Name: Solutions
March 1, 2017

1. Consider the subset $E \subset \mathbf{R}$. State the definition: $S=\sup E$ for some $S \in \mathbf{R}$ (same as $S=\operatorname{lub} E$.) Find $\sup E$. Using just the definition, prove that your answer is correct.

$$
E=\left\{\frac{m-n}{m+n}: m, n \in \mathbb{N}\right\}
$$

$S=\sup E$ is defined to be a real number which is (1) an upper bound: $(\forall x \in E)(x \leq S)$ and (2) the least of all upper bounds: $(\forall \varepsilon>0)(\exists x \in E)(S-\varepsilon<x)$.
We claim $S=1$ is the least upper bound of E. To see that it is an upper bound, every $x \in E$ has the form for some $m, n \in \mathbb{N}$,

$$
x=\frac{m-n}{m+n}<\frac{m+n}{m+n}=1
$$

To see that it is least, choose $\varepsilon>0$. By the Archimedean Property, there is $m \in \mathbb{N}$ such that $m>\frac{2}{\varepsilon}$. Taking this m and $n=1 \in \mathbb{N}$ we see that the element $x \in E$ given by

$$
x=\frac{m-n}{m+n}=\frac{m-1}{m+1}=1-\frac{2}{m+1}>1-\frac{2}{m}>1-\frac{2}{2 / \varepsilon}=1-\varepsilon .
$$

2. Suppose that $\left\{a_{n}\right\}$ is a real sequence. State the definition: $A \in \mathbf{R}$ is the limit of the sequence $A=\lim _{n \rightarrow \infty} a_{n}$. Suppose the sequence converges to a real number $A=\lim _{n \rightarrow \infty} a_{n}$. Show using just the definition of limit (and NOT the Main Limit Theorem) that $\left\{b_{n}\right\}$ also converges, where $b_{n}=\left(a_{n}+1\right)^{2}$.
$A=\lim _{n \rightarrow \infty} a_{n}$ means that for every $\varepsilon>0$ there is an $N \in \mathbf{R}$ such that

$$
\left|a_{n}-A\right|<\varepsilon \quad \text { whenever } n>N
$$

We argue that $b_{n} \rightarrow(A+1)^{2}$ as $n \rightarrow \infty$. Since $\left\{a_{n}\right\}$ converges, it is bounded, namely, there is $M \in \mathbf{R}$ such that $\left|a_{n}\right|<M$ for all n. Choose $\varepsilon>0$. By the convergence $a_{n} \rightarrow A$, there is $N \in \mathbf{R}$ be so large that

$$
\left|a_{n}-A\right|<\frac{\varepsilon}{M+|A|+2} \quad \text { whenever } n>N
$$

Then for the same N, if $n>N$ we have

$$
\begin{aligned}
\left|b_{n}-(A+1)^{2}\right| & =\left|\left(a_{n}+1\right)^{2}-(A+1)^{2}\right| \\
& =\left|a_{n}^{2}+2 a_{n}+1-\left(A^{2}+2 A+1\right)\right| \\
& =\left|a_{n}^{2}-A^{2}+2 a_{n}-2 A\right| \\
& =\left|\left(a_{n}+A\right)\left(a_{n}-A\right)+2\left(a_{n}-A\right)\right| \\
& =\left|\left(a_{n}+A+2\right)\left(a_{n}-A\right)\right| \\
& =\left|a_{n}+A+2\right|\left|a_{n}-A\right| \\
& \leq\left(\left|a_{n}\right|+|A|+2\right)\left|a_{n}-A\right| \\
& \leq(M+|A|+2)\left|a_{n}-A\right| \\
& <(M+|A|+2) \frac{\varepsilon}{M+|A|+2}=\varepsilon .
\end{aligned}
$$

Hence $b_{n} \rightarrow(A+1)^{2}$ as $n \rightarrow \infty$.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Suppose the real sequence $\left\{a_{n}\right\}$ is not bounded above. Then $\lim _{n \rightarrow \infty} a_{n}=\infty$.

FALSE. The sequence $a_{2 n}=n$ and $a_{2 n-1}=1$ is not bounded above but does not tend to infinity. It is not true that given any large number $B>1$, that there is an N such that $a_{n}>B$ for all $n>N$ because every other term is one.
(b) Let $I_{n}=\left[a_{n}, b_{n}\right]$ be closed, bounded and nested intervals: $I_{n} \supset I_{n+1}$ for all n. Then $\bigcap_{n \in \mathbf{N}} I_{n}$ consists of a single point.
FALSE. Take the intervals $I_{n}=\left[-\frac{1}{n}, 1+\frac{1}{n}\right]$. Then $\bigcap_{n=1}^{\infty} I_{n}=[0,1]$, not a single point.
(c) Suppose that the real sequence $\left\{a_{m}\right\}$ converges to the real number $a=\lim _{n \rightarrow \infty} a_{n}$. If $a<b$ then $a_{n}<b$ for all but finitely many n.
True. Since $a_{n} \rightarrow a$, for $\varepsilon=b-a>0$ there is $N \in \mathbf{R}$ such that $\left|a_{n}-a\right|<\varepsilon$ whenever $n>N$. For these n,

$$
a_{n}=a+\left(a_{n}-a\right) \leq a+\left|a_{n}-a\right|<a+\varepsilon=a+(b-a)=b
$$

