
Math 3210 § 1.
Treibergs

Third Midterm Exam Solutions
April 5, 2017

1. Let f : R → R. State the definition: f is continuous on R. Using just the definition,
prove that f(x) = x4 is continuous on R. Is f(x) = x4 uniformly continuous on R? Give
a SHORT explanation.

A function f : R→ R is said to be continuous on R is it is continuous at every a ∈ R.

f is continuous at a means for every ε > 0 there is a δ > 0 such that

|f(x)− f(a)| < ε whenever x ∈ R and |x− a| < δ.

To show f(x) = x4 is continuous on R, choose a ∈ R and ε > 0. Let

δ = min

{
1,

ε

((|a|+ 1)2 + |a|2) (1 + 2|a|)

}
.

Then for any x ∈ R such that |x− a| < δ, because δ ≤ 1 we have

|x| = |a+ x− a| ≤ |a|+ |x− a| ≤ |a|+ 1.

Because also δ ≤ ε

((|a|+ 1)2 + |a|2) (1 + 2|a|)
we have

|f(x)− f(a)| =
∣∣x4 − a4∣∣ =

∣∣(x2 + a2)(x2 − a2)
∣∣ =

∣∣(x2 + a2)(x+ a)(x− a))
∣∣

=
∣∣x2 + a2

∣∣ |x+ a| |x− a| ≤
(
|x|2 + |a|2

)
(|x|+ |a|) |x− a|

≤
(
(|a|+ 1)2 + |a|2

)
(|a|+ 1 + |a|) |x− a|

<
(
(|a|+ 1)2 + |a|2

)
(1 + 2|a|) δ

≤
(
(|a|+ 1)2 + |a|2

)
(1 + 2|a|) ε

((|a|+ 1)2 + |a|2) (1 + 2|a|)
= ε.

f is Not Uniformly Continuous because δ depends on both ε and a. If f were uniformly
continuous, δ would depend only on ε.

2. Let f, fn : R → R be functions. State the definition: the sequence of functions {fn}
converges uniformly on R to a function f . Let fn(x) =

x

n2 + x2
. Determine whether there

is a function f(x) such that {fn} converges uniformly to f , converges pointwise but not
uniformly to f or does not converge to any f on R. Prove your result.

We say that a sequence of functions {fn} converges uniformly to a function f on R if for
every ε > 0 there is an N ∈ R such that

|fn(x)− f(x)| < ε whenever x ∈ R and n > N .

The sequence fn(x) =
x

n2 + x2
Converges Uniformly to the function f(x) = 0 on R.

For each x ∈ R we have the limit

lim
n→∞

fn(x) = lim
n→∞

x

n2 + x2
= 0

thus {fn} converges pointwise to the function f(x) = 0. To see that the convergence is
uniform, choose ε > 0 and let N = 1/ε. Then if x ∈ R and n > N we have

|fn(x)− f(x)| =
∣∣∣∣ x

n2 + x2
− 0

∣∣∣∣ =
|x|

n2 + x2
=

√
x2

n2 + x2

≤
√
n2 + x2

n2 + x2
=

1√
n2 + x2

≤ 1√
n2

=
1

n
<

1

N
= ε.
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Alternately, we can use the method suggested in your homework to deduce the inequality.
Observing that fn(x)→ 0 as x→ ±∞, all we need to do is find the maximum and minimum
values of fn. Differentiating,

d

dx
fn(x) =

d

dx

(
x

n2 + x2

)
=

n2 − x2

(n2 + x2)
2

so that x = ±n are the only critical points corresponding to maximum and minimum. Thus

− 1

2n
= − n

n2 + n2
= fn(−n) ≤ fn(x) =

x

n2 + x2
≤ fn(n) =

n

n2 + n2
=

1

2n

so |fn(x)− f(x)| < 1/n as above.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Suppose that f : (−1, 1) → R is a differentiable strictly increasing function such that
f(0) = 2. Then the inverse function f−1 is differentiable at y = 2

False. The inverse function is differentiable if also f ′(0) > 0. For example f(x) =
2 +x3 is strictly increasing, f(0) = 2, but the inverse function f−1(y) = 3

√
y − 2 is not

differentiable at y = 2.

(b) The function f(x) =
x3 − 2x2 − 3x− 4

5x2 + 6
has a real root.

True. The denominator is always positive, so the rational function f(x) is continuous
on R. If f(x) > 0 and f(y) < 0 then zero is intermediate so by the Intermediate

Value Theorem, f(c) = 0 for some c is between x and y. Note that f(0) = −2

3
and

f(10) =
1000− 2 · 100− 3 · 10− 4

5 · 100 + 6
=

766

506
> 0. Thus some c ∈ (0, 10) is a root of f .

(c) Suppose that f, g : (a, b) → R are differentiable functions such that g(x) 6= 0 for all x

and such that the finite limit lim
x→a+

f ′(x)

g′(x)
= L exists. Then lim

x→a+

f(x)

g(x)
= M exists and

L = M .

False. L’Hopital’s Theorem does not apply since this is neither the “ 0
0” nor the

“∞∞” case. Take f(x) = x − b and g(x) = x − a so g(x) > 0 on x ∈ (a, b), then

lim
x→a+

f ′(x)

g′(x)
= lim

x→a+

1

1
= 1 exists but lim

x→a+

f(x)

g(x)
= lim

x→a+

x− b
x− a

= −∞ does not have

the same limit.

4. Let f : R → R be a function and a ∈ R a point. State the definition: f is differentiable
at a. Using just the definition of differentiable and not differentiation rules, show that

f(x) =
x

1 + x+ x2
is differentiable at a ∈ R.

f : R→ R is said to be differentiable at a ∈ R if there is a real number f ′(a) such that

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.
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For this f , for x 6= a

f(x)− f(a)

x− a
=

x

1 + x+ x2
− a

1 + a+ a2

x− a
=

x(1 + a+ a2)− a(1 + x+ x2)

(1 + x+ x2)(1 + a+ a2)(x− a)

=
x− a+ a2x− ax2

(1 + x+ x2)(1 + a+ a2)(x− a)
=

(1− ax)(x− a)

(1 + x+ x2)(1 + a+ a2)(x− a)

=
(1− ax)

(1 + x+ x2)(1 + a+ a2)
→ (1− a2)

(1 + a+ a2)2
= f ′(a)

as x→ a. Thus f is differentiable at a.

5. Finish the statement of the Mean Value Theorem. Using just the Mean Value Theorem,
show that if 0 < α ≤ 1 then for all x > 0, (1 + x)α ≤ 1 + αx.

Mean Value Theorem. Let f : [a, b]→ R be a continuous function. If, in addition, f is
differentiable on (a, b) then there is a c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

Let f(x) = (1+x)α. This function is differentiable for x > −1 so continuous on this interval
also. For any x > 0 we may apply the Mean Value Theorem to f on the subinterval [0, x].
There is some c ∈ (0, x) such that

(1 + x)α − 1 = f(x)− f(0) = f ′(c)(x− 0) = α(1 + c)α−1x ≤ αx

which is the desired inequality. We have used the fact that 1 + c > 1 and α− 1 ≤ 0 so that
(1 + c)α−1 ≤ 1.

If 0 < α < 1 then (1 + c)α−1 < 1 so we get the strict inequality (1 +x)α < 1 +αx whenever
x > 0.
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