.]
A function f is integrable if its upper integral equals its lower integral

$$
\bar{\int}_{a}^{b} f(t) d t=\int_{a}^{b} f(t) d t
$$

The integral $\int_{a}^{b} f(t) d t$ is then defined to be their common value. The upper and lower integrals are defined to be

$$
\bar{\int}_{a}^{b} f(t) d t=\inf _{P} U(f, P), \quad \underline{\int}_{a}^{b} f(t) d t=\sup _{P} L(f, P)
$$

where inf and sup are taken over all partitions $P=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ of $[a, b]$ and where the upper and lower sums are

$$
U(f, P)=\sum_{k=1}^{n} M_{k}(f)\left(x_{k}-x_{k-1}\right), \quad L(f, P)=\sum_{k=1}^{n} m_{k}(f)\left(x_{k}-x_{k-1}\right)
$$

where $I_{k}=\left[x_{k-1}, x_{k}\right]$ is the k th interval of P and

$$
M_{k}(f)=\sup _{I_{k}} f, \quad m_{k}(f)=\inf _{I_{k}} f
$$

Theorem. The Riemann integral of f on $[a, b]$ exists if and only if

$$
\begin{aligned}
& \text { for every } \epsilon>0 \text { there is a partition } P \text { of }[a, b] \text { such that } \\
& \qquad U(f, P)-L(f, P)<\epsilon .
\end{aligned}
$$

Let $0 \leq a_{n} \leq 1$ be a sequence such that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Using the theorem above, show that f is integrable on $[0,1]$, where

$$
f(x)= \begin{cases}1, & \text { if } x=a_{n} \text { for some } n \in \mathbb{N} \\ 0, & \text { if } x \neq a_{n} \text { for all } n \in \mathbb{N}\end{cases}
$$

Draw the picture!

Figure 2: Sketch of function.

The function is discontinuous at every a_{i} and at 0 . The idea is to take a partition that lumps infinitely many a_{i} 's in the subinterval $[0, \delta]$ and then surrounds the finitely many jumps at the remaining a_{i} 's by a tiny intervals $\left[a_{i}-\eta, a_{i}+\eta\right] . M_{k}(f)-m_{k}(f)=1$ for these intervals and is zero for all the others, making the total sum small.

Figure 3: Intervals where $M_{k}(f)-m_{k}(f)=1$.
Choose $\epsilon>0$. Choose $0<\delta<\frac{\epsilon}{2}$ such that $\delta \neq a_{i}$ for all i. Since $a_{i} \rightarrow 0$ there are only finitely many a_{i} 's greater than δ. Call them $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{J}}$. Now pick η so small that $\eta<\frac{\epsilon}{4 J+1}$ and such that all of the intervals

$$
\left[a_{i_{j}}-\eta, a_{i+j}+\eta\right]
$$

either coincide (in case some $a_{i_{j}}=a_{i_{j^{\prime}}}$) or are pairwise disjoint from each other and disjoint from $[0, \delta]$. Let the partition be

$$
P=\{0, \delta, 1\} \cup\left\{a_{i_{j}}-\eta, a_{i+j}+\eta\right\}_{j=1, \ldots J}
$$

It follows for all intervals of the form $I_{k}=[0, \delta]$ or $I_{k}=\left[a_{i_{j}}-\eta, a_{i_{j}}+\eta\right]$ we have $f\left(a_{i}\right)=1$ and $f(x)=0$ for points close to a_{i} so $M_{k}(f)-m_{k}(f)=1$. For all other intervals like $I_{k}=\left[\delta, a_{i_{J}}\right]$ or $I_{k}=\left[a_{i_{j}}+\eta, a_{i_{j+1}}-\eta\right]$, the function is dead zero, so that $M_{k}(f)-m_{k}(f)=0$ for this second type or interval. Put $\Delta_{k}=\operatorname{length}\left(I_{k}\right)$. It follows that

$$
\begin{aligned}
U(f, p)-L(f, p) & =\sum_{I_{k} \text { is type I }}\left(M_{k}(f)-m_{k}(f)\right) \Delta_{k}+\sum_{I_{k} \text { is type II }}\left(M_{k}(f)-m_{k}(f)\right) \Delta_{k} \\
& =\sum_{I_{k}=[0, \delta]}\left(M_{k}(f)-m_{k}(f)\right) \Delta_{k}+\sum_{I_{j}=\left[a_{i_{j}}-\eta, a_{i_{j}}+\eta\right]}\left(M_{j}(f)-m_{j}(f)\right) \Delta_{j}+0 \\
& =1 \cdot \delta+J \cdot 1 \cdot 2 \eta \\
& <\frac{\epsilon}{2}+\frac{2 J \epsilon}{4 J+1}<\epsilon .
\end{aligned}
$$

By the boxed theorem, f is integrable on $[0,1]$.
9. Suppose that $g:[a, b] \rightarrow \mathbf{R}$ is an integrable function on a closed bounded interval. Show that

$$
\lim _{x \rightarrow b-} \int_{a}^{x} g(t) d t=\int_{a}^{b} g(t) d t
$$

This problem shows that an integrable function is also improperly integrable.
Since g is integrable on $[a, b]$, it is bounded: there is $M \in \mathbf{R}$ such that $|g(x)| \leq M$ for all $x \in[a, b]$. Integrable also implies for every $a \leq x \leq b$ we have

$$
\int_{a}^{x} g(t) d t+\int_{x}^{b} g(t) d t=\int_{a}^{b} g(t) d t
$$

It follows that

$$
\begin{aligned}
\left|\int_{a}^{b} g(t) d t-\int_{a}^{x} g(t) d t\right| & =\left|\int_{x}^{b} g(t) d t\right| \\
& \leq \int_{x}^{b}|g(t)| d t \\
& \leq \int_{x}^{b} M d t=M(b-x)
\end{aligned}
$$

which tends to zero as $x \rightarrow b-$.

