Math 3210 § 2.	First Midterm Exam	Name:	Solutions
Treibergs		February	2, 2017

1. Let x > -1. Prove that for every integer $n \ge 0$,

$$\mathcal{P}(n): (1+x)^n \ge 1+nx.$$

We use induction starting at n = 0 which works just as well as starting from n = 1. Note that x > -1 implies that 1 + x > 0. Hence in the base case, n = 0, $(1 + x)^0 = 1 = 1 + 0x$ so $\mathcal{P}(0)$ holds.

For the induction case, assume that for some $n \ge 0$, $\mathcal{P}(n)$ holds to show $\mathcal{P}(n+1)$ holds. The induction hypothesis P(n) says

$$(1+x)^n \ge 1+nx.$$

But since (1 + x) > 0, we preserve the order when we multiply the inequality. This gives the induction step

$$(x+1)^{n+1} = (x+1)(x+1)^n \ge (1+x)(1+nx) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

because $nx^2 \ge 0$.

2. Recall the axioms of a commutative ring (R, +, X). For any $x, y, z \in R$,

[A1.]	(Commutativity of Addition)	x + y = y + x.
[A2.]	(Associativity of Addition)	x + (y + z) = (x + y) + z.
[A3.]	(Additive Identity.)	$(\exists 0 \in R) (\forall t \in R) \ 0 + t = t.$
[A4.]	(Additive Inverse)	$(\exists -x \in R) \ x + (-x) = 0.$
[M1.]	(Commutativity of Multiplication)	xy = yx.
[M2.]	(Associativity of Multiplication)	x(yz) = (xy)z.
[M3.]	(Multiplicative Identity.)	$(\exists 1 \in R) \ 1 \neq 0 \text{ and } (\forall t \in R) \ 1t = t.$
[D.]	(Distributivity)	x(y+z) = xy + xz.

Using only the axioms of a commutative ring, show that for any $a, b \in \mathbb{R}$, then the equation

a + x = b

has a unique solution x = (-a) + b. Justify every step of your argument using just the axioms listed here.

First we show x = (-a) + b solves the equation.

 $\begin{aligned} a+x &= a+((-a)+b)) & \text{Substitute } x. \\ &= (a+(-a))+b & \text{Associativity of addition, A2.} \\ &= 0+b & \text{Additive inverse A4.} \\ &= b. & \text{Additive identity A3.} \end{aligned}$

Second we argue the solution is unique. Suppose x and z were two solutions. Then both satisfy the equation

a + x = b	
a + z = b	Substitute solutions x and z .
a + x = a + x	Both equal b .
(-a) + (a + x) = (-a) + (a + z)	Pre-add $-a$ (which exists by A4) to both sides.
((-a) + a) + x = ((-a) + a) + z	Associativity of addition A2.
(a + (-a)) + x = (a + (-a)) + z	Commutativity of addition A1.
0 + x = 0 + z	Additive inverse A4.
x = z	Additive identity A3.

Thus any two solutions are the same.

Another argument may be given. We start from the equation and deduce the value of the unknown.

$$\begin{array}{ll} a+x=b & \text{Given.} \\ (-a)+(a+x)=(-a)+b & \text{Pre-add} -a \ (\text{which exists by A4}) \ \text{to both sides.} \\ ((-a)+a)+x=(-a)+b & \text{Associativity of addition, A2.} \\ (a+(-a))+x=(-a)+b & \text{Commutivity of addition, A1.} \\ 0+x=(-a)+b & \text{Additive inverse, A4.} \\ x=(-a)+b & \text{Additive identity, A3.} \end{array}$$

Thus we deduce that the equation may be solved by the number x = (-a) + b. This argument says more. No matter which solution x was used, the argument showed that all solutions are the same one and only solution x = (-a) + b. Hence the solution is unique.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) If $f: A \to B$ then $f(A \setminus E) = f(A) \setminus f(E)$ for every subset $E \subset A$. FALSE. Let $A = B = \mathbb{R}$, $E = [0, \infty)$, $f(x) = x^2$ (which is not one-to-one), $A \setminus E = (-\infty, 0)$, $f(A \setminus E) = (0, \infty)$, $f(A) = f(E) = [0, \infty)$ so $f(A) \setminus f(E) = \emptyset \neq f(A \setminus E)$.
 - (b) Let $f: X \to Y$. If $f^{-1}(E) = X$ for some proper subset E of Y then f is not onto. TRUE. If $E \subset Y$ is a proper subset, it is not all of Y so there is $y_0 \in Y$ but $y_0 \notin E$. Since the range f(X) = E, no point of X maps to y_0 , so f is not onto.
 - (c) Let f : X → Y be a function. Suppose that for every x₁, x₂ ∈ X, f(x₁) ≠ f(x₂) implies x₁ ≠ x₂. Then f is one-to-one.
 FALSE. The statement is true for every function. e.g., g(x) = x² is not one-to-one on ℝ, but the hypothesis is true as can be seen by its contrapositive: x₁ = x₂ implies x₁² = g(x₁) = g(x₂) = x₂².

