
Math 3210 § 1.
Treibergs

Second Midterm Exam Name: Solutions
March 1, 2017

1. Consider the subset E ⊂ R. State the definition: S = supE for some S ∈ R (same as
S = lubE.) Find supE. Using just the definition, prove that your answer is correct.

E =

{
m− n

m + n
: m,n ∈ N

}
S = supE is defined to be a real number which is (1) an upper bound: (∀x ∈ E)(x ≤ S)
and (2) the least of all upper bounds: (∀ε > 0)(∃x ∈ E)(S − ε < x).

We claim S = 1 is the least upper bound of E. To see that it is an upper bound, every
x ∈ E has the form for some m,n ∈ N,

x =
m− n

m + n
<

m + n

m + n
= 1.

To see that it is least, choose ε > 0. By the Archimedean Property, there is m ∈ N such

that m >
2

ε
. Taking this m and n = 1 ∈ N we see that the element x ∈ E given by

x =
m− n

m + n
=

m− 1

m + 1
= 1− 2

m + 1
> 1− 2

m
> 1− 2

2/ε
= 1− ε.

2. Suppose that {an} is a real sequence. State the definition: A ∈ R is the limit of the sequence
A = limn→∞ an. Suppose the sequence converges to a real number A = lim

n→∞
an. Show using

just the definition of limit (and NOT the Main Limit Theorem) that {bn} also converges,
where bn = (an + 1)2.

A = limn→∞ an means that for every ε > 0 there is an N ∈ R such that

|an −A| < ε whenever n > N .

We argue that bn → (A+1)2 as n→∞. Since {an} converges, it is bounded, namely, there
is M ∈ R such that |an| < M for all n. Choose ε > 0. By the convergence an → A, there
is N ∈ R be so large that

|an −A| < ε

M + |A|+ 2
whenever n > N .

Then for the same N , if n > N we have∣∣bn − (A + 1)2
∣∣ =

∣∣(an + 1)2 − (A + 1)2
∣∣

=
∣∣a2n + 2an + 1− (A2 + 2A + 1)

∣∣
=
∣∣a2n −A2 + 2an − 2A

∣∣
= |(an + A)(an −A) + 2(an −A)|
= |(an + A + 2)(an −A)|
= |an + A + 2| |an −A|
≤ (|an|+ |A|+ 2) |an −A|
≤ (M + |A|+ 2) |an −A|

< (M + |A|+ 2)
ε

M + |A|+ 2
= ε.

Hence bn → (A + 1)2 as n→∞.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Suppose the real sequence {an} is not bounded above. Then lim
n→∞

an =∞.

False. The sequence a2n = n and a2n−1 = 1 is not bounded above but does not tend
to infinity. It is not true that given any large number B > 1, that there is an N such
that an > B for all n > N because every other term is one.

(b) Let In = [an, bn] be closed, bounded and nested intervals: In ⊃ In+1 for all n. Then⋂
n∈N

In consists of a single point.

False. Take the intervals In =

[
− 1

n
, 1 +

1

n

]
. Then

∞⋂
n=1

In = [0, 1], not a single point.

(c) Suppose that the real sequence {am} converges to the real number a = lim
n→∞

an. If a < b

then an < b for all but finitely many n.

True. Since an → a, for ε = b−a > 0 there is N ∈ R such that |an−a| < ε whenever
n > N . For these n,

an = a + (an − a) ≤ a + |an − a| < a + ε = a + (b− a) = b.

Thus an < b may fail only for the finitely many n ≤ N .

4. Consider the sequence of products

Pn =

(
1 +

1

21

)(
1 +

1

22

)(
1 +

1

23

)
· · ·
(

1 +
1

2n

)
=

n∏
i=1

(
1 +

1

2i

)

Show that for all n, Pn ≤ 4

(
1− 1

2n

)
. Show that the real limit L = limn→∞ Pn exists.(

This defines the infinite product

∞∏
i=1

(
1 +

1

2i

)
.

)

We prove Pn ≤ 4

(
1− 1

2n

)
by induction. In the n = 1 base case,

P1 = 1 +
1

2
=

3

2
≤ 2 = 4

(
1− 1

2

)
.

For the induction case, assume the inequality holds for some n ∈ N. Then, by the induction
hypothesis,

Pn+1 =

(
1 +

1

2n+1

)
Pn

≤
(

1 +
1

2n+1

)
4

(
1− 1

2n

)
= 4

(
1 +

1

2n+1
− 1

2n
− 1

22n+1

)
≤ 4

(
1− 1

2n+1

)
,

proving the induction step. Hence, by induction, the inequality holds for ll n ∈ N.

{Pn} is increasing since P1 > 0 and each Pn+1 is obtained from Pn by multiplying by
1 + 2−(n+1) > 1. By (a) the sequence is bounded Pn ≤ 4 for all n. Hence by the Monotone
Convergence Theorem, the finite limit L = lim

n→∞
Pn exists. In fact 3

2 = P1 ≤ L ≤ 4.
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5. State the definition: {Sn} is a Cauchy Sequence. Prove that the finite limit L = lim
n→∞

Sn

exists, where the Sn is the partial sum

Sn =

n∑
k=1

k sin k

3k
.

{Sn} is a Cauchy Sequence if for every ε > 0 there is an N ∈ R such that

|Si − Sj | < ε whenever i, j > N .

We prove that the partial sum sequence {Sn} is a Cauchy Sequence, hence converges.

Choose ε > 0. Let N ∈ R be so large that 2

(
2

3

)N

< ε. Assume i, j > N . If i = j then

|Si − S − j| = 0 < ε. Without loss of generality we may assume i > j, otherwise just swap
the roles of i and j. Using | sinn| ≤ 1 and n ≤ 2n for all n,

|Si − Sj | =

∣∣∣∣∣
i∑

k=1

k sin k

3k
−

j∑
k=1

k sin k

3k

∣∣∣∣∣ =

∣∣∣∣∣∣
i∑

k=j+1

k sin k

3k

∣∣∣∣∣∣ ≤
i∑

k=j+1

k| sin k|
3k

≤
i∑

k=j+1

2k · 1
3k

=

(
2
3

)j+1 −
(
2
3

)i+1

1− 2
3

< 2

(
2

3

)j

< 2

(
2

3

)N

< ε.

We have used the formula for a geometric sum with r = 2
3 . If i > j,

i∑
k=j+1

rk =
rj+1 − ri+1

1− r
.
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