
Math 3210 § 1.
Treibergs

Third Midterm Exam Name: Exam Solutions
April 8, 2015

1. Let f : R → R and c ∈ R. Define: f is differentiableat c. Determine whether f is
differentiable at c = 0. Prove your result.

f(x) =


1

1− x
, if x < 0;

1 + x, if x ≥ 0.

The function is differentiable at c in D if the following limit exists and is finite

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
. (1)

In this problem we show that both the left and right limits exist at c = 0 and give the same
value. It follows that (1) exists so f is differentiable. In case h > 0,

f(c+ h)− f(c)

h
=

1 + h− 1

h
= 1→ 1

as h→ 0+. In case h < 0,

f(c+ h)− f(c)

h
=

1

h

(
1

1− h
− 1

)
=

1

h

(
1− (1− h)

1− h

)
=

1

1− h
→ 1

as h→ 0−. Since both left and right limits exist, it implies that (1) exists and equals one.
Hence f is differentiable at zero and f ′(0) = 1.

2. Let D ⊂ R be a subset and f : D → R be a function. Define: f is continuous on D.
Suppose f : R → R is a continuous and f(r) = r2 for each rational number r. Determine
f(
√

2) and justify your conclusion.

f is said to be continuous on D if f is continuous at every c ∈ D. f is said to be continuous
at c in D if for every ε > 0 there is a δ > 0 such that

|f(x)− f(c)| < ε whenever x ∈ D and |x− c| < δ.

I claim that f(
√

2) = 2. To see the claim, the sequential characterization of the continuity
of f at

√
2 says that for every real sequence {xn} such that xn →

√
2 as n → ∞ we must

have
f(
√

2) = lim
n→∞

f(xn).

Consider now a special sequence consisting of rational numbers only. To see that there is
such a sequence, for every n ∈ N, by the density of rationals, there is a rational number

rn ∈
(√

2− 1

n
,
√

2 +
1

n

)
so that |rn−

√
2| < 1

n
which implies rn →

√
2 as n→∞. For the

rational numbers, f(rn) = r2n from the given property of f . Thus using rn instead,

f(
√

2) = lim
n→∞

f(rn) = lim
n→∞

r2n =
(

lim
n→∞

rn

)2
=
(√

2
)2

= 2

because the limit of a square is the square of a limit.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Let f : (0, 1)→ R be differentiable and satisfy f ′(x) ≤ 3 for all
0 < x < 1. Then f(x2)− f(x1) < 3 for all x1, x2 such that 0 < x1 < x2 < 1.

True. Choose 0 < x1 < x2 < 1. By the mean value theorem, because f is continuous
on [x1, x2] and differentiable on (x1, x2) there is a c ∈ (x1, x2) where f ′(c) ≤ 3 and

f(x2)− f(x1) = f ′(c)(x2 − x1) ≤ 3(x2 − x1) < 3(1− 0) = 3.

(b) Statement: If f : R → R is bounded, then there is a point x0 ∈ R where f is
differentiable.

False. A function is not differentiable at points where it is not continuous. But the
Dirichlet function

f(x) =

{
1, if x ∈ Q;

0, if x ∈ R\Q;

is bounded and nowhere continuous, thus nowhere differentiable.

(c) Statement: Let f, g : (0, 1)→ R be two differentiable functions that satisfy g(x) 6= 0
and g′(x) 6= 0 for all x ∈ (0, 1). Suppose

L = lim
x→0+

f ′(x)

g′(x)

exists with L ∈ R. Then the limit

lim
x→0+

f(x)

g(x)

also exists and equals L.

False. L’Hospital’s Rule does not apply here, since we have not assumed that the
limit is of “ 0

0” or “∞
∞” form. Thus we may take f(x) = 2 + x and g(x) = 1 + x then

1 = lim
x→0+

f ′(x)

g′(x)
= lim

x→0+

1

1

but

lim
x→0+

f(x)

g(x)
= lim

x→0+

2 + x

1 + x
= 2

which is not the same. Or, if instead, f(x) = 2 + x and g(x) = x,

1 = lim
x→0+

f ′(x)

g′(x)
= lim

x→0+

1

1

but the ratio
f(x)

g(x)
=

2 + x

x

does not converge to a real number as x→ 0+.
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4. Let f : (0, 1) → R be a function. Define: f is uniformly continuous on (0, 1). Suppose f
is uniformly continuous on (0, 1). Let {xn} ⊂ (0, 1) be a sequence such that lim

n→∞
xn = 1.

Show that there is an L ∈ R such that L = lim
n→∞

f(xn).

f : (0, 1)→ R is said to be uniformly continuous if for every ε > 0 there is δ > 0 such that

|f(x)− f(y)| < ε whenever y, z ∈ (0, 1) and |y − z| < δ.

Let {xn} ⊂ (0, 1) be a sequence such that lim
n→∞

xn = 1. Since the sequence converges, it is

a Cauchy Sequence. We show that {f(xn)} is also a Cauchy Sequence, hence converges to
some L ∈ R.

To see that {f(xn)} is a Cauchy Sequence, choose ε > 0. As f is uniformly continuous,
there is a δ > 0 such that

|f(y)− f(z)| < ε whenever y, z ∈ (0, 1) and |y − z| < δ. (2)

As {xn} is a Cauchy Sequence, there is an N ∈ R such that

|xm − x`| < δ whenever m > N and ` > N .

It follows from (2) that

|f(xm)− f(x`)| < ε whenever m > N and ` > N .

This shows that {f(xn)} is a Cauchy sequence, and thus there is L ∈ R such that

L = lim
n→∞

f(xn).

5. Let f, fn : [0,∞) → R be functions. Define: the sequence of functions fn → f converges
uniformly on [0,∞) as n → ∞. Suppose that each of the the functions fn is bounded
on [0,∞) and that the sequence fn → f converges uniformly on [0,∞). Show that f is
bounded. Give an example that shows that if the convergence is only pointwise then f may
be unbounded. [You don’t need to prove that your example works.]

The sequence of functions fn → f is said to converge uniformly on [0,∞) as n → ∞ if for
every ε > 0 there is an N ∈ R such that

|fn(x)− f(x)| < ε whenever x ∈ [0,∞) and n > N .

Assuming that the fn are bounded and that the convergence is uniform, we show that f is
bounded. For ε0 = 1 there is an N ∈ R such that

|fn(x)− f(x)| < 1 whenever x ∈ [0,∞) and n > N .

By the Archimedean Property, there is an n0 ∈ N such that n0 > N . Since the function
fn0

is bounded, there is M ∈ R such that |fn0
(x)| ≤ M for all x ∈ [0,∞). It follows from

the triangle inequality that for x ∈ [0,∞) we have

|f(x)| =
∣∣fn0

(x) + [f(x)− fn0
(x)]

∣∣ ≤ ∣∣fn0
(x)
∣∣+
∣∣f(x)− fn0

(x)
∣∣ ≤M + 1.

Thus, a bound for f(x) in [0,∞) is M + 1.

For an example that shows pointwise convergence is not strong enough to prove the bound-
edness of f , consider fn(x) = min{x, n} and f(x) = x. |fn(x)| ≤ n for all x so fn is
bounded by n. Also fn → f pointwise since, after all, fn(x) = f(x) whenever n > x.
However, f(x) = x is not bounded.
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