Math 3210 § 1.	Second Midterm Exam	Name:	Solutions
Treibergs		March 1,	2017

1. Consider the subset $E \subset \mathbf{R}$. State the definition: $S = \sup E$ for some $S \in \mathbf{R}$ (same as $S = \operatorname{lub} E$.) Find $\sup E$. Using just the definition, prove that your answer is correct.

$$E = \left\{ \frac{m-n}{m+n} : m, n \in \mathbb{N} \right\}$$

 $S = \sup E$ is defined to be a real number which is (1) an upper bound: $(\forall x \in E)(x \leq S)$ and (2) the least of all upper bounds: $(\forall \varepsilon > 0)(\exists x \in E)(S - \varepsilon < x)$.

We claim S = 1 is the least upper bound of E. To see that it is an upper bound, every $x \in E$ has the form for some $m, n \in \mathbb{N}$,

$$x = \frac{m-n}{m+n} < \frac{m+n}{m+n} = 1.$$

To see that it is least, choose $\varepsilon > 0$. By the Archimedean Property, there is $m \in \mathbb{N}$ such that $m > \frac{2}{\varepsilon}$. Taking this m and $n = 1 \in \mathbb{N}$ we see that the element $x \in E$ given by

$$x = \frac{m-n}{m+n} = \frac{m-1}{m+1} = 1 - \frac{2}{m+1} > 1 - \frac{2}{m} > 1 - \frac{2}{2/\varepsilon} = 1 - \varepsilon.$$

2. Suppose that $\{a_n\}$ is a real sequence. State the definition: $A \in \mathbf{R}$ is the limit of the sequence $A = \lim_{n \to \infty} a_n$. Suppose the sequence converges to a real number $A = \lim_{n \to \infty} a_n$. Show using just the definition of limit (and NOT the Main Limit Theorem) that $\{b_n\}$ also converges, where $b_n = (a_n + 1)^2$.

 $A = \lim_{n \to \infty} a_n$ means that for every $\varepsilon > 0$ there is an $N \in \mathbf{R}$ such that

$$|a_n - A| < \varepsilon$$
 whenever $n > N$.

We argue that $b_n \to (A+1)^2$ as $n \to \infty$. Since $\{a_n\}$ converges, it is bounded, namely, there is $M \in \mathbf{R}$ such that $|a_n| < M$ for all n. Choose $\varepsilon > 0$. By the convergence $a_n \to A$, there is $N \in \mathbf{R}$ be so large that

$$|a_n - A| < \frac{\varepsilon}{M + |A| + 2}$$
 whenever $n > N$.

Then for the same N, if n > N we have

$$\begin{split} \left| b_n - (A+1)^2 \right| &= \left| (a_n+1)^2 - (A+1)^2 \right| \\ &= \left| a_n^2 + 2a_n + 1 - (A^2 + 2A + 1) \right| \\ &= \left| a_n^2 - A^2 + 2a_n - 2A \right| \\ &= \left| (a_n + A)(a_n - A) + 2(a_n - A) \right| \\ &= \left| (a_n + A + 2)(a_n - A) \right| \\ &= \left| a_n + A + 2 \right| \left| a_n - A \right| \\ &\leq \left(\left| a_n \right| + \left| A \right| + 2 \right) \left| a_n - A \right| \\ &\leq \left(M + \left| A \right| + 2 \right) \left| a_n - A \right| \\ &< \left(M + \left| A \right| + 2 \right) \frac{\varepsilon}{M + \left| A \right| + 2} = \varepsilon. \end{split}$$

Hence $b_n \to (A+1)^2$ as $n \to \infty$.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) Suppose the real sequence $\{a_n\}$ is not bounded above. Then $\lim_{n \to \infty} a_n = \infty$. FALSE. The sequence $a_{2n} = n$ and $a_{2n-1} = 1$ is not bounded above but does not tend to infinity. It is not true that given any large number B > 1, that there is an N such that $a_n > B$ for all n > N because every other term is one.
 - (b) Let $I_n = [a_n, b_n]$ be closed, bounded and nested intervals: $I_n \supset I_{n+1}$ for all n. Then $\bigcap_{n \in \mathbf{N}} I_n$ consists of a single point.

FALSE. Take the intervals $I_n = \left[-\frac{1}{n}, 1 + \frac{1}{n}\right]$. Then $\bigcap_{n=1}^{\infty} I_n = [0, 1]$, not a single point.

(c) Suppose that the real sequence $\{a_m\}$ converges to the real number $a = \lim_{n \to \infty} a_n$. If a < b then $a_n < b$ for all but finitely many n.