4. Recall that the rational numbers are defined to be the set of equivalence classes $\mathbb{Q} = S/\sim$ where $S = \left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}$ is the set of symbols (pairs of integers) and the symbols are equivalent if they represent the same fraction $\frac{a}{b} \sim \frac{c}{d}$ iff ad = bc. We denote the equivalence class, the "fraction," $\left[\frac{a}{b}\right]$ to distinguish it from a symbol from S. Multiplication, for example is defined on equivalence classes by $\left[\frac{m}{n}\right] \cdot \left[\frac{r}{t}\right] = \left[\frac{(mr)}{(nt)}\right]$.

(a) Given fractions $x = \left[\frac{m}{n}\right]$, $y = \left[\frac{r}{t}\right]$ in \mathbb{Q} , suppose we define the operation

$$x \ominus y := \left[\frac{mt - nr}{nt}\right].$$

Show that the definition of \ominus is well defined: it does not depend on the choice of the symbols representing the fractions.

Let $\frac{m'}{n'} \sim \frac{m}{n}$ so m'n = mn' and $\frac{r'}{t'} \sim \frac{r}{t}$ so r't = rt'. Then we claim that the formulae are equivalent: $\frac{m't' - n'r'}{n't'} \sim \frac{mt - nr}{nt}$. To see this, using m'n = mn' and r't = rt',

$$nt(m't' - n'r') = tt'nm' - nn'tr' = tt'n'm - nn't'r = n't'(mt - nr).$$

Thus
$$\frac{m't'-n'r'}{n't'} \sim \frac{mt-nr}{nt}$$
.

(b) Define the subset $\mathcal{P} = \left\{ \begin{bmatrix} p \\ q \end{bmatrix} \in \mathbb{Q} : p \ge 0 \text{ and } q > 0. \right\}$. An order is defined on \mathbb{Q} by $x \le y$ iff $y \ominus x \in \mathcal{P}$. Show that with this " \preceq ," the rationals \mathbb{Q} satisfy the order axiom 01: For all $x, y \in \mathbb{Q}$, either $x \le y$ or $y \le x$.

Let $x = \left[\frac{m}{n}\right], y = \left[\frac{r}{t}\right]$. Then $x \ominus y := \left[\frac{mt - nr}{nt}\right]$ and $y \ominus x := \left[\frac{nr - mt}{nt}\right]$. Notice that the numerators are negatives: -(mt - nr) = nr - mt so that by the order properties of \mathbb{Z} , one or the other is nonnegative (or both are zero). So if nt > 0, one or the other $x \ominus y$ or $y \ominus x$ is in \mathcal{P} . On the other hand, if nt < 0, we may choose an equivalent representative $x = \left[\frac{-m}{-n}\right]$. We have $\frac{-m}{-n} \sim \frac{m}{n}$ because n(-m) = (-n)m. Now computing using the new $x, x \ominus y := \left[\frac{(-m)t - (-n)r}{(-n)t}\right]$ and $y \ominus x := \left[\frac{(-n)r - (-m)t}{(-n)t}\right]$. Now the denominator is positive (-n)t > 0 and the numerators are still negatives of one another, so one of them has to be nonnegative, thus, again, $x \ominus y$ or $y \ominus x$ is in \mathcal{P} . 5. Let $E \subset \mathbb{R}$ be a set of real numbers given by

$$E = \{ x \in \mathbb{R} : (\forall \zeta \in \mathbb{Z}) \ (\exists \tau > 0) \ (\tau \le |x - \zeta|) \}.$$

Find E and and prove your result.

$$\begin{split} E &= \left\{ x \in \mathbb{R} : \quad (\forall \zeta \in \mathbb{Z}) \quad (\exists \tau > 0) \quad (\tau \le |x - \zeta|) \quad \right\} \\ &= \bigcap_{\zeta \in \mathbb{Z}} \bigcup_{\tau > 0} \left\{ (-\infty, z - \tau] \cup [z + \tau, \infty) \right\} \\ &= \bigcap_{\zeta \in \mathbb{Z}} \left\{ (-\infty, z) \cup (z, \infty) \right\} \\ &= \mathbb{R} \backslash \mathbb{Z}. \end{split}$$

To prove it, we show that the complement $E^c = \mathbb{Z}$. To show " \subset ," choose $x \in E^c$ to show $x \in \mathbb{Z}$.

$$E^{c} = \{ x \in \mathbb{R} : (\exists \zeta \in \mathbb{Z}) \ (\forall \tau > 0) \ (\tau > |x - \zeta|) \}$$

Let $\zeta_0 \in \mathbb{Z}$ correspond to x. Then x satisfies

$$(\forall \tau > 0) \quad (\tau > |x - \zeta_0|).$$

In other words, $x = \zeta_0$ which is an integer, so $x \in \mathbb{Z}$.

To show " \supset ," choose $x \in \mathbb{Z}$ to show $x \in E^c$. Take $\zeta = x$. Then for all $\tau > 0$ we have $\tau > |x - \zeta| = 0$ so x satisfies the condition to be in E^c . Hence we have shown $E^c = \mathbb{Z}$ so $E = \mathbb{R} \setminus \mathbb{Z}$.