Math 3210 § 1.
Treibergs

Third Midterm Exam

1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$. State the definition: f is continuous on \mathbf{R}. Using just the definition, prove that $f(x)=x^{4}$ is continuous on \mathbf{R}. Is $f(x)=x^{4}$ uniformly continuous on \mathbf{R} ? Give a SHORT explanation.
A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is said to be continuous on \mathbf{R} is it is continuous at every $a \in \mathbf{R}$.
f is continuous at a means for every $\epsilon>0$ there is a $\delta>0$ such that

$$
|f(x)-f(a)|<\epsilon \quad \text { whenever } x \in \mathbf{R} \text { and }|x-a|<\delta
$$

To show $f(x)=x^{4}$ is continuous on \mathbf{R}, choose $a \in \mathbf{R}$ and $\epsilon>0$. Let

$$
\delta=\min \left\{1, \frac{\epsilon}{\left((|a|+1)^{2}+|a|^{2}\right)(1+2|a|)}\right\}
$$

Then for any $x \in \mathbf{R}$ such that $|x-a|<\delta$, because $\delta \leq 1$ we have

$$
|x|=|a+x-a| \leq|a|+|x-a| \leq|a|+1 .
$$

Because also $\delta \leq \frac{\epsilon}{\left((|a|+1)^{2}+|a|^{2}\right)(1+2|a|)}$ we have

$$
\begin{aligned}
|f(x)-f(a)| & \left.=\left|x^{4}-a^{4}\right|=\left|\left(x^{2}+a^{2}\right)\left(x^{2}-a^{2}\right)\right|=\mid\left(x^{2}+a^{2}\right)(x+a)(x-a)\right) \mid \\
& =\left|x^{2}+a^{2}\right||x+a||x-a| \leq\left(|x|^{2}+|a|^{2}\right)(|x|+|a|)|x-a| \\
& \leq\left((|a|+1)^{2}+|a|^{2}\right)(|a|+1+|a|)|x-a| \\
& <\left((|a|+1)^{2}+|a|^{2}\right)(1+2|a|) \delta \\
& \leq\left((|a|+1)^{2}+|a|^{2}\right)(1+2|a|) \frac{\epsilon}{\left((|a|+1)^{2}+|a|^{2}\right)(1+2|a|)}=\epsilon .
\end{aligned}
$$

f is Not Uniformly Continuous because δ depends on both ϵ and a. If f were uniformly continuous, δ would depend only on ϵ.
2. Let $f, f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ be functions. State the definition: the sequence of functions $\left\{f_{n}\right\}$ converges uniformly on \mathbf{R} to a function f. Let $f_{n}(x)=\frac{x}{n^{2}+x^{2}}$. Determine whether there is a function $f(x)$ such that $\left\{f_{n}\right\}$ converges uniformly to f, converges pointwise but not uniformly to f or does not converge to any f on \mathbf{R}. Prove your result.
We say that a sequence of functions $\left\{f_{n}\right\}$ converges uniformly to a function f on \mathbf{R} if for every $\epsilon>0$ there is an $N \in \mathbf{R}$ such that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon \quad \text { whenever } x \in \mathbf{R} \text { and } n>N
$$

The sequence $f_{n}(x)=\frac{x}{n^{2}+x^{2}}$ Converges Uniformly to the function $f(x)=0$ on \mathbf{R}. For each $x \in \mathbf{R}$ we have the limit

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{x}{n^{2}+x^{2}}=0
$$

thus $\left\{f_{n}\right\}$ converges pointwise to the function $f(x)=0$. To see that the convergence is uniform, choose $\epsilon>0$ and let $N=1 / \epsilon$. Then if $x \in \mathbf{R}$ and $n>N$ we have

$$
\begin{aligned}
\left|f_{n}(x)-f(x)\right| & =\left|\frac{x}{n^{2}+x^{2}}-0\right|=\frac{|x|}{n^{2}+x^{2}}=\frac{\sqrt{x^{2}}}{n^{2}+x^{2}} \\
\leq \frac{\sqrt{n^{2}+x^{2}}}{n^{2}+x^{2}} & =\frac{1}{\sqrt{n^{2}+x^{2}}} \leq \frac{1}{\sqrt{n^{2}}}=\frac{1}{n}<\frac{1}{N}=\epsilon
\end{aligned}
$$