TRUE. Since $a_n \to a$, for $\varepsilon = b - a > 0$ there is $N \in \mathbf{R}$ such that $|a_n - a| < \varepsilon$ whenever n > N. For these n,

$$a_n = a + (a_n - a) \le a + |a_n - a| < a + \varepsilon = a + (b - a) = b.$$

Thus $a_n < b$ may fail only for the finitely many $n \leq N$.

4. Consider the sequence of products

$$P_n = \left(1 + \frac{1}{2^1}\right) \left(1 + \frac{1}{2^2}\right) \left(1 + \frac{1}{2^3}\right) \cdots \left(1 + \frac{1}{2^n}\right) = \prod_{i=1}^n \left(1 + \frac{1}{2^i}\right)$$

Show that for all $n, P_n \leq 4\left(1-\frac{1}{2^n}\right)$. Show that the real limit $L = \lim_{n \to \infty} P_n$ exists. $\left(\text{This defines the infinite product }\prod_{i=1}^{\infty}\left(1+\frac{1}{2^i}\right)\right)$ We prove $P_n \leq 4\left(1-\frac{1}{2^n}\right)$ by induction. In the n = 1 base case,

$$P_1 = 1 + \frac{1}{2} = \frac{3}{2} \le 2 = 4\left(1 - \frac{1}{2}\right).$$

For the induction case, assume the inequality holds for some $n \in \mathbb{N}$. Then, by the induction hypothesis,

$$P_{n+1} = \left(1 + \frac{1}{2^{n+1}}\right) P_n$$

$$\leq \left(1 + \frac{1}{2^{n+1}}\right) 4 \left(1 - \frac{1}{2^n}\right)$$

$$= 4 \left(1 + \frac{1}{2^{n+1}} - \frac{1}{2^n} - \frac{1}{2^{2n+1}}\right)$$

$$\leq 4 \left(1 - \frac{1}{2^{n+1}}\right),$$

proving the induction step. Hence, by induction, the inequality holds for $ll \ n \in \mathbb{N}$.

 $\{P_n\}$ is increasing since $P_1 > 0$ and each P_{n+1} is obtained from P_n by multiplying by $1 + 2^{-(n+1)} > 1$. By (a) the sequence is bounded $P_n \leq 4$ for all n. Hence by the Monotone Convergence Theorem, the finite limit $L = \lim_{n \to \infty} P_n$ exists. In fact $\frac{3}{2} = P_1 \leq L \leq 4$.

5. State the definition: $\{S_n\}$ is a Cauchy Sequence. Prove that the finite limit $L = \lim_{n \to \infty} S_n$ exists, where the S_n is the partial sum

$$S_n = \sum_{k=1}^n \frac{k \sin k}{3^k}.$$

 $\{S_n\}$ is a Cauchy Sequence if for every $\varepsilon > 0$ there is an $N \in \mathbf{R}$ such that

 $|S_i - S_j| < \varepsilon$ whenever i, j > N.

We prove that the partial sum sequence $\{S_n\}$ is a Cauchy Sequence, hence converges. Choose $\varepsilon > 0$. Let $N \in \mathbf{R}$ be so large that $2\left(\frac{2}{3}\right)^N < \varepsilon$. Assume i, j > N. If i = j then $|S_i - S - j| = 0 < \varepsilon$. Without loss of generality we may assume i > j, otherwise just swap the roles of i and j. Using $|\sin n| \le 1$ and $n \le 2^n$ for all n,

$$|S_i - S_j| = \left|\sum_{k=1}^{i} \frac{k \sin k}{3^k} - \sum_{k=1}^{j} \frac{k \sin k}{3^k}\right| = \left|\sum_{k=j+1}^{i} \frac{k \sin k}{3^k}\right| \le \sum_{k=j+1}^{i} \frac{k |\sin k|}{3^k}$$
$$\le \sum_{k=j+1}^{i} \frac{2^k \cdot 1}{3^k} = \frac{\left(\frac{2}{3}\right)^{j+1} - \left(\frac{2}{3}\right)^{i+1}}{1 - \frac{2}{3}} < 2\left(\frac{2}{3}\right)^j < 2\left(\frac{2}{3}\right)^N < \varepsilon.$$

We have used the formula for a geometric sum with $r = \frac{2}{3}$. If i > j,

$$\sum_{k=j+1}^{i} r^k = \frac{r^{j+1} - r^{i+1}}{1 - r}.$$