Math 3210 § 1.	Third Midterm Exam	Solutions
Treibergs		April 5, 2017

1. Let $f : \mathbf{R} \to \mathbf{R}$. State the definition: f is continuous on \mathbf{R} . Using just the definition, prove that $f(x) = x^4$ is continuous on \mathbf{R} . Is $f(x) = x^4$ uniformly continuous on \mathbf{R} ? Give a SHORT explanation.

A function $f : \mathbf{R} \to \mathbf{R}$ is said to be *continuous* on \mathbf{R} is it is continuous at every $a \in \mathbf{R}$. f is continuous at a means for every $\epsilon > 0$ there is a $\delta > 0$ such that

$$|f(x) - f(a)| < \epsilon$$
 whenever $x \in \mathbf{R}$ and $|x - a| < \delta$.

To show $f(x) = x^4$ is continuous on **R**, choose $a \in \mathbf{R}$ and $\epsilon > 0$. Let

$$\delta = \min\left\{1, \frac{\epsilon}{((|a|+1)^2 + |a|^2)(1+2|a|)}\right\}.$$

Then for any $x \in \mathbf{R}$ such that $|x - a| < \delta$, because $\delta \leq 1$ we have

$$|x| = |a + x - a| \le |a| + |x - a| \le |a| + 1.$$

Because also $\delta \leq \frac{\epsilon}{\left((|a|+1)^2+|a|^2\right)\left(1+2|a|\right)}$ we have $|f(x)-f(a)| = |x^4-a^4| = |(x^2+a^2)(x^2-a^2)| = |(x^2+a^2)(x+a)(x-a))|$ $= |x^2+a^2| |x+a| |x-a| \leq \left(|x|^2+|a|^2\right)\left(|x|+|a|\right)|x-a|$ $\leq \left((|a|+1)^2+|a|^2\right)\left(|a|+1+|a|\right)|x-a|$ $< \left(((|a|+1)^2+|a|^2)\left(1+2|a|\right)\delta$ $\leq \left((|a|+1)^2+|a|^2\right)\left(1+2|a|\right)\frac{\epsilon}{\left((|a|+1)^2+|a|^2\right)\left(1+2|a|\right)} = \epsilon.$

f is NOT UNIFORMLY CONTINUOUS because δ depends on both ϵ and a. If f were uniformly continuous, δ would depend only on ϵ .

2. Let $f, f_n : \mathbf{R} \to \mathbf{R}$ be functions. State the definition: the sequence of functions $\{f_n\}$ converges uniformly on \mathbf{R} to a function f. Let $f_n(x) = \frac{x}{n^2 + x^2}$. Determine whether there is a function f(x) such that $\{f_n\}$ converges uniformly to f, converges pointwise but not uniformly to f or does not converge to any f on \mathbf{R} . Prove your result.

We say that a sequence of functions $\{f_n\}$ converges uniformly to a function f on \mathbf{R} if for every $\epsilon > 0$ there is an $N \in \mathbf{R}$ such that

 $|f_n(x) - f(x)| < \epsilon$ whenever $x \in \mathbf{R}$ and n > N.

The sequence $f_n(x) = \frac{x}{n^2 + x^2}$ CONVERGES UNIFORMLY to the function f(x) = 0 on **R**. For each $x \in \mathbf{R}$ we have the limit

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{n^2 + x^2} = 0$$

thus $\{f_n\}$ converges pointwise to the function f(x) = 0. To see that the convergence is uniform, choose $\epsilon > 0$ and let $N = 1/\epsilon$. Then if $x \in \mathbf{R}$ and n > N we have

$$|f_n(x) - f(x)| = \left| \frac{x}{n^2 + x^2} - 0 \right| = \frac{|x|}{n^2 + x^2} = \frac{\sqrt{x^2}}{n^2 + x^2}$$
$$\leq \frac{\sqrt{n^2 + x^2}}{n^2 + x^2} = \frac{1}{\sqrt{n^2 + x^2}} \leq \frac{1}{\sqrt{n^2}} = \frac{1}{n} < \frac{1}{N} = \epsilon.$$

Alternately, we can use the method suggested in your homework to deduce the inequality. Observing that $f_n(x) \to 0$ as $x \to \pm \infty$, all we need to do is find the maximum and minimum values of f_n . Differentiating,

$$\frac{d}{dx}f_n(x) = \frac{d}{dx}\left(\frac{x}{n^2 + x^2}\right) = \frac{n^2 - x^2}{\left(n^2 + x^2\right)^2}$$

so that $x = \pm n$ are the only critical points corresponding to maximum and minimum. Thus

$$-\frac{1}{2n} = -\frac{n}{n^2 + n^2} = f_n(-n) \le f_n(x) = \frac{x}{n^2 + x^2} \le f_n(n) = \frac{n}{n^2 + n^2} = \frac{1}{2n}$$

so $|f_n(x) - f(x)| < 1/n$ as above.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) Suppose that f: (-1,1) → R is a differentiable strictly increasing function such that f(0) = 2. Then the inverse function f⁻¹ is differentiable at y = 2
 FALSE. The inverse function is differentiable if also f'(0) > 0. For example f(x) = 2 + x³ is strictly increasing, f(0) = 2, but the inverse function f⁻¹(y) = ³√y 2 is not differentiable at y = 2.

