Math $3210 \S 1$.	Third Midterm Exam
Treibergs	

1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $c \in \mathbf{R}$. Define: f is differentiableat c. Determine whether f is differentiable at $c=0$. Prove your result.

$$
f(x)= \begin{cases}\frac{1}{1-x}, & \text { if } x<0 \\ 1+x, & \text { if } x \geq 0\end{cases}
$$

The function is differentiable at c in \mathcal{D} if the following limit exists and is finite

$$
\begin{equation*}
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \tag{1}
\end{equation*}
$$

In this problem we show that both the left and right limits exist at $c=0$ and give the same value. It follows that (1) exists so f is differentiable. In case $h>0$,

$$
\frac{f(c+h)-f(c)}{h}=\frac{1+h-1}{h}=1 \rightarrow 1
$$

as $h \rightarrow 0+$. In case $h<0$,

$$
\frac{f(c+h)-f(c)}{h}=\frac{1}{h}\left(\frac{1}{1-h}-1\right)=\frac{1}{h}\left(\frac{1-(1-h)}{1-h}\right)=\frac{1}{1-h} \rightarrow 1
$$

as $h \rightarrow 0-$. Since both left and right limits exist, it implies that (1) exists and equals one. Hence f is differentiable at zero and $f^{\prime}(0)=1$.
2. Let $\mathcal{D} \subset \mathbf{R}$ be a subset and $f: \mathcal{D} \rightarrow \mathbf{R}$ be a function. Define: f is continuous on \mathcal{D}. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous and $f(r)=r^{2}$ for each rational number r. Determine $f(\sqrt{2})$ and justify your conclusion.
f is said to be continuous on \mathcal{D} if f is continuous at every $c \in \mathcal{D}$. f is said to be continuous at c in \mathcal{D} if for every $\varepsilon>0$ there is a $\delta>0$ such that

$$
|f(x)-f(c)|<\varepsilon \quad \text { whenever } \quad x \in \mathcal{D} \text { and }|x-c|<\delta
$$

I claim that $f(\sqrt{2})=2$. To see the claim, the sequential characterization of the continuity of f at $\sqrt{2}$ says that for every real sequence $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow \sqrt{2}$ as $n \rightarrow \infty$ we must have

$$
f(\sqrt{2})=\lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

Consider now a special sequence consisting of rational numbers only. To see that there is such a sequence, for every $n \in \mathbf{N}$, by the density of rationals, there is a rational number $r_{n} \in\left(\sqrt{2}-\frac{1}{n}, \sqrt{2}+\frac{1}{n}\right)$ so that $\left|r_{n}-\sqrt{2}\right|<\frac{1}{n}$ which implies $r_{n} \rightarrow \sqrt{2}$ as $n \rightarrow \infty$. For the rational numbers, $f\left(r_{n}\right)=r_{n}^{2}$ from the given property of f. Thus using r_{n} instead,

$$
f(\sqrt{2})=\lim _{n \rightarrow \infty} f\left(r_{n}\right)=\lim _{n \rightarrow \infty} r_{n}^{2}=\left(\lim _{n \rightarrow \infty} r_{n}\right)^{2}=(\sqrt{2})^{2}=2
$$

because the limit of a square is the square of a limit.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement: Let $f:(0,1) \rightarrow \mathbf{R}$ be differentiable and satisfy $f^{\prime}(x) \leq 3$ for all $0<x<1$. Then $f\left(x_{2}\right)-f\left(x_{1}\right)<3$ for all x_{1}, x_{2} such that $0<x_{1}<x_{2}<1$.

True. Choose $0<x_{1}<x_{2}<1$. By the mean value theorem, because f is continuous on $\left[x_{1}, x_{2}\right]$ and differentiable on $\left(x_{1}, x_{2}\right)$ there is a $c \in\left(x_{1}, x_{2}\right)$ where $f^{\prime}(c) \leq 3$ and

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right) \leq 3\left(x_{2}-x_{1}\right)<3(1-0)=3
$$

(b) Statement: If $f: \mathbf{R} \rightarrow \mathbf{R}$ is bounded, then there is a point $x_{0} \in \mathbf{R}$ where f is differentiable.

False. A function is not differentiable at points where it is not continuous. But the Dirichlet function

$$
f(x)= \begin{cases}1, & \text { if } x \in \mathbf{Q} \\ 0, & \text { if } x \in \mathbf{R} \backslash \mathbf{Q}\end{cases}
$$

is bounded and nowhere continuous, thus nowhere differentiable.
(c) Statement: Let $f, g:(0,1) \rightarrow \mathbf{R}$ be two differentiable functions that satisfy $g(x) \neq 0$ and $g^{\prime}(x) \neq 0$ for all $x \in(0,1)$. Suppose

$$
L=\lim _{x \rightarrow 0+} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

exists with $L \in \mathbf{R}$. Then the limit

$$
\lim _{x \rightarrow 0+} \frac{f(x)}{g(x)}
$$

also exists and equals L.
False. L'Hospital's Rule does not apply here, since we have not assumed that the limit is of " $\frac{0}{0}$ " or " $\frac{\infty}{\infty}$ " form. Thus we may take $f(x)=2+x$ and $g(x)=1+x$ then

$$
1=\lim _{x \rightarrow 0+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0+} \frac{1}{1}
$$

but

$$
\lim _{x \rightarrow 0+} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0+} \frac{2+x}{1+x}=2
$$

which is not the same. Or, if instead, $f(x)=2+x$ and $g(x)=x$,

$$
1=\lim _{x \rightarrow 0+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0+} \frac{1}{1}
$$

but the ratio

$$
\frac{f(x)}{g(x)}=\frac{2+x}{x}
$$

does not converge to a real number as $x \rightarrow 0+$.
4. Let $f:(0,1) \rightarrow \mathbf{R}$ be a function. Define: f is uniformly continuous on $(0,1)$. Suppose f is uniformly continuous on $(0,1)$. Let $\left\{x_{n}\right\} \subset(0,1)$ be a sequence such that $\lim _{n \rightarrow \infty} x_{n}=1$. Show that there is an $L \in \mathbf{R}$ such that $L=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$.
$f:(0,1) \rightarrow \mathbf{R}$ is said to be uniformly continuous if for every $\varepsilon>0$ there is $\delta>0$ such that

$$
|f(x)-f(y)|<\varepsilon \quad \text { whenever } \quad y, z \in(0,1) \text { and }|y-z|<\delta
$$

Let $\left\{x_{n}\right\} \subset(0,1)$ be a sequence such that $\lim _{n \rightarrow \infty} x_{n}=1$. Since the sequence converges, it is a Cauchy Sequence. We show that $\left\{f\left(x_{n}\right)\right\}$ is also a Cauchy Sequence, hence converges to some $L \in \mathbf{R}$.
To see that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy Sequence, choose $\varepsilon>0$. As f is uniformly continuous, there is a $\delta>0$ such that

$$
\begin{equation*}
|f(y)-f(z)|<\varepsilon \quad \text { whenever } \quad y, z \in(0,1) \text { and }|y-z|<\delta \tag{2}
\end{equation*}
$$

As $\left\{x_{n}\right\}$ is a Cauchy Sequence, there is an $N \in \mathbf{R}$ such that

$$
\left|x_{m}-x_{\ell}\right|<\delta \quad \text { whenever } m>N \text { and } \ell>N
$$

It follows from (2) that

$$
\left|f\left(x_{m}\right)-f\left(x_{\ell}\right)\right|<\varepsilon \quad \text { whenever } m>N \text { and } \ell>N
$$

This shows that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence, and thus there is $L \in \mathbf{R}$ such that

$$
L=\lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

5. Let $f, f_{n}:[0, \infty) \rightarrow \mathbf{R}$ be functions. Define: the sequence of functions $f_{n} \rightarrow f$ converges uniformly on $[0, \infty)$ as $n \rightarrow \infty$. Suppose that each of the the functions f_{n} is bounded on $[0, \infty)$ and that the sequence $f_{n} \rightarrow f$ converges uniformly on $[0, \infty)$. Show that f is bounded. Give an example that shows that if the convergence is only pointwise then f may be unbounded. [You don't need to prove that your example works.]

The sequence of functions $f_{n} \rightarrow f$ is said to converge uniformly on $[0, \infty)$ as $n \rightarrow \infty$ if for every $\varepsilon>0$ there is an $N \in \mathbf{R}$ such that

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon \quad \text { whenever } \quad x \in[0, \infty) \text { and } n>N
$$

Assuming that the f_{n} are bounded and that the convergence is uniform, we show that f is bounded. For $\varepsilon_{0}=1$ there is an $N \in \mathbf{R}$ such that

$$
\left|f_{n}(x)-f(x)\right|<1 \quad \text { whenever } \quad x \in[0, \infty) \text { and } n>N
$$

By the Archimedean Property, there is an $n_{0} \in \mathbf{N}$ such that $n_{0}>N$. Since the function $f_{n_{0}}$ is bounded, there is $M \in \mathbf{R}$ such that $\left|f_{n_{0}}(x)\right| \leq M$ for all $x \in[0, \infty)$. It follows from the triangle inequality that for $x \in[0, \infty)$ we have

$$
|f(x)|=\left|f_{n_{0}}(x)+\left[f(x)-f_{n_{0}}(x)\right]\right| \leq\left|f_{n_{0}}(x)\right|+\left|f(x)-f_{n_{0}}(x)\right| \leq M+1
$$

Thus, a bound for $f(x)$ in $[0, \infty)$ is $M+1$.
For an example that shows pointwise convergence is not strong enough to prove the boundedness of f, consider $f_{n}(x)=\min \{x, n\}$ and $f(x)=x$. $\left|f_{n}(x)\right| \leq n$ for all x so f_{n} is bounded by n. Also $f_{n} \rightarrow f$ pointwise since, after all, $f_{n}(x)=f(x)$ whenever $n>x$. However, $f(x)=x$ is not bounded.

