Math 3210 § 1.
Treibergs

Third Midterm Exam
Name: \qquad
April 3, 2019

1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$. State the definition: f is uniformly continuous on \mathbf{R}. Using just the definition, prove $f(x)=\sqrt{4+x^{2}}$ is uniformly continuous on \mathbf{R}.
$f: \mathbf{R} \rightarrow \mathbf{R}$ is uniformly continuous on \mathbf{R} if for every $\epsilon>0$ there is a $\delta>0$ such that

$$
|f(x)-f(y)|<\epsilon \quad \text { whenever } x, y \in \mathbf{R} \text { and }|x-y|<\delta
$$

To see that $f(x)=\sqrt{4+x^{2}}$ is uniformly continuous, choose $\epsilon>0$. Let $\delta=\epsilon$. Then for every $x, y \in \mathbf{R}$ such that $|x-y|<\delta$ we have

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\sqrt{4+x^{2}}-\sqrt{4+y^{2}}\right| \\
& =\left|\frac{\left(\sqrt{4+x^{2}}-\sqrt{4+y^{2}}\right)\left(\sqrt{4+x^{2}}+\sqrt{4+y^{2}}\right)}{\sqrt{4+x^{2}}+\sqrt{4+y^{2}}}\right| \\
& =\frac{\left|\left(4+x^{2}\right)-\left(4+y^{2}\right)\right|}{\sqrt{4+x^{2}}+\sqrt{4+y^{2}}} \\
& =\frac{\left|x^{2}-y^{2}\right|}{\sqrt{4+x^{2}}+\sqrt{4+y^{2}}} \\
& =\frac{|(x+y)(x-y)|}{\sqrt{4+x^{2}}+\sqrt{4+y^{2}}} \\
& =\frac{|x+y|}{\sqrt{4+x^{2}}+\sqrt{4+y^{2}}}|x-y| \\
& \leq \frac{|x|+|y|}{\sqrt{4+x^{2}}+\sqrt{4+y^{2}}}|x-y| \\
& \leq \frac{\sqrt{4+x^{2}}+\sqrt{4+y^{2}}}{\sqrt{4+x^{2}}+\sqrt{4+y^{2}}}|x-y| \\
& =|x-y|<\delta=\epsilon . \quad \square
\end{aligned}
$$

2. Let $f, f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ be functions. State the definition: the sequence of functions $\left\{f_{n}\right\}$ converges uniformly on \mathbf{R} to a function f. Let $f_{n}(x)=\frac{1}{1+(x-n)^{2}}$. Determine whether there is a function $f(x)$ such that $\left\{f_{n}\right\}$ converges uniformly to f, converges pointwise but not uniformly to f or does not converge to any f. Prove your result.

A sequence of functions $\left\{f_{n}(x)\right\}$ is said to converge uniformly to $f(x)$ on \mathbf{R} if for every $\epsilon>0$ there is an $N \in \mathbf{R}$ such that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon \quad \text { whenever } x \in \mathbf{R} \text { and } n>N .
$$

In this case $f_{n}(x) \rightarrow 0$ pointwise but not uniformly. To see it, for any $x \in \mathbf{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{1+(x-n)^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{(n-x)^{2}}}{\frac{1}{(n-x)^{2}}+1}=\frac{0}{0+1}=0
$$

so $f_{n}(x) \rightarrow 0$ pointwise in \mathbf{R}.

On the other hand, we prove the negation of uniform convergence:
$\left(\exists \epsilon_{0}>0\right)(\forall N \in \mathbf{R})(\exists n \in \mathbb{N})\left(\exists x_{n} \in \mathbf{R}\right)\left(x_{n}>N\right.$ and $\left.\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right| \geq \epsilon_{0}\right)$.
Let $\epsilon_{0}=1$. Choose $N \in \mathbf{R}$. By the Archimedean Property, there is $n \in \mathbb{N}$ such that $n>N$. Put $x_{n}=n$. Then $f_{n}\left(x_{n}\right)=1$ and $\left|f_{n}(x)-f(x)\right|=|1-0|=1 \geq \epsilon_{0}=1$.
Another way to see it, for the sequence $x_{n}=n$ we have $f_{n}\left(x_{n}\right)=1$ for all n so that $f_{n}\left(x_{n}\right)$ doesn't converge to zero, as it must do for the convergence to be uniform.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement.Suppose that $f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ are contiuous functions and $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for all x then f is continuous on \mathbf{R}.
False. Here is a counterexample. Define the sequence of functions by

$$
f_{n}(x)= \begin{cases}0, & \text { if } x<0 \\ x^{n}, & \text { if } 0 \leq x \leq 1 \\ 1, & \text { if } 1<x\end{cases}
$$

Then $f_{n}(x)$ is continuous on \mathbf{R} for every n, but the pointwise limit is

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}0, & \text { if } x<1 \\ 1, & \text { if } 1 \leq x\end{cases}
$$

which is not continuous at $x=1$. Since uniform limits of continuous functions are continuous, the convergence of this sequence couldn't have been uniform on \mathbf{R}.
(b) Statement Suppose $f:[a, b] \rightarrow \mathbf{R}$ has the property that for any k between $f(a)$ and $f(b)$ there is a $c \in[a, b]$ such that $f(c)=k$. Then f is continuous on $[a, b]$.
FALSE. Here is a counterexample. Let $[a, b]=[0,1]$ and

$$
f(x)= \begin{cases}2 x, & \text { if } x \leq \frac{1}{2} \\ 2 x-1, & \text { if } \frac{1}{2}<x\end{cases}
$$

