Math 3210 § 2.
Treibergs

First Midterm Exam
Name:
Solutions
February 2, 2017

1. Let $x>-1$. Prove that for every integer $n \geq 0$,

$$
\mathcal{P}(n):(1+x)^{n} \geq 1+n x
$$

We use induction starting at $n=0$ which works just as well as starting from $n=1$. Note that $x>-1$ implies that $1+x>0$. Hence in the base case, $n=0,(1+x)^{0}=1=1+0 x$ so $\mathcal{P}(0)$ holds.
For the induction case, assume that for some $n \geq 0, \mathcal{P}(n)$ holds to show $\mathcal{P}(n+1)$ holds. The induction hypothesis $P(n)$ says

$$
(1+x)^{n} \geq 1+n x
$$

But since $(1+x)>0$, we preserve the order when we multiply the inequality. This gives the induction step

$$
(x+1)^{n+1}=(x+1)(x+1)^{n} \geq(1+x)(1+n x)=1+(n+1) x+n x^{2} \geq 1+(n+1) x
$$

because $n x^{2} \geq 0$.
2. Recall the axioms of a commutative ring $(R,+, X)$. For any $x, y, z \in R$,

[A1.]	(Commutativity of Addition)	$x+y=y+x$.
[A2.]	(Associativity of Addition)	$x+(y+z)=(x+y)+z$.
[A3.]	(Additive Identity.)	$(\exists 0 \in R)(\forall t \in R) 0+t=t$.
[A4.]	(Additive Inverse)	$(\exists-x \in R) x+(-x)=0$.
[M1.]	(Commutativity of Multiplication)	$x y=y x$.
[M2.]	(Associativity of Multiplication)	$x(y z)=(x y) z$.
[M3.]	(Multiplicative Identity.)	$(\exists 1 \in R) 1 \neq 0$ and $(\forall t \in R) 1 t=t$.
[D.]	(Distributivity)	$x(y+z)=x y+x z$.

Using only the axioms of a commutative ring, show that for any $a, b \in R$, then the equation

$$
a+x=b
$$

has a unique solution $x=(-a)+b$. Justify every step of your argument using just the axioms listed here.
First we show $x=(-a)+b$ solves the equation.

$$
\begin{aligned}
a+x & =a+((-a)+b)) & & \text { Substitute } x . \\
& =(a+(-a))+b & & \text { Associativity of addition, A2. } \\
& =0+b & & \text { Additive inverse A4. } \\
& =b . & & \text { Additive identity A3. }
\end{aligned}
$$

Second we argue the solution is unique. Suppose x and z were two solutions. Then both satisfy the equation

$$
\begin{aligned}
a+x & =b & & \\
a+z & =b & & \text { Substitute solutions } x \text { and } z . \\
a+x & =a+x & & \text { Both equal } b . \\
(-a)+(a+x) & =(-a)+(a+z) & & \text { Pre-add }-a \text { (which exists by A4) to both sides. } \\
((-a)+a)+x & =((-a)+a)+z & & \text { Associativity of addition A2. } \\
(a+(-a))+x & =(a+(-a))+z & & \text { Commutativity of addition A1. } \\
0+x & =0+z & & \text { Additive inverse A4. } \\
x & =z & & \text { Additive identity A3. }
\end{aligned}
$$

Thus any two solutions are the same.
Another argument may be given. We start from the equation and deduce the value of the unknown.

$$
\begin{aligned}
a+x & =b & & \text { Given. } \\
(-a)+(a+x) & =(-a)+b & & \text { Pre-add }-a \text { (which exists by A4) to both sides. } \\
((-a)+a)+x & =(-a)+b & & \text { Associativity of addition, A2. } \\
(a+(-a))+x & =(-a)+b & & \text { Commutitvity of addition, A1. } \\
0+x & =(-a)+b & & \text { Additive inverse, A4. } \\
x & =(-a)+b & & \text { Additive identity, A3. }
\end{aligned}
$$

Thus we deduce that the equation may be solved by the number $x=(-a)+b$. This argument says more. No matter which solution x was used, the argument showed that all solutions are the same one and only solution $x=(-a)+b$. Hence the solution is unique.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) If $f: A \rightarrow B$ then $f(A \backslash E)=f(A) \backslash f(E)$ for every subset $E \subset A$.

FALSE. Let $A=B=\mathbb{R}, E=[0, \infty), f(x)=x^{2}$ (which is not one-to-one), $A \backslash E=$ $(-\infty, 0), f(A \backslash E)=(0, \infty), f(A)=f(E)=[0, \infty)$ so $f(A) \backslash f(E)=\emptyset \neq f(A \backslash E)$.
(b) Let $f: X \rightarrow Y$. If $f^{-1}(E)=X$ for some proper subset E of Y then f is not onto. TRUE. If $E \subset Y$ is a proper subset, it is not all of Y so there is $y_{0} \in Y$ but $y_{0} \notin E$. Since the range $f(X)=E$, no point of X maps to y_{0}, so f is not onto.
(c) Let $f: X \rightarrow Y$ be a function. Suppose that for every $x_{1}, x_{2} \in X, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ implies $x_{1} \neq x_{2}$. Then f is one-to-one.
FALSE. The statement is true for every function. e.g., $g(x)=x^{2}$ is not one-to-one on \mathbb{R}, but the hypothesis is true as can be seen by its contrapositive: $x_{1}=x_{2}$ implies $x_{1}^{2}=g\left(x_{1}\right)=g\left(x_{2}\right)=x_{2}^{2}$.
4. Recall that the rational numbers are defined to be the set of equivalence classes $\mathbb{Q}=S / \sim$ where $S=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}$ is the set of symbols (pairs of integers) and the symbols are equivalent if they represent the same fraction $\frac{a}{b} \sim \frac{c}{d}$ iff $a d=b c$. We denote the equivalence class, the "fraction," $\left[\frac{a}{b}\right]$ to distinguish it from a symbol from S. Multiplication, for example is defined on equivalence classes by $\left[\frac{m}{n}\right] \cdot\left[\frac{r}{t}\right]=\left[\frac{(m r)}{(n t)}\right]$.
(a) Given fractions $x=\left[\frac{m}{n}\right], y=\left[\frac{r}{t}\right]$ in \mathbb{Q}, suppose we define the operation

