
Math 3210 § 1.
Treibergs

Second Midterm Exam Name: Solutions
February 27, 2019

1. Q denotes the rational numbers. Consider the subset E ⊂ R given by

E =
{
x ∈ R : 1 < x < 2 and x =

√
2 r for some r ∈ Q

}
State the definition: ` = glbE. Find glbE. Using just the definition, prove that your
answer is correct.

glbE is the greatest lower bound of E. The real number ` satisfies (1) ` is a lower bound
for E, that is, (∀e ∈ E)(` ≤ e), and (2) ` is the largest of all lower bounds, namely, no
larger number is a lower bound for E, that is, (∀b > `)(∃e ∈ E)(e < b).

For this problem, ` = inf E = 1. We check the two conditions. (1) By the definition of the
set E we have x ∈ E implies x > 1, thus ` = 1 is a lower bound for E. (2) For any b > 1,
by the density of rationals there is r ∈ Q such that

1√
2
< r <

min{b, 2}√
2

.

It follows that x = r
√

2 satisfies 1 < x < 2 so that x ∈ E and x < b so that b is not a lower
bound of E.

2. Suppose that {an} is a real sequence. State the definition: L ∈ R is the limit of the sequence
L = lim

n→∞
an. Determine the limit an → L as n → ∞. Show using just the definition of

limit, and not the Main Limit Theorem, that the sequence converges to your limit.

an =

√
4n2 + 3

n

We say that L ∈ R is the limit an → L as n→∞ if for every ε > 0 there is an N ∈ R such
that

|an − L| < ε whenever n > N .

The limit of this particular sequence is L = 2. Choose ε > 0. Let N =

√
3

4ε
. Then for any

n ∈ N such that n > N we have

|an − L| =

∣∣∣∣∣
√

4n2 + 3

n
− 2

∣∣∣∣∣ =

∣∣∣∣∣
√

4n2 + 3− 2n

n

∣∣∣∣∣ =

∣∣∣∣∣ (
√

4n2 + 3− 2n)

n
· (
√

4n2 + 3 + 2n)

(
√

4n2 + 3 + 2n)

∣∣∣∣∣
=

∣∣∣∣ (4n2 + 3)− 4n2

n(
√

4n2 + 3 + 2n)

∣∣∣∣ =
3

n(
√

4n2 + 3 + 2n)
<

3

n(
√

4n2 + 2n)
=

3

4n2
<

3

4N2
= ε.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. Suppose the real sequence an → a as n→∞. Then banc → bac (floor
function).

False. Consider an =
n

n+ 1
then banc = 0 so that banc → 0 as n → ∞ but

an → a = 1 as n→∞ which has bac = 1.
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(b) Statement. Let In = (an, bn) be nonempty, bounded, open and nested intervals:

In ⊃ In+1 for all n. Then
⋂
n∈N

In 6= ∅.

False. Let In =

(
0,

1

n

)
be open, nested intervals. Then

⋂
n∈N

In = ∅. To see it, for

contradiction, if there were x ∈
⋂
n∈N

In then x ∈ I1 so that 0 < x. But for n large

enough,
1

n
< x so x /∈ In which implies x /∈

⋂
n∈N

In, a contradiction.

(c) Statement. Suppose that the real sequence {an} is unbounded and an 6= 0. Then
1

an
→ 0 as n→∞.

False. For {an} to be unbounded above does not mean that an → ∞. For example
let an = n if n is odd and an = 1 if n is even. Then {an} is unbounded since the
sequence includes arbitrarily large members, but every other term is unity. Hence the

odd terms of
1

an
tend to zero but the even terms are all one which don’t tend to zero.

Thus there is no limit to
1

an
since all of its subsequences don’t have the same limit.

4. Define a sequence recursively by x1 = 5 and xn+1 =
√

4 + xn for n ≥ 1. Prove that {xn} is
monotone and bounded. Show that there the real limit L = limn→∞ xn exists. Find L.

We show that the sequence is decreasing and bounded below, hence the limit exists by the
Monotone Sequences Theorem.

All terms are bounded below by zero. This can be seen by induction. We have the base
case x1 = 5 ≥ 0. For the induction case, assume that xn ≥ 0 for some n. Then the next
term xn+1 =

√
4 + xn ≥

√
4 + 0 ≥ 0 as well because the function f(x) =

√
4 + x is strictly

increasing for x ≥ 0. Hence xn ≥ 0 for all n ∈ N by induction.

The terms of the sequence are decreasing. For the base case, we have x2 =
√

4 + x1 =√
4 + 5 = 3, thus x2 < x1. Now for the induction case, assume for some n that xn+1 < xn.

It follows that xn+2 =
√

4 + xn+1 <
√

4 + xn = xn+1 since f is strictly increasing. Thus
the induction case holds and so we have xn+1 < xn for all n ∈ N by induction.

To find the value of L, we observe by the Main Limit Theorem,

L = lim
n→∞

xn+1 = lim
n→∞

√
4 + xn =

√
4 + L.

Squaring yields L2 = L+ 4. By the quadratic formula

L =
1±
√

1 + 4 · 4
2

=
1±
√

17

2
.

But we know that xn ≥ 0 so that L ≥ 0. Thus the only root satisfying this inequality is

L =
1 +
√

17

2
.
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5. Suppose that {an} and {bn} are real sequences. Show using just the definition of limit that

if a = lim
n→∞

an and |an − bn| ≤
1

n
for all n, then a = lim

n→∞
bn.

To show that bn → a as n→∞, choose ε > 0. By the assumption that an → a as n→∞,
there is N1 ∈ R such that

|an − a| <
ε

2
whenever n > N1.

Also let N2 =
2

ε
so that if n > N2 then

1

n
<

ε

2
. Put N = max{N1, N2}. If n > N we

get by adding and subtracting an, using n > N1 for the first term and the assumption

|an − bn| ≤
1

n
on the second term,

|a− bn| = |(a− an) + (an − bn)| ≤ |a− an|+ |an − bn|

<
ε

2
+

1

n
<
ε

2
+

1

N2
=
ε

2
+
ε

2
= ε.
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