Thus $a_{n}<b$ may fail only for the finitely many $n \leq N$.
4. Consider the sequence of products

$$
P_{n}=\left(1+\frac{1}{2^{1}}\right)\left(1+\frac{1}{2^{2}}\right)\left(1+\frac{1}{2^{3}}\right) \cdots\left(1+\frac{1}{2^{n}}\right)=\prod_{i=1}^{n}\left(1+\frac{1}{2^{i}}\right)
$$

Show that for all $n, P_{n} \leq 4\left(1-\frac{1}{2^{n}}\right)$. Show that the real limit $L=\lim _{n \rightarrow \infty} P_{n}$ exists. (This defines the infinite product $\prod_{i=1}^{\infty}\left(1+\frac{1}{2^{i}}\right)$.)
We prove $P_{n} \leq 4\left(1-\frac{1}{2^{n}}\right)$ by induction. In the $n=1$ base case,

$$
P_{1}=1+\frac{1}{2}=\frac{3}{2} \leq 2=4\left(1-\frac{1}{2}\right)
$$

For the induction case, assume the inequality holds for some $n \in \mathbb{N}$. Then, by the induction hypothesis,

$$
\begin{aligned}
P_{n+1} & =\left(1+\frac{1}{2^{n+1}}\right) P_{n} \\
& \leq\left(1+\frac{1}{2^{n+1}}\right) 4\left(1-\frac{1}{2^{n}}\right) \\
& =4\left(1+\frac{1}{2^{n+1}}-\frac{1}{2^{n}}-\frac{1}{2^{2 n+1}}\right) \\
& \leq 4\left(1-\frac{1}{2^{n+1}}\right)
\end{aligned}
$$

proving the induction step. Hence, by induction, the inequality holds for $l l n \in \mathbb{N}$.
$\left\{P_{n}\right\}$ is increasing since $P_{1}>0$ and each P_{n+1} is obtained from P_{n} by multiplying by $1+2^{-(n+1)}>1$. By (a) the sequence is bounded $P_{n} \leq 4$ for all n. Hence by the Monotone Convergence Theorem, the finite limit $L=\lim _{n \rightarrow \infty} P_{n}$ exists. In fact $\frac{3}{2}=P_{1} \leq L \leq 4$.
5. State the definition: $\left\{S_{n}\right\}$ is a Cauchy Sequence. Prove that the finite limit $L=\lim _{n \rightarrow \infty} S_{n}$ exists, where the S_{n} is the partial sum

$$
S_{n}=\sum_{k=1}^{n} \frac{k \sin k}{3^{k}}
$$

$\left\{S_{n}\right\}$ is a Cauchy Sequence if for every $\varepsilon>0$ there is an $N \in \mathbf{R}$ such that

$$
\left|S_{i}-S_{j}\right|<\varepsilon \quad \text { whenever } i, j>N
$$

We prove that the partial sum sequence $\left\{S_{n}\right\}$ is a Cauchy Sequence, hence converges. Choose $\varepsilon>0$. Let $N \in \mathbf{R}$ be so large that $2\left(\frac{2}{3}\right)^{N}<\varepsilon$. Assume $i, j>N$. If $i=j$ then $\left|S_{i}-S-j\right|=0<\varepsilon$. Without loss of generality we may assume $i>j$, otherwise just swap the roles of i and j. Using $|\sin n| \leq 1$ and $n \leq 2^{n}$ for all n,

$$
\begin{aligned}
\left|S_{i}-S_{j}\right| & =\left|\sum_{k=1}^{i} \frac{k \sin k}{3^{k}}-\sum_{k=1}^{j} \frac{k \sin k}{3^{k}}\right|=\left|\sum_{k=j+1}^{i} \frac{k \sin k}{3^{k}}\right| \leq \sum_{k=j+1}^{i} \frac{k|\sin k|}{3^{k}} \\
& \leq \sum_{k=j+1}^{i} \frac{2^{k} \cdot 1}{3^{k}}=\frac{\left(\frac{2}{3}\right)^{j+1}-\left(\frac{2}{3}\right)^{i+1}}{1-\frac{2}{3}}<2\left(\frac{2}{3}\right)^{j}<2\left(\frac{2}{3}\right)^{N}<\varepsilon
\end{aligned}
$$

We have used the formula for a geometric sum with $r=\frac{2}{3}$. If $i>j$,

$$
\sum_{k=j+1}^{i} r^{k}=\frac{r^{j+1}-r^{i+1}}{1-r}
$$