Then f is not continuous at $x=\frac{1}{2}$ because it jumps there. However, for any $0=$ $f(0) \leq k \leq f(1)=1$ there is a $c \in[0,1]$ such that $f(c)=k$, namely $c=\frac{k}{2}$.
(c) Statement.Suppose that $f: \mathbf{R} \rightarrow \mathbf{R}$ is a function such that $f(x) \geq 0$ for all $x \neq 0$ and $\lim _{x \rightarrow 0} f(x)=L$ exists, where $L \in \mathbf{R}$. Then $L \geq 0$.
True. Since the limit exists $\lim _{x \rightarrow 0} f(x)=L$, suppose for contradiction that the limit were negative $L<0$. Let $\epsilon=-\frac{L}{2}$. By the definition of limit, there is a $\delta>0$ such that

$$
|f(x)-f(0)|<\epsilon=-\frac{L}{2} \quad \text { whenever } 0<|x-0|<\delta
$$

Choose an x_{0} so that $0<\left|x_{0}-0\right|<\delta$. For this x_{0}, by assumption

$$
0 \leq f\left(x_{0}\right)=L+\left(f\left(x_{0}\right)-L\right) \leq L+\left|f\left(x_{0}\right)-L\right|<L-\frac{L}{2}=\frac{L}{2}<0
$$

which is a contradiction. Hence $L<0$ is false and $f(0) \geq 0$ follows.
4. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function and $a \in \mathbf{R}$ a point. State the definition: f is differentiable at a. Using just the definition of differentiable, show that if there are real constants b, c, and k such that $|f(x)-b-c x| \leq k x^{2}$ for all x then $f(x)$ is differentiable at $0 \in \mathbf{R}$.
$f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at a point $a \in \mathbf{R}$ if the difference quotient have a finite limit as $x \rightarrow a$ at that point

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)
$$

Observe that when $x=0$ the inequality implies $f(x)=b$. It also says $f^{\prime}(0)=c$, which we'll show. This is equivalent to showing that the limit of the difference at $a=0$ is zero:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left|\frac{f(x)-f(0)}{x-0}-c\right| & =\lim _{x \rightarrow 0}\left|\frac{f(x)-b}{x}-c\right|=\lim _{x \rightarrow 0}\left|\frac{f(x)-b}{x}-\frac{c x}{x}\right| \\
& =\lim _{x \rightarrow 0} \frac{|f(x)-b-c x|}{|x|} \leq \lim _{x \rightarrow 0} \frac{k|x|^{2}}{|x|}=\lim _{x \rightarrow 0} k|x|=0
\end{aligned}
$$

Hence

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=c
$$

5. State the definition: the real sequence $\left\{a_{n}\right\}$ is a Cauchy Sequence. Does the following series converges to a real number? Prove your answer. [Hint: consider partial sums.]

$$
S=\sum_{k=1}^{\infty} \frac{\sin k}{\left(k^{2}\right)!}
$$

Consider the sequence of partial sums

$$
S_{n}=\sum_{k=1}^{n} \frac{\sin k}{\left(k^{2}\right)!}
$$

Note that for $k \in \mathbf{N}$ we have $k^{2} \geq k$ so

$$
\begin{equation*}
\left(k^{2}\right)!\geq k!=1 \cdot 2 \cdot 3 \cdots k \geq 1 \cdot 2 \cdot 2 \cdots 2=2^{k-1} \tag{1}
\end{equation*}
$$

We show that $\left\{S_{n}\right\}$ is a Cauchy Sequence, hence converges to a real number $S=\lim _{n \rightarrow \infty} S_{n}$.
Choose $\epsilon>0$. Let $N=1-\frac{\log \epsilon}{\log 2}$. For any $m, n>N$ we may have $m=n$ so $\left|S_{n}-S_{m}\right|=0<\epsilon$ or we may have $m \neq n$. By swapping roles of m and n if necessary, we may assume that $m>n$. Then, using $|\sin k| \leq 1$ and (1),

$$
\begin{aligned}
\left|S_{m}-S_{n}\right| & =\left|\sum_{k=1}^{m} \frac{\sin k}{\left(k^{2}\right)!}-\sum_{k=1}^{n} \frac{\sin k}{\left(k^{2}\right)!}\right|=\left|\sum_{k=n+1}^{m} \frac{\sin k}{\left(k^{2}\right)!}\right| \leq \sum_{k=n+1}^{m} \frac{|\sin k|}{\left(k^{2}\right)!} \\
& \leq \sum_{k=n+1}^{m} \frac{1}{2^{k-1}}=\frac{1}{2^{n}} \sum_{\ell=0}^{m-n-1} \frac{1}{2^{\ell}}=\frac{1}{2^{n}} \cdot \frac{1-\frac{1}{2^{m-n}}}{1-\frac{1}{2}} \leq \frac{1}{2^{n-1}}<\frac{1}{2^{N-1}}=\epsilon
\end{aligned}
$$

where we substituted the dummy index $k=n+1+\ell$.