$$
x \ominus y:=\left[\frac{m t-n r}{n t}\right]
$$

Show that the definition of \ominus is well defined: it does not depend on the choice of the symbols representing the fractions.
Let $\frac{m^{\prime}}{n^{\prime}} \sim \frac{m}{n}$ so $m^{\prime} n=m n^{\prime}$ and $\frac{r^{\prime}}{t^{\prime}} \sim \frac{r}{t}$ so $r^{\prime} t=r t^{\prime}$. Then we claim that the formulae are equivalent: $\frac{m^{\prime} t^{\prime}-n^{\prime} r^{\prime}}{n^{\prime} t^{\prime}} \sim \frac{m t-n r}{n t}$. To see this, using $m^{\prime} n=m n^{\prime}$ and $r^{\prime} t=r t^{\prime}$,

$$
n t\left(m^{\prime} t^{\prime}-n^{\prime} r^{\prime}\right)=t t^{\prime} n m^{\prime}-n n^{\prime} t r^{\prime}=t t^{\prime} n^{\prime} m-n n^{\prime} t^{\prime} r=n^{\prime} t^{\prime}(m t-n r)
$$

Thus $\frac{m^{\prime} t^{\prime}-n^{\prime} r^{\prime}}{n^{\prime} t^{\prime}} \sim \frac{m t-n r}{n t}$.
(b) Define the subset $\mathcal{P}=\left\{\left[\frac{p}{q}\right] \in \mathbb{Q}: p \geq 0\right.$ and $\left.q>0.\right\}$. An order is defined on \mathbb{Q} by $x \preceq y$ iff $y \ominus x \in \mathcal{P}$. Show that with this " \preceq," the rationals \mathbb{Q} satisfy the order axiom O1: For all $x, y \in \mathbb{Q}$, either $x \preceq y$ or $y \preceq x$.
Let $x=\left[\frac{m}{n}\right], y=\left[\frac{r}{t}\right]$. Then $x \ominus y:=\left[\frac{m t-n r}{n t}\right]$ and $y \ominus x:=\left[\frac{n r-m t}{n t}\right]$. Notice that the numerators are negatives: $-(m t-n r)=n r-m t$ so that by the order properties of \mathbb{Z}, one or the other is nonnegative (or both are zero). So if $n t>0$, one or the other $x \ominus y$ or $y \ominus x$ is in \mathcal{P}. On the other hand, if $n t<0$, we may choose an equivalent representative $x=\left[\frac{-m}{-n}\right]$. We have $\frac{-m}{-n} \sim \frac{m}{n}$ because $n(-m)=(-n) m$. Now computing using the new $x, x \ominus y:=\left[\frac{(-m) t-(-n) r}{(-n) t}\right]$ and $y \ominus x:=\left[\frac{(-n) r-(-m) t}{(-n) t}\right]$. Now the denominator is positive $(-n) t>0$ and the numerators are still negatives of one another, so one of them has to be nonnegative, thus, again, $x \ominus y$ or $y \ominus x$ is in \mathcal{P}.
5. Let $E \subset \mathbb{R}$ be a set of real numbers given by

$$
E=\{x \in \mathbb{R}: \quad(\forall \zeta \in \mathbb{Z}) \quad(\exists \tau>0) \quad(\tau \leq|x-\zeta|) \quad\}
$$

Find E and and prove your result.

$$
\begin{aligned}
E & =\{x \in \mathbb{R}: \quad(\forall \zeta \in \mathbb{Z}) \quad(\exists \tau>0) \quad(\tau \leq|x-\zeta|) \quad\} \\
& =\bigcap_{\zeta \in \mathbb{Z}} \bigcup_{\tau>0}\{(-\infty, z-\tau] \cup[z+\tau, \infty)\} \\
& =\bigcap_{\zeta \in \mathbb{Z}}\{(-\infty, z) \cup(z, \infty)\} \\
& =\mathbb{R} \backslash \mathbb{Z}
\end{aligned}
$$

To prove it, we show that the complement $E^{c}=\mathbb{Z}$.
To show " \subset," choose $x \in E^{c}$ to show $x \in \mathbb{Z}$.

$$
E^{c}=\{x \in \mathbb{R}: \quad(\exists \zeta \in \mathbb{Z}) \quad(\forall \tau>0) \quad(\tau>|x-\zeta|) \quad\}
$$

Let $\zeta_{0} \in \mathbb{Z}$ correspond to x. Then x satisfies

$$
(\forall \tau>0) \quad\left(\tau>\left|x-\zeta_{0}\right|\right)
$$

In other words, $x=\zeta_{0}$ which is an integer, so $x \in \mathbb{Z}$.
To show " \supset," choose $x \in \mathbb{Z}$ to show $x \in E^{c}$. Take $\zeta=x$. Then for all $\tau>0$ we have $\tau>|x-\zeta|=0$ so x satisfies the condition to be in E^{c}. Hence we have shown $E^{c}=\mathbb{Z}$ so $E=\mathbb{R} \backslash \mathbb{Z}$.

