Math 3210 § 1.	Third Midterm Exam	Name:	Solutions
Treibergs		April 3, 2019	

1. Let $f : \mathbf{R} \to \mathbf{R}$. State the definition: f is uniformly continuous on \mathbf{R} . Using just the definition, prove $f(x) = \sqrt{4 + x^2}$ is uniformly continuous on \mathbf{R} .

 $f: \mathbf{R} \to \mathbf{R}$ is uniformly continuous on \mathbf{R} if for every $\epsilon > 0$ there is a $\delta > 0$ such that

 $|f(x) - f(y)| < \epsilon$ whenever $x, y \in \mathbf{R}$ and $|x - y| < \delta$.

To see that $f(x) = \sqrt{4 + x^2}$ is uniformly continuous, choose $\epsilon > 0$. Let $\delta = \epsilon$. Then for every $x, y \in \mathbf{R}$ such that $|x - y| < \delta$ we have

$$\begin{split} |f(x) - f(y)| &= \left| \sqrt{4 + x^2} - \sqrt{4 + y^2} \right| \\ &= \left| \frac{\left(\sqrt{4 + x^2} - \sqrt{4 + y^2} \right) \left(\sqrt{4 + x^2} + \sqrt{4 + y^2} \right)}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \right| \\ &= \frac{\left| (4 + x^2) - (4 + y^2) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x + x^2) - (4 + y^2) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x + y) - (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x + y) - (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x + y) - (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x + y) - (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x + y) - (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x + y) - (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x + y) - (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x + y) - (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\ &= \frac{\left| (x - y) \right|}{\sqrt{4 + x^2} + \sqrt{4 + y^2}} \\$$

2. Let $f, f_n : \mathbf{R} \to \mathbf{R}$ be functions. State the definition: the sequence of functions $\{f_n\}$ converges uniformly on \mathbf{R} to a function f. Let $f_n(x) = \frac{1}{1 + (x - n)^2}$. Determine whether there is a function f(x) such that $\{f_n\}$ converges uniformly to f, converges pointwise but not uniformly to f or does not converge to any f. Prove your result.

A sequence of functions $\{f_n(x)\}$ is said to converge uniformly to f(x) on **R** if for every $\epsilon > 0$ there is an $N \in \mathbf{R}$ such that

$$|f_n(x) - f(x)| < \epsilon$$
 whenever $x \in \mathbf{R}$ and $n > N$.

In this case $f_n(x) \to 0$ pointwise but not uniformly. To see it, for any $x \in \mathbf{R}$,

$$\lim_{n \to \infty} \frac{1}{1 + (x - n)^2} = \lim_{n \to \infty} \frac{\frac{1}{(n - x)^2}}{\frac{1}{(n - x)^2} + 1} = \frac{0}{0 + 1} = 0.$$

so $f_n(x) \to 0$ pointwise in **R**.

On the other hand, we prove the negation of uniform convergence:

 $(\exists \epsilon_0 > 0) (\forall N \in \mathbf{R}) (\exists n \in \mathbb{N}) (\exists x_n \in \mathbf{R}) (x_n > N \text{ and } |f_n(x_n) - f(x_n)| \ge \epsilon_0).$

Let $\epsilon_0 = 1$. Choose $N \in \mathbf{R}$. By the Archimedean Property, there is $n \in \mathbb{N}$ such that n > N. Put $x_n = n$. Then $f_n(x_n) = 1$ and $|f_n(x) - f(x)| = |1 - 0| = 1 \ge \epsilon_0 = 1$.

Another way to see it, for the sequence $x_n = n$ we have $f_n(x_n) = 1$ for all n so that $f_n(x_n)$ doesn't converge to zero, as it must do for the convergence to be uniform.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) STATEMENT. Suppose that $f_n : \mathbf{R} \to \mathbf{R}$ are continuous functions and $f(x) = \lim_{n \to \infty} f_n(x)$ for all x then f is continuous on **R**.

FALSE. Here is a counterexample. Define the sequence of functions by

$$f_n(x) = \begin{cases} 0, & \text{if } x < 0; \\ x^n, & \text{if } 0 \le x \le 1 \\ 1, & \text{if } 1 < x. \end{cases}$$

Then $f_n(x)$ is continuous on **R** for every *n*, but the pointwise limit is

$$f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0, & \text{if } x < 1; \\ 1, & \text{if } 1 \le x. \end{cases}$$

which is not continuous at x = 1. Since uniform limits of continuous functions are continuous, the convergence of this sequence couldn't have been uniform on **R**.

