
Math 3210 § 1.
Treibergs −−σιι

First Midterm Exam Name: Solutions
February 4, 2015

1. The Fibonacci Sequence is defined recursively. Prove that fn ≤ ϕn for all n ∈ N, where

ϕ =
1 +
√

5

2
.

f1 = 1, f2 = 1, and fn+1 = fn + fn−1 for all n ≥ 2.

We prove the statement using mathematical induction. For each n ∈ N we have the
statement

Pn = “ fn ≤ ϕn and fn−1 ≤ ϕn−1.”

We could have also used strong mathematical induction that assumes the truth of all pre-
vious statements as its hypothesis.

Base Case. When n = 2, f1 = 1 ≤ ϕ and f2 = 1 ≤ ϕ2 =
3 +
√

5

2
.

Induction case. For any n ≥ 2 we assume that Pn is true. Thus we assume fn ≤ ϕn which
is the second half of Pn+1. To verify the other half, observe that by the recursion formula
and induction hypothesis,

fn+1 = fn + fn−1 ≤ ϕn + ϕn−1 = (ϕ+ 1)ϕn−1 = ϕ2 · ϕn−1 = ϕn+1,

where we used the fact that ϕ+ 1 = ϕ2. Thus the induction step is complete.

Since both the base and inductions cases hold, Pn is true for all n ≥ 2, namely fn ≤ ϕn for
all n ∈ N.
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2. Recall the axioms of a field F with operations + and ×: For any x, y, z ∈ F ,

A1. Commutativity of Addition x+ y = y + x.

A2. Associativity of Addition x+ (y + z) = (x+ y) + z.

A3. Additive Identity (∃ 0 ∈ F ) (∀ t ∈ F ) 0 + t = t.

A4. Additive Inverse (∃−x ∈ F ) x+ (−x) = 0.

M1. Commutativity of Multiplication xy = yx.

M2. Associativity of Multiplication x(yz) = (xy)z.

M3. Multiplicative Identity (∃ 1 ∈ F ) 1 6= 0 and (∀ t ∈ F ) 1t = t.

M4. Multiplicative Inverse If x 6= 0 then (∃x−1 ∈ F ) x−1x = 1.

D. Distributivity x(y + z) = xy + xz.

Using only the axioms of a field, show that if a, b ∈ F such that a 6= 0 and b 6= 0 then
a−1 + b−1 = (a + b)(a−1b−1). Justify every step of your argument using just the axioms
listed here. [Hint: the first line of your proof must not be “a−1 + b−1 = (a+ b)(a−1b−1).”]

a−1 + b−1 = 1 · a−1 + 1 · b−1 Multiplicative Identity M3.

= a−1 · 1 + b−1 · 1 Commutativity of Multiplication M1.

= a−1(b−1b) + b−1(a−1a) Since a, b 6= 0 use Multiplicative Inverses M4.

= (a−1b−1) b+ (b−1a−1) a Associativity of Multiplication M2.

= (a−1b−1) b+ (a−1b−1) a Commutativity of Multiplication M1.

= (a−1b−1)(b+ a) Distributivity D.

= (b+ a)(a−1b−1) Commutativity of Multiplication M1.

= (a+ b)(a−1b−1) Commutativity of Addition A1.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. Let f : R→ R be a function. If f is not one-to-one then f is not onto.

False. The function f(x) = x3 − x is onto (its graph crosses every horizontal line)
but not one-to-one since f(0) = 0 = f(1).

(b) Statement. Let f : A→ B be a function. Then f(E\F ) = f(E)\f(F )
for all subsets E,F ⊂ A.

False. Define A = {1, 2}, B = {3}, E = {1}, F = {2} and f(1) = f(2) = 3. Then
E\F = E so f(E\F ) = {3} which is not equal to f(E)\f(F ) = {3}\{3} = ∅.

(c) Statement. (∀x ∈ R )( ∃y ∈ R )(∀z ∈ R )( x+ z > y + z ).

True. Here is the proof: choose x ∈ R. Let y = x− 1. Then for any z ∈ R we have
x+ z > x− 1 + z = y + z.
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4. State the definition: The function f : A→ B is one-to-one. Let f : A→ B be a one-to-one
function. Show that E = f−1

(
f(E)

)
for all subsets E ⊂ A.

Assume that E ⊂ A is any subset. We wish to show first E ⊂ f−1
(
f(E)

)
and second

E ⊃ f−1
(
f(E)

)
.

First choose x ∈ E to show x ∈ f−1
(
f(E)

)
. x ∈ E implies that f(x) ∈ f(E) = S. But

from the meaning preimage this says x ∈ f−1(S) so we have that x ∈ f−1(f(E)).

Second choose x ∈ f−1
(
f(E)

)
to show x ∈ E. x ∈ f−1

(
f(E)

)
implies that y = f(x) ∈ f(E)

by meaning of preimage. Now y ∈ f(E) implies that there is z ∈ E such that f(z) = y =
f(x). However we have assumed that f is one-to-one, which implies that x = z. Thus we
have shown that x = z ∈ E, completing the proof.

5. Let E ⊂ R be a nonempty subset which is bounded above. Define the least upper bound:
L = lubE. Find L = lubE if it exists, and prove your answer where

E =

{
p

q
: p, q ∈ N such that p < 2q

}
The least upper bound of a set is a number L that is first, an upper bound: for every x ∈ E
we have x ≤ L. Second, L is least among upper bounds, or to put it another way, no smaller
number can be an upper bound: if M < L then there is x ∈ E such that M < x.

We show that lubE = 2. First we argue that L = 2 is an upper bound. Indeed, for any
p

q
∈ E then p, q ∈ N such that p < 2q. But this implies that

p

q
< 2, so L = 2 is an upper

bound.

Second, suppose that M < 2 is a smaller number. By the Archimedean Property, there is

q ∈ N so that
1

q
< 2 −M . Put p = 2q − 1. Since p is an integer such that p = 2q − 1 ≥

2 · 1− 1 = 1 we have p ∈ N. Since p = 2q− 1 < 2q we have that
p

q
∈ E. On the other hand,

p

q
=

2q − 1

q
= 2− 1

q
> 2− (2−M) = M.

Thus we have shown that M cannot be a lower bound: there is
p

q
∈ E such that M <

p

q
.

An alternative argument might involve the density of rationals to provide a rational number
p

q
in the interval (M, 2).
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