Math $3210 \S 1$.	First Midterm Exam	Name: <u>Solutions</u>
Treibergs $a t$		February 4, 2015

1. The Fibonacci Sequence is defined recursively. Prove that $f_n \leq \varphi^n$ for all $n \in \mathbf{N}$, where $\varphi = \frac{1+\sqrt{5}}{2}$.

$$f_1 = 1$$
, $f_2 = 1$, and $f_{n+1} = f_n + f_{n-1}$ for all $n \ge 2$.

We prove the statement using mathematical induction. For each $n \in \mathbf{N}$ we have the statement

$$\mathcal{P}_n =$$
" $f_n \leq \varphi^n$ and $f_{n-1} \leq \varphi^{n-1}$."

We could have also used strong mathematical induction that assumes the truth of all previous statements as its hypothesis.

Base Case. When n = 2, $f_1 = 1 \le \varphi$ and $f_2 = 1 \le \varphi^2 = \frac{3 + \sqrt{5}}{2}$.

Induction case. For any $n \ge 2$ we assume that \mathcal{P}_n is true. Thus we assume $f_n \le \varphi^n$ which is the second half of \mathcal{P}_{n+1} . To verify the other half, observe that by the recursion formula and induction hypothesis,

$$f_{n+1} = f_n + f_{n-1} \le \varphi^n + \varphi^{n-1} = (\varphi + 1)\varphi^{n-1} = \varphi^2 \cdot \varphi^{n-1} = \varphi^{n+1},$$

where we used the fact that $\varphi + 1 = \varphi^2$. Thus the induction step is complete. Since both the base and inductions cases hold, \mathcal{P}_n is true for all $n \ge 2$, namely $f_n \le \varphi^n$ for all $n \in \mathbf{N}$.

2. Recall the axioms of a field F with operations + and \times : For any $x, y, z \in F$,

A1.	Commutativity of Addition	x + y = y + x.
A2.	Associativity of Addition	x + (y + z) = (x + y) + z.
A3.	Additive Identity	$(\exists 0 \in F) \ (\forall t \in F) \ 0 + t = t.$
A4.	Additive Inverse	$(\exists -x \in F) \ x + (-x) = 0.$
M1.	Commutativity of Multiplication	xy = yx.
M2.	Associativity of Multiplication	x(yz) = (xy)z.
M3.	Multiplicative Identity	$(\exists 1 \in F) \ 1 \neq 0 \ and \ (\forall t \in F) \ 1t = t.$
M4.	Multiplicative Inverse	If $x \neq 0$ then $(\exists x^{-1} \in F) \ x^{-1}x = 1$.
<i>D</i> .	Distributivity	x(y+z) = xy + xz.

Using only the axioms of a field, show that if $a, b \in F$ such that $a \neq 0$ and $b \neq 0$ then $a^{-1} + b^{-1} = (a + b)(a^{-1}b^{-1})$. Justify every step of your argument using just the axioms listed here. [Hint: the first line of your proof must not be " $a^{-1} + b^{-1} = (a + b)(a^{-1}b^{-1})$."]

$a^{-1} + b^{-1} = 1 \cdot a^{-1} + 1 \cdot b^{-1}$	Multiplicative Identity M3.
$=a^{-1}\cdot 1 + b^{-1}\cdot 1$	Commutativity of Multiplication M1.
$= a^{-1}(b^{-1}b) + b^{-1}(a^{-1}a)$	Since $a, b \neq 0$ use Multiplicative Inverses M4.
$= (a^{-1}b^{-1}) b + (b^{-1}a^{-1}) a$	Associativity of Multiplication M2.
$= (a^{-1}b^{-1}) b + (a^{-1}b^{-1}) a$	Commutativity of Multiplication M1.
$= (a^{-1}b^{-1})(b+a)$	Distributivity D.
$= (b+a)(a^{-1}b^{-1})$	Commutativity of Multiplication M1.
$= (a+b)(a^{-1}b^{-1})$	Commutativity of Addition A1.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) STATEMENT. Let $f : \mathbf{R} \to \mathbf{R}$ be a function. If f is not one-to-one then f is not onto. FALSE. The function $f(x) = x^3 - x$ is onto (its graph crosses every horizontal line) but not one-to-one since f(0) = 0 = f(1).
 - (b) STATEMENT. Let f: A → B be a function. Then f(E\F) = f(E)\f(F) for all subsets E, F ⊂ A.
 FALSE. Define A = {1,2}, B = {3}, E = {1}, F = {2} and f(1) = f(2) = 3. Then E\F = E so f(E\F) = {3} which is not equal to f(E)\f(F) = {3}\{3} = Ø.
 - (c) STATEMENT. $(\forall x \in \mathbf{R})(\exists y \in \mathbf{R})(\forall z \in \mathbf{R})(x+z > y+z)$. TRUE. Here is the proof: choose $x \in \mathbf{R}$. Let y = x - 1. Then for any $z \in \mathbf{R}$ we have x + z > x - 1 + z = y + z.

4. State the definition: The function $f : A \to B$ is one-to-one. Let $f : A \to B$ be a one-to-one function. Show that $E = f^{-1}(f(E))$ for all subsets $E \subset A$.

Assume that $E \subset A$ is any subset. We wish to show first $E \subset f^{-1}(f(E))$ and second $E \supset f^{-1}(f(E))$.

First choose $x \in E$ to show $x \in f^{-1}(f(E))$. $x \in E$ implies that $f(x) \in f(E) = S$. But from the meaning preimage this says $x \in f^{-1}(S)$ so we have that $x \in f^{-1}(f(E))$.

Second choose $x \in f^{-1}(f(E))$ to show $x \in E$. $x \in f^{-1}(f(E))$ implies that $y = f(x) \in f(E)$ by meaning of preimage. Now $y \in f(E)$ implies that there is $z \in E$ such that f(z) = y = f(x). However we have assumed that f is one-to-one, which implies that x = z. Thus we have shown that $x = z \in E$, completing the proof.

5. Let $E \subset \mathbf{R}$ be a nonempty subset which is bounded above. Define the least upper bound: L = lub E. Find L = lub E if it exists, and prove your answer where

$$E = \left\{ \frac{p}{q} : p, q \in \mathbf{N} \text{ such that } p < 2q \right\}$$

The least upper bound of a set is a number L that is first, an upper bound: for every $x \in E$ we have $x \leq L$. Second, L is least among upper bounds, or to put it another way, no smaller number can be an upper bound: if M < L then there is $x \in E$ such that M < x.

We show that lub E = 2. First we argue that L = 2 is an upper bound. Indeed, for any $\frac{p}{q} \in E$ then $p, q \in \mathbb{N}$ such that p < 2q. But this implies that $\frac{p}{q} < 2$, so L = 2 is an upper bound.

Second, suppose that M < 2 is a smaller number. By the Archimedean Property, there is $q \in \mathbf{N}$ so that $\frac{1}{q} < 2 - M$. Put p = 2q - 1. Since p is an integer such that $p = 2q - 1 \ge 2 \cdot 1 - 1 = 1$ we have $p \in \mathbf{N}$. Since p = 2q - 1 < 2q we have that $\frac{p}{q} \in E$. On the other hand,

$$\frac{p}{q} = \frac{2q-1}{q} = 2 - \frac{1}{q} > 2 - (2 - M) = M.$$

Thus we have shown that M cannot be a lower bound: there is $\frac{p}{q} \in E$ such that $M < \frac{p}{q}$. \Box An alternative argument might involve the density of rationals to provide a rational number $\frac{p}{q}$ in the interval (M, 2).