(b) The function
$$f(x) = \frac{x^3 - 2x^2 - 3x - 4}{5x^2 + 6}$$
 has a real root.

TRUE. The denominator is always positive, so the rational function f(x) is continuous on **R**. If f(x) > 0 and f(y) < 0 then zero is intermediate so by the Intermediate Value Theorem, f(c) = 0 for some c is between x and y. Note that $f(0) = -\frac{2}{3}$ and $f(10) = \frac{1000 - 2 \cdot 100 - 3 \cdot 10 - 4}{5 \cdot 100 + 6} = \frac{766}{506} > 0$. Thus some $c \in (0, 10)$ is a root of f.

(c) Suppose that $f, g: (a, b) \to \mathbf{R}$ are differentiable functions such that $g(x) \neq 0$ for all x and such that the finite limit $\lim_{x \to a+} \frac{f'(x)}{g'(x)} = L$ exists. Then $\lim_{x \to a+} \frac{f(x)}{g(x)} = M$ exists and L = M.

FALSE. L'Hopital's Theorem does not apply since this is neither the " $\frac{0}{0}$ " nor the " $\frac{\infty}{\infty}$ " case. Take f(x) = x - b and g(x) = x - a so g(x) > 0 on $x \in (a, b)$, then $\lim_{x \to a+} \frac{f'(x)}{g'(x)} = \lim_{x \to a+} \frac{1}{1} = 1$ exists but $\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{x - b}{x - a} = -\infty$ does not have the same limit.

- 4. Let $f : \mathbf{R} \to \mathbf{R}$ be a function and $a \in \mathbf{R}$ a point. State the definition: f is differentiable at a. Using just the definition of differentiable and not differentiation rules, show that $f(x) = \frac{x}{1 + x + x^2}$ is differentiable at $a \in \mathbf{R}$.
 - $f: \mathbf{R} \to \mathbf{R}$ is said to be *differentiable* at $a \in \mathbf{R}$ if there is a real number f'(a) such that

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

For this f, for $x \neq a$

$$\frac{f(x) - f(a)}{x - a} = \frac{\frac{x}{1 + x + x^2} - \frac{a}{1 + a + a^2}}{x - a} = \frac{x(1 + a + a^2) - a(1 + x + x^2)}{(1 + x + x^2)(1 + a + a^2)(x - a)}$$
$$= \frac{x - a + a^2x - ax^2}{(1 + x + x^2)(1 + a + a^2)(x - a)} = \frac{(1 - ax)(x - a)}{(1 + x + x^2)(1 + a + a^2)(x - a)}$$
$$= \frac{(1 - ax)}{(1 + x + x^2)(1 + a + a^2)} \to \frac{(1 - a^2)}{(1 + a + a^2)^2} = f'(a)$$

as $x \to a$. Thus f is differentiable at a.

5. Finish the statement of the Mean Value Theorem. Using just the Mean Value Theorem, show that if $0 < \alpha \leq 1$ then for all x > 0, $(1 + x)^{\alpha} \leq 1 + \alpha x$.

Mean Value Theorem. Let $f : [a, b] \to \mathbf{R}$ be a continuous function. If, in addition, f is differentiable on (a, b) then there is a $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a).

Let $f(x) = (1+x)^{\alpha}$. This function is differentiable for x > -1 so continuous on this interval also. For any x > 0 we may apply the Mean Value Theorem to f on the subinterval [0, x]. There is some $c \in (0, x)$ such that

$$(1+x)^{\alpha} - 1 = f(x) - f(0) = f'(c)(x-0) = \alpha(1+c)^{\alpha-1}x \le \alpha x$$

which is the desired inequality. We have used the fact that 1 + c > 1 and $\alpha - 1 \le 0$ so that $(1 + c)^{\alpha - 1} \le 1$.

If $0 < \alpha < 1$ then $(1+c)^{\alpha-1} < 1$ so we get the strict inequality $(1+x)^{\alpha} < 1 + \alpha x$ whenever x > 0.