
Math 3210 § 1.
Treibergs

Second Midterm Exam Name: Solutions
March 4, 2015

1. Let {an} be a real sequence and L ∈ R. State the definition: an → L as n→∞. Find the
limit. Using just the definition, prove that your answer is correct.

L = lim
n→∞

(2n+ 1)2

n2 + n− 19
.

The real sequence {an} is said to converge to L ∈ R if for every ε > 0 there is an N ∈ R
so that

|an − L| < ε whenever n > N.

Using the main theorem about limits, we can determine the limit.

L = lim
n→∞

(2n+ 1)2

n2 + n− 19
= lim

n→∞

(
2 +

1

n

)2

1 +
1

n
− 19

n2

=

lim
n→∞

(
2 +

1

n

)2

lim
n→∞

(
1 +

1

n
− 19

n2

)

=

(
lim

n→∞

[
2 +

1

n

])2

lim
n→∞

1 + lim
n→∞

1

n
− lim

n→∞

19

n2

=

(
lim
n→∞

2 + lim
n→∞

1

n

)2

1 + 0− 0
= (2 + 0)2 = 4.

To give a proof using only the definition, choose ε > 0. Let N = max

{
19,

√
77

ε

}
. Then

for any n ∈ N such that n > N we have since n > N ≥ 19 that

|an − L| =
∣∣∣∣ (2n+ 1)2

n2 + n− 19
− 4

∣∣∣∣ =
|(4n2 + 4n+ 1)− (4n2 + 4n− 76)|

n2 + n− 19
≤ 77

n2
<

77

N2
≤ ε.

2. Suppose that {an} is a real sequence and α, β ∈ R. Suppose that the sequence converges
an → α as n→∞ and the terms satisfy an ≤ β for all n ∈ N. Show that α ≤ β.

We will show that for every ε > 0 we have α < β + ε from which α ≤ β follows. Let ε > 0
be arbitrary. By the convergence an → α as n→∞, there is an N ∈ R such that

|an − α| < ε whenever n > N . (1)

By the Archimedean Property, there is an n0 ∈ N such that n0 > N . For this n0 we have
using an0

≤ β and (1),

α = an0 + (α− an0) ≤ an0 + |α− an0 | < β + ε

as to be shown.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Let f, g : R → R be two bounded functions. Then sup
R

(f − g) =

sup
R
f − inf

R
g.

False. Take f(x) = g(x) = sinx which are bounded functions. Then f − g = 0 so the
left side is zero. On the other hand supR f = 1 and infR g = −1 so that the right side
is 1− (−1) = 2 6= 0.

(b) Statement: Suppose that {an} is a real sequence which has no convergent subse-
quence. Then {an} is unbounded.

True. This is the contrapositive of the Bolzano Weierstrass Theorem: Let {an} be a
real sequence. If {an} is bounded, then {an} has a convergent subsequence.

(c) Statement: Suppose for each n ∈ N there are real numbers an and bn such that

0 ≤ an < bn ≤ 1 and that bn − an =
1

2n
. Then

⋂
n∈N

[an, bn] 6= ∅.

False. Take I1 =

[
0,

1

2

]
, I2 =

[
3

4
, 1

]
and In =

[
0,

1

2n

]
for n ≥ 3. Then I1 ∩ I2 = ∅

so
⋂
n∈N

In = ∅. The Nested Intervals Theorem does not apply since the hypothesis of

nested is missing.

4. Let bn be a sequence of −1’s, 0’s and 1’s and define the numbers

an =

n∑
k=1

bk
3k
.

State the definition: {an} is a Cauchy Sequence. Prove that the sequence {an} converges.

The real sequence {an} is a Cauchy Sequence if for every ε > 0 there is an N ∈ R such that

|an − a`| < ε whenever n > N and ` > N .

To show that the given an → a as n→∞ for some a ∈ R we show that {an} is a Cauchy

Sequence, thus is convergent. Choose ε > 0. Let N = − log(2ε)

log 3
. For any n, ` ∈ R such

that n > N and ` > N we have either ` = n in which case |an − a`| = 0 < ε or ` 6= n. By
swapping the roles of ` and n if necessary, we may assume that ` < n. Then since |bk| ≤ 1
for all k and ` > N ,

|an − a`| =

∣∣∣∣∣
n∑

k=1

bk
3k
−
∑̀
k=1

bk
3k

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=`+1

bk
3k

∣∣∣∣∣ ≤
n∑

k=`+1

|bk|
3k
≤

n∑
k=`+1

1

3k

=

(
1

3

)`+1

−
(

1

3

)n+1

1− 1

3

≤ 3

2

(
1

3

)`+1

=
1

2 · 3`
<

1

2 · 3N
= ε

where we have used

n∑
k=`+1

rk =
r`+1 − rn+1

1− r
.
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5. Let the real sequence be defined recursively. Show that the sequence {an} is bounded above.
Show that there is L ∈ R so that the sequence converges an → L as n→∞. Find L.

a1 = 1, an+1 =
2an + 4

5
for all n ∈ N.

We show that the sequence is bounded above, an ≤ M = 2 for all n, by induction. (Any
M ≥ 4

3 will work.) In the base case a1 = 1 ≤ 2 holds. In the induction case, we assume
that for some n ∈ N we have an ≤ 2. Then by the recursion

an+1 =
2

5
an +

4

5
≤ 2

5
· 2 +

4

5
=

8

5
≤ 2.

Thus the induction case holds as well. By mathematical induction, an ≤ 2 for all n ∈ N.

To show that {an} converges to some L ∈ R, we show that an is increasing. Since it is
also bounded above, L = limn→∞ an exists by the Monotone Convergence Theorem. To see
that an is increasing we show that an+1 > an for all n ∈ N using induction. In the base
case,

a2 =
2

5
a1 +

4

5
=

2

5
· 1 +

4

5
=

6

5

so a2 > a1 = 1. In the induction case, we assume that an+1 − an > 0 for some n ∈ N. By
the recursion and induction hypothesis

an+2 − an+1 =
2

5
an+1 +

4

5
−
(

2

5
an +

4

5

)
=

2

5
(an+1 − an) > 0.

Hence the induction step holds as well, and we conclude that an+1 > an for all n ∈ N by
mathematical induction.

To find the limiting value, we pass the recursion equation to the limit.

L = lim
n→∞

an+1 = lim
n→∞

(
2

5
an +

4

5

)
=

2

5
L+

4

5
.

Solving yields L =
4

3
.
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