Math 3210 § $1 . \quad$ Second Midterm Exam
Treibergs

Name: Solutions
March 4, 2015

1. Let $\left\{a_{n}\right\}$ be a real sequence and $L \in \mathbf{R}$. State the definition: $a_{n} \rightarrow L$ as $n \rightarrow \infty$. Find the limit. Using just the definition, prove that your answer is correct.

$$
L=\lim _{n \rightarrow \infty} \frac{(2 n+1)^{2}}{n^{2}+n-19}
$$

The real sequence $\left\{a_{n}\right\}$ is said to converge to $L \in \mathbf{R}$ if for every $\varepsilon>0$ there is an $N \in \mathbf{R}$ so that

$$
\left|a_{n}-L\right|<\varepsilon \quad \text { whenever } \quad n>N
$$

Using the main theorem about limits, we can determine the limit.

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \frac{(2 n+1)^{2}}{n^{2}+n-19}=\lim _{n \rightarrow \infty} \frac{\left(2+\frac{1}{n}\right)^{2}}{1+\frac{1}{n}-\frac{19}{n^{2}}}=\frac{\lim _{n \rightarrow \infty}\left(2+\frac{1}{n}\right)^{2}}{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}-\frac{19}{n^{2}}\right)} \\
& =\frac{\left(\lim _{n \rightarrow \infty}\left[2+\frac{1}{n}\right]\right)^{2}}{\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty} \frac{1}{n}-\lim _{n \rightarrow \infty} \frac{19}{n^{2}}}=\frac{\left(\lim _{n \rightarrow \infty} 2+\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{2}}{1+0-0}=(2+0)^{2}=4
\end{aligned}
$$

To give a proof using only the definition, choose $\varepsilon>0$. Let $N=\max \left\{19, \sqrt{\frac{77}{\varepsilon}}\right\}$. Then for any $n \in \mathbf{N}$ such that $n>N$ we have since $n>N \geq 19$ that

$$
\left|a_{n}-L\right|=\left|\frac{(2 n+1)^{2}}{n^{2}+n-19}-4\right|=\frac{\left|\left(4 n^{2}+4 n+1\right)-\left(4 n^{2}+4 n-76\right)\right|}{n^{2}+n-19} \leq \frac{77}{n^{2}}<\frac{77}{N^{2}} \leq \varepsilon
$$

2. Suppose that $\left\{a_{n}\right\}$ is a real sequence and $\alpha, \beta \in \mathbf{R}$. Suppose that the sequence converges $a_{n} \rightarrow \alpha$ as $n \rightarrow \infty$ and the terms satisfy $a_{n} \leq \beta \quad$ for all $n \in \mathbf{N}$. Show that $\alpha \leq \beta$.
We will show that for every $\varepsilon>0$ we have $\alpha<\beta+\varepsilon$ from which $\alpha \leq \beta$ follows. Let $\varepsilon>0$ be arbitrary. By the convergence $a_{n} \rightarrow \alpha$ as $n \rightarrow \infty$, there is an $N \in \mathbf{R}$ such that

$$
\begin{equation*}
\left|a_{n}-\alpha\right|<\varepsilon \quad \text { whenever } n>N \tag{1}
\end{equation*}
$$

By the Archimedean Property, there is an $n_{0} \in \mathbf{N}$ such that $n_{0}>N$. For this $n_{0}$ we have using $a_{n_{0}} \leq \beta$ and (1),

$$
\alpha=a_{n_{0}}+\left(\alpha-a_{n_{0}}\right) \leq a_{n_{0}}+\left|\alpha-a_{n_{0}}\right|<\beta+\varepsilon
$$

as to be shown.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement: Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be two bounded functions. Then $\sup _{\mathbf{R}}(f-g)=$ $\sup _{\mathbf{R}} f-\inf _{\mathbf{R}} g$.

FAlse. Take $f(x)=g(x)=\sin x$ which are bounded functions. Then $f-g=0$ so the left side is zero. On the other hand $\sup _{\mathbf{R}} f=1$ and $\inf _{\mathbf{R}} g=-1$ so that the right side is $1-(-1)=2 \neq 0$.
(b) Statement: Suppose that $\left\{a_{n}\right\}$ is a real sequence which has no convergent subsequence. Then $\left\{a_{n}\right\}$ is unbounded.

True. This is the contrapositive of the Bolzano Weierstrass Theorem: Let $\left\{a_{n}\right\}$ be a real sequence. If $\left\{a_{n}\right\}$ is bounded, then $\left\{a_{n}\right\}$ has a convergent subsequence.
(c) Statement: Suppose for each $n \in \mathbf{N}$ there are real numbers $a_{n}$ and $b_{n}$ such that $0 \leq a_{n}<b_{n} \leq 1$ and that $b_{n}-a_{n}=\frac{1}{2^{n}}$. Then $\bigcap_{n \in \mathbf{N}}\left[a_{n}, b_{n}\right] \neq \emptyset$.

FALSE. Take $I_{1}=\left[0, \frac{1}{2}\right], I_{2}=\left[\frac{3}{4}, 1\right]$ and $I_{n}=\left[0, \frac{1}{2^{n}}\right]$ for $n \geq 3$. Then $I_{1} \cap I_{2}=\emptyset$ so $\bigcap_{n \in \mathbf{N}} I_{n}=\emptyset$. The Nested Intervals Theorem does not apply since the hypothesis of nested is missing.
4. Let $b_{n}$ be a sequence of -1 's, 0 's and 1's and define the numbers

$$
a_{n}=\sum_{k=1}^{n} \frac{b_{k}}{3^{k}} .
$$

State the definition: $\left\{a_{n}\right\}$ is $a$ Cauchy Sequence. Prove that the sequence $\left\{a_{n}\right\}$ converges.
The real sequence $\left\{a_{n}\right\}$ is a Cauchy Sequence if for every $\varepsilon>0$ there is an $N \in \mathbf{R}$ such that

$$
\left|a_{n}-a_{\ell}\right|<\varepsilon \quad \text { whenever } n>N \text { and } \ell>N
$$

To show that the given $a_{n} \rightarrow a$ as $n \rightarrow \infty$ for some $a \in \mathbf{R}$ we show that $\left\{a_{n}\right\}$ is a Cauchy Sequence, thus is convergent. Choose $\varepsilon>0$. Let $N=-\frac{\log (2 \varepsilon)}{\log 3}$. For any $n, \ell \in \mathbf{R}$ such that $n>N$ and $\ell>N$ we have either $\ell=n$ in which case $\left|a_{n}-a_{\ell}\right|=0<\varepsilon$ or $\ell \neq n$. By swapping the roles of $\ell$ and $n$ if necessary, we may assume that $\ell<n$. Then since $\left|b_{k}\right| \leq 1$ for all $k$ and $\ell>N$,

$$
\begin{aligned}
\left|a_{n}-a_{\ell}\right| & =\left|\sum_{k=1}^{n} \frac{b_{k}}{3^{k}}-\sum_{k=1}^{\ell} \frac{b_{k}}{3^{k}}\right|=\left|\sum_{k=\ell+1}^{n} \frac{b_{k}}{3^{k}}\right| \leq \sum_{k=\ell+1}^{n} \frac{\left|b_{k}\right|}{3^{k}} \leq \sum_{k=\ell+1}^{n} \frac{1}{3^{k}} \\
& =\frac{\left(\frac{1}{3}\right)^{\ell+1}-\left(\frac{1}{3}\right)^{n+1}}{1-\frac{1}{3}} \leq \frac{3}{2}\left(\frac{1}{3}\right)^{\ell+1}=\frac{1}{2 \cdot 3^{\ell}}<\frac{1}{2 \cdot 3^{N}}=\varepsilon
\end{aligned}
$$

where we have used $\sum_{k=\ell+1}^{n} r^{k}=\frac{r^{\ell+1}-r^{n+1}}{1-r}$.
5. Let the real sequence be defined recursively. Show that the sequence $\left\{a_{n}\right\}$ is bounded above. Show that there is $L \in \mathbf{R}$ so that the sequence converges $a_{n} \rightarrow L$ as $n \rightarrow \infty$. Find $L$.

$$
a_{1}=1, \quad a_{n+1}=\frac{2 a_{n}+4}{5} \text { for all } n \in \mathbf{N}
$$

We show that the sequence is bounded above, $a_{n} \leq M=2$ for all $n$, by induction. (Any $M \geq \frac{4}{3}$ will work.) In the base case $a_{1}=1 \leq 2$ holds. In the induction case, we assume that for some $n \in \mathbf{N}$ we have $a_{n} \leq 2$. Then by the recursion

$$
a_{n+1}=\frac{2}{5} a_{n}+\frac{4}{5} \leq \frac{2}{5} \cdot 2+\frac{4}{5}=\frac{8}{5} \leq 2 .
$$

Thus the induction case holds as well. By mathematical induction, $a_{n} \leq 2$ for all $n \in \mathbf{N}$.
To show that $\left\{a_{n}\right\}$ converges to some $L \in \mathbf{R}$, we show that $a_{n}$ is increasing. Since it is also bounded above, $L=\lim _{n \rightarrow \infty} a_{n}$ exists by the Monotone Convergence Theorem. To see that $a_{n}$ is increasing we show that $a_{n+1}>a_{n}$ for all $n \in \mathbf{N}$ using induction. In the base case,

$$
a_{2}=\frac{2}{5} a_{1}+\frac{4}{5}=\frac{2}{5} \cdot 1+\frac{4}{5}=\frac{6}{5}
$$

so $a_{2}>a_{1}=1$. In the induction case, we assume that $a_{n+1}-a_{n}>0$ for some $n \in \mathbf{N}$. By the recursion and induction hypothesis

$$
a_{n+2}-a_{n+1}=\frac{2}{5} a_{n+1}+\frac{4}{5}-\left(\frac{2}{5} a_{n}+\frac{4}{5}\right)=\frac{2}{5}\left(a_{n+1}-a_{n}\right)>0
$$

Hence the induction step holds as well, and we conclude that $a_{n+1}>a_{n}$ for all $n \in \mathbf{N}$ by mathematical induction.
To find the limiting value, we pass the recursion equation to the limit.

$$
L=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left(\frac{2}{5} a_{n}+\frac{4}{5}\right)=\frac{2}{5} L+\frac{4}{5} .
$$

Solving yields $L=\frac{4}{3}$.