(b) STATEMENT Suppose f: [a, b] → R has the property that for any k between f(a) and f(b) there is a c ∈ [a, b] such that f(c) = k. Then f is continuous on [a, b].
FALSE. Here is a counterexample. Let [a, b] = [0, 1] and

$$f(x) = \begin{cases} 2x, & \text{if } x \le \frac{1}{2}; \\ 2x - 1, & \text{if } \frac{1}{2} < x. \end{cases}$$

Then f is not continuous at $x = \frac{1}{2}$ because it jumps there. However, for any $0 = f(0) \le k \le f(1) = 1$ there is a $c \in [0, 1]$ such that f(c) = k, namely $c = \frac{k}{2}$.

(c) STATEMENT. Suppose that $f : \mathbf{R} \to \mathbf{R}$ is a function such that $f(x) \ge 0$ for all $x \ne 0$ and $\lim_{x \to 0} f(x) = L$ exists, where $L \in \mathbf{R}$. Then $L \ge 0$. TRUE. Since the limit exists $\lim_{x \to 0} f(x) = L$, suppose for contradiction that the limit

were negative L < 0. Let $\epsilon = -\frac{L}{2}$. By the definition of limit, there is a $\delta > 0$ such that

$$|f(x) - f(0)| < \epsilon = -\frac{L}{2}$$
 whenever $0 < |x - 0| < \delta$.

Choose an x_0 so that $0 < |x_0 - 0| < \delta$. For this x_0 , by assumption

$$0 \le f(x_0) = L + (f(x_0) - L) \le L + |f(x_0) - L| < L - \frac{L}{2} = \frac{L}{2} < 0,$$

which is a contradiction. Hence L < 0 is false and $f(0) \ge 0$ follows.

4. Let $f : \mathbf{R} \to \mathbf{R}$ be a function and $a \in \mathbf{R}$ a point. State the definition: f is differentiable at a. Using just the definition of differentiable, show that if there are real constants b, c, and k such that $|f(x) - b - cx| \le kx^2$ for all x then f(x) is differentiable at $0 \in \mathbf{R}$.

 $f: \mathbf{R} \to \mathbf{R}$ is differentiable at a point $a \in \mathbf{R}$ if the difference quotient have a finite limit as $x \to a$ at that point

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

Observe that when x = 0 the inequality implies f(x) = b. It also says f'(0) = c, which we'll show. This is equivalent to showing that the limit of the difference at a = 0 is zero:

$$\lim_{x \to 0} \left| \frac{f(x) - f(0)}{x - 0} - c \right| = \lim_{x \to 0} \left| \frac{f(x) - b}{x} - c \right| = \lim_{x \to 0} \left| \frac{f(x) - b}{x} - \frac{cx}{x} \right|$$
$$= \lim_{x \to 0} \frac{|f(x) - b - cx|}{|x|} \le \lim_{x \to 0} \frac{k|x|^2}{|x|} = \lim_{x \to 0} k|x| = 0.$$

Hence

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = c.$$

5. State the definition: the real sequence $\{a_n\}$ is a Cauchy Sequence. Does the following series converges to a real number? Prove your answer. [Hint: consider partial sums.]

$$S = \sum_{k=1}^{\infty} \frac{\sin k}{(k^2)!}$$

Consider the sequence of partial sums

$$S_n = \sum_{k=1}^n \frac{\sin k}{(k^2)!}.$$

Note that for $k \in \mathbf{N}$ we have $k^2 \ge k$ so

$$(k^2)! \ge k! = 1 \cdot 2 \cdot 3 \cdots k \ge 1 \cdot 2 \cdot 2 \cdots 2 = 2^{k-1}.$$
 (1)

We show that $\{S_n\}$ is a Cauchy Sequence, hence converges to a real number $S = \lim_{n \to \infty} S_n$. Choose $\epsilon > 0$. Let $N = 1 - \frac{\log \epsilon}{\log 2}$. For any m, n > N we may have m = n so $|S_n - S_m| = 0 < \epsilon$ or we may have $m \neq n$. By swapping roles of m and n if necessary, we may assume that m > n. Then, using $|\sin k| \le 1$ and (1),

$$|S_m - S_n| = \left| \sum_{k=1}^m \frac{\sin k}{(k^2)!} - \sum_{k=1}^n \frac{\sin k}{(k^2)!} \right| = \left| \sum_{k=n+1}^m \frac{\sin k}{(k^2)!} \right| \le \sum_{k=n+1}^m \frac{|\sin k|}{(k^2)!}$$
$$\le \sum_{k=n+1}^m \frac{1}{2^{k-1}} = \frac{1}{2^n} \sum_{\ell=0}^{m-n-1} \frac{1}{2^\ell} = \frac{1}{2^n} \cdot \frac{1 - \frac{1}{2^{m-n}}}{1 - \frac{1}{2}} \le \frac{1}{2^{n-1}} < \frac{1}{2^{N-1}} = \epsilon,$$

where we substituted the dummy index $k = n + 1 + \ell$.