Math 3210 § 3. Third Midterm Exam Name: Golutions
Treibergs November 12, 2014

1. Let D C R be a nonempty set and f,, f : D — R be functions. Define: {f,} converges
uniformly on D to a function f. Find the limiting function f(x) and prove that the sequence

In(@) = 14+ nx

is uniform and prove your result.

converges pointwise to f(x) on [0,00). Determine whether the convergence

A sequence of functions {f,} is said to converge uniformly on D to a function f if for every
€ > 0 there is an N € R such that

|[fn(z) — f(z)] <e whenever x € D and n > N.

Note that f,,(0) = 1 for every n so that f,(0) — 1 as n — co. On the other hand, if z > 0,
then by the Main Limit Theorem,

1 1 0
li n(z) =l = li R = = 0.
A ) = e e T T T 0
1, ifz=0;

T " pointwise on [0, 00).

0, ifx>0.

This convergence is NOT UNIFORM. We verify the definition that the convergence f, — f
is not uniform on [0, 00). Let € = % Choose N € R. By the Archimedean Property, there

is n € N such that n > N. Let z,, = % Then for these n and z,, € [0, 00) we have

Thus we have shown that f,(z) — f(z) = {

Faten) = o)l = | 1 =0 = 15

— 0| =——>c¢.
1+ nx, 1+1 7~

Alternately we could have observed that that the discontinuous f could not have been the
uniform limit of the contnuous f,,’s. Or we may have observed that {z,} is a sequence in
D such that |f,,(z,) — f(x,)| does not converge to zero as it must do for every sequence
when the convergence is uniform.

2. Suppose that a function f : R — R is continuous at a € R and that f(x) > 0 for all x # a.
Prove that f(a) > 0.
Choose € > 0. By the continuity of f at a, there is a § > 0 such that

If(z) — fla)] <e whenever x € R such that |x —a| < 6.

Pick such z, say, 29 = a + §/2. Then for this z, since a < z9 < a + ¢ and f(xg) > 0 we
have

fla) = f(xo) + fla) = f(xo) = f(wo) = |f(a) = f(xo)| > 0 — &= —e.

But since € > 0 is arbitrary, we conclude that f(a) > 0.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) STATEMENT Let f:[0,1] — R. If f([0,1]) is a closed and bounded interval, then f is
continuous.
FALSE. If we knew that f were strictly monotone then the conclusion follows. Without
monotonicity we construct a counterexample. Take

x, if x <
f(x):{ 1 >

if ©

N~ Do~

)

Then f is not continuous at = 3 € [0,1] but f([0,1]) = [0, 1].



_ 1+z+a22+23

b) STATEMENT There i int x € R such that =5 =2
(b) ere is a point such that f(z) T
TRUE. Since f(z) is a rational function whose denominator doesn’t vanish because
Lrata?=24 (L 2>§
4 \2 ~ 4
1 1424448
we know that f is continuous on R. Because f(0) = 1= land f(2) = % =

15
- > 2 we see that y = 2 is between f(0) and f(2). It follows from the Intermediate

Value Theorem that there is ¢ € [0, 2] such that f(c) = 2.

(c) STATEMENT Suppose the real sequence {ay} satisfies nh_)rréo lant+1 — an| = 0.
Then {a,} is convergent.
FALSE. Consider the sequence a,, = v/n. Then |a,41 — a,| =

B  Jnl - (Vn+1—yn)(Vn+1+yn)| 1
=Vt 1=l = Jntl+vn _‘\/n—l-l—&-\/ﬁ

as n — oo, but {a,} is not convergent because it is not bounded.

—0

4. Let f : (0,1) — R be a function. Define: f is uniformly continuous on (0,1). Using just
2

the definition, show that f is uniformly continuous on (0,1) where f(x) =

x
3—x’
f:(0,1) = R is called uniformly continuous if for every £ > 0 there is a § > 0 such that

|flz)— fly)] <e whenever z,y € (0,1) and |z — y| <.

4
Choose € > 0. Let § = = For any x,y € (0,1) such that |z — y| < § we have |z| