Math 3210 § 1. Third Midterm Exam Name: Cram Solutions

Treibergs April 8, 2015

1. Let f : R — R and ¢ € R. Define: f is differentiableat c. Determine whether f is
differentiable at ¢ = 0. Prove your result.

fz) =
1+z, ifx>0.

The function is differentiable at ¢ in D if the following limit exists and is finite

f/(c) — lim f(C+h) *f(C).

h—0 h

(1)

In this problem we show that both the left and right limits exist at ¢ = 0 and give the same
value. It follows that (1) exists so f is differentiable. In case h > 0,

fle+h)—f(o) _L+h-1

W 5 =1—1

as h — 0+. In case h < 0,

f(0+h})b—f(0):;L(lih_l):;(1_1(i;h)>:1ih—>1

as h — 0—. Since both left and right limits exist, it implies that (1) exists and equals one.
Hence f is differentiable at zero and f’(0) = 1.

2. Let D C R be a subset and f : D — R be a function. Define: f is continuous on D.
Suppose f : R — R is a continuous and f(r) = r? for each rational number r. Determine
f(V2) and justify your conclusion.

f is said to be continuous on D if f is continuous at every ¢ € D. f is said to be continuous
at ¢ in D if for every € > 0 there is a § > 0 such that

|flz)— flo)] <e whenever x €D and |z —c| <6.

I claim that f(v/2) = 2. To see the claim, the sequential characterization of the continuity
of f at /2 says that for every real sequence {z,} such that x, — v/2 as n — oo we must
have

f(‘/i) = lim f(z,).

n—o0

Consider now a special sequence consisting of rational numbers only. To see that there is
such a sequence, for every n € N, by the density of rationals, there is a rational number

1 1 1
Tn € (\f - —, V2 + ) so that |r, — \/§| < — which implies r,, — V2 as n — oco. For the
n n n

rational numbers, f(r,) = r2 from the given property of f. Thus using 7, instead,

f(V2) = lim f(rp) = lim 72 = (lim rn)2 = (\@)2 =2

n—oo n— oo n—r oo

because the limit of a square is the square of a limit.



3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a)

STATEMENT: Let f:(0,1) — R be differentiable and satisfy f'(x) < 3 for all
0<z<1. Then f(x2) — f(x1) < 3 for all 1, T2 such that 0 < z1 < x9 < 1.

TRUE. Choose 0 < 21 < x5 < 1. By the mean value theorem, because f is continuous
on [z1, 2] and differentiable on (1, z2) there is a ¢ € (z1,x2) where f'(¢) <3 and

flx2) = f(z1) = f'(c)(xa — 21) < 3(w2 — 1) < 3(1 —0) = 3.

STATEMENT: If f : R — R is bounded, then there is a point xy € R where f is
differentiable.

FALSE. A function is not differentiable at points where it is not continuous. But the
Dirichlet function
1, ifzeQqQ;
f(x) — ) ] Q’
0, ifx e R\Q;
is bounded and nowhere continuous, thus nowhere differentiable.

STATEMENT: Let f,g:(0,1) = R be two differentiable functions that satisfy g(x) # 0
and g'(x) # 0 for all x € (0,1). Suppose

-~ f'(z)
L=ty g'(x)

exists with L € R. Then the limit
f(z)

i .
wi)%l+ g(x)

also exists and equals L.

FAaLseE. L’Hospital’s Rule does not apply here, since we have not assumed that the
limit is of “3” or “2” form. Thus we may take f(z) =2+ z and g(z) = 1+ z then
f'(@)

1
1= lim = lim -
z—0+ g’(x) z—0+ 1

but )
lim —f(x) = lim T =
20+ g(z) =20+ 142

which is not the same. Or, if instead, f(z) =2+ z and g(z) = «x,

/
1
1= lim f(@) = lim -
a—0+ ¢'(x) =0+ 1

but the ratio

g(e)

does not converge to a real number as x — 0+.

f(x) _ 2+



4. Let f:(0,1) = R be a function. Define: f is uniformly continuous on (0,1). Suppose f
is uniformly continuous on (0,1). Let {z,} C (0,1) be a sequence such that lim z, = 1.
n—oo

Show that there is an L € R such that L = 1i_>m flzn).

f:(0,1) — R is said to be uniformly continuous if for every & > 0 there is § > 0 such that
|f(z)— fly) <e whenever Y,z € (0,1) and |y —z| < 4.

Let {z,} C (0,1) be a sequence such that lim z,, = 1. Since the sequence converges, it is
n—r oo

a Cauchy Sequence. We show that {f(z,)} is also a Cauchy Sequence, hence converges to
some L € R.

To see that {f(z,)} is a Cauchy Sequence, choose ¢ > 0. As f is uniformly continuous,
there is a § > 0 such that

lf(y)— flz) <e whenever y,z € (0,1) and |y —z| <. (2)
As {z,} is a Cauchy Sequence, there is an N € R such that
|Zm — x| < 0 whenever m > N and ¢ > N.
It follows from (2) that
|f(zm) — flze)| <€ whenever m > N and ¢ > N.
This shows that {f(z,)} is a Cauchy sequence, and thus there is L € R such that
L= lim f(x,).

n—oo

5. Let f, fn : [0,00) = R be functions. Define: the sequence of functions f, — f converges
uniformly on [0,00) as n — oo. Suppose that each of the the functions f, is bounded
on [0,00) and that the sequence f, — [ converges uniformly on [0,00). Show that f is
bounded. Give an example that shows that if the convergence is only pointwise then f may
be unbounded. [You don’t need to prove that your example works.]

The sequence of functions f,, — f is said to converge uniformly on [0, 00) as n — oo if for
every € > 0 there is an N € R such that

|fu(z) — f(z)] <e  whenever x € [0,00) and n > N.

Assuming that the f,, are bounded and that the convergence is uniform, we show that f is
bounded. For ¢y = 1 there is an IV € R such that

|fn(z) — flz)] <1 whenever x €[0,00) and n > N.

By the Archimedean Property, there is an ng € N such that ng > N. Since the function
fno 18 bounded, there is M € R such that |f,,(x)] < M for all x € [0,00). It follows from
the triangle inequality that for z € [0, 00) we have

[f (@) = [ fao (@) + [f(@) = fro @)]] < [fao (@)] + | £ (@) = fro ()] < M +1.
Thus, a bound for f(x) in [0,00) is M + 1.

For an example that shows pointwise convergence is not strong enough to prove the bound-
edness of f, consider f,(x) = min{z,n} and f(z) = z. |fu(z)| < n for all z so f, is
bounded by n. Also f, — f pointwise since, after all, f,(z) = f(z) whenever n > z.
However, f(z) = x is not bounded.