Alternately, we can use the method suggested in your homework to deduce the inequality. Observing that $f_{n}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$, all we need to do is find the maximum and minimum values of f_{n}. Differentiating,

$$
\frac{d}{d x} f_{n}(x)=\frac{d}{d x}\left(\frac{x}{n^{2}+x^{2}}\right)=\frac{n^{2}-x^{2}}{\left(n^{2}+x^{2}\right)^{2}}
$$

so that $x= \pm n$ are the only critical points corresponding to maximum and minimum. Thus

$$
-\frac{1}{2 n}=-\frac{n}{n^{2}+n^{2}}=f_{n}(-n) \leq f_{n}(x)=\frac{x}{n^{2}+x^{2}} \leq f_{n}(n)=\frac{n}{n^{2}+n^{2}}=\frac{1}{2 n}
$$

so $\left|f_{n}(x)-f(x)\right|<1 / n$ as above.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Suppose that $f:(-1,1) \rightarrow \mathbf{R}$ is a differentiable strictly increasing function such that $f(0)=2$. Then the inverse function f^{-1} is differentiable at $y=2$
FALSE. The inverse function is differentiable if also $f^{\prime}(0)>0$. For example $f(x)=$ $2+x^{3}$ is strictly increasing, $f(0)=2$, but the inverse function $f^{-1}(y)=\sqrt[3]{y-2}$ is not differentiable at $y=2$.
(b) The function $f(x)=\frac{x^{3}-2 x^{2}-3 x-4}{5 x^{2}+6}$ has a real root.

True. The denominator is always positive, so the rational function $f(x)$ is continuous on \mathbf{R}. If $f(x)>0$ and $f(y)<0$ then zero is intermediate so by the Intermediate Value Theorem, $f(c)=0$ for some c is between x and y. Note that $f(0)=-\frac{2}{3}$ and $f(10)=\frac{1000-2 \cdot 100-3 \cdot 10-4}{5 \cdot 100+6}=\frac{766}{506}>0$. Thus some $c \in(0,10)$ is a root of f.
(c) Suppose that $f, g:(a, b) \rightarrow \mathbf{R}$ are differentiable functions such that $g(x) \neq 0$ for all x and such that the finite limit $\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ exists. Then $\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=M$ exists and $L=M$.
FAlse. L'Hopital's Theorem does not apply since this is neither the "0 " nor the $" \frac{\infty}{\infty}$ " case. Take $f(x)=x-b$ and $g(x)=x-a$ so $g(x)>0$ on $x \in(a, b)$, then $\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a+} \frac{1}{1}=1$ exists but $\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a+} \frac{x-b}{x-a}=-\infty$ does not have the same limit.
4. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function and $a \in \mathbf{R}$ a point. State the definition: f is differentiable at a. Using just the definition of differentiable and not differentiation rules, show that $f(x)=\frac{x}{1+x+x^{2}}$ is differentiable at $a \in \mathbf{R}$.
$f: \mathbf{R} \rightarrow \mathbf{R}$ is said to be differentiable at $a \in \mathbf{R}$ if there is a real number $f^{\prime}(a)$ such that

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

For this f, for $x \neq a$

$$
\begin{aligned}
\frac{f(x)-f(a)}{x-a} & =\frac{\frac{x}{1+x+x^{2}}-\frac{a}{1+a+a^{2}}}{x-a}=\frac{x\left(1+a+a^{2}\right)-a\left(1+x+x^{2}\right)}{\left(1+x+x^{2}\right)\left(1+a+a^{2}\right)(x-a)} \\
& =\frac{x-a+a^{2} x-a x^{2}}{\left(1+x+x^{2}\right)\left(1+a+a^{2}\right)(x-a)}=\frac{(1-a x)(x-a)}{\left(1+x+x^{2}\right)\left(1+a+a^{2}\right)(x-a)} \\
& =\frac{(1-a x)}{\left(1+x+x^{2}\right)\left(1+a+a^{2}\right)} \rightarrow \frac{\left(1-a^{2}\right)}{\left(1+a+a^{2}\right)^{2}}=f^{\prime}(a)
\end{aligned}
$$

as $x \rightarrow a$. Thus f is differentiable at a.
5. Finish the statement of the Mean Value Theorem. Using just the Mean Value Theorem, show that if $0<\alpha \leq 1$ then for all $x>0,(1+x)^{\alpha} \leq 1+\alpha x$.

Mean Value Theorem. Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function. If, in addition, f is differentiable on (a, b) then there is a $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Let $f(x)=(1+x)^{\alpha}$. This function is differentiable for $x>-1$ so continuous on this interval also. For any $x>0$ we may apply the Mean Value Theorem to f on the subinterval $[0, x]$. There is some $c \in(0, x)$ such that

$$
(1+x)^{\alpha}-1=f(x)-f(0)=f^{\prime}(c)(x-0)=\alpha(1+c)^{\alpha-1} x \leq \alpha x
$$

which is the desired inequality. We have used the fact that $1+c>1$ and $\alpha-1 \leq 0$ so that $(1+c)^{\alpha-1} \leq 1$.
If $0<\alpha<1$ then $(1+c)^{\alpha-1}<1$ so we get the strict inequality $(1+x)^{\alpha}<1+\alpha x$ whenever $x>0$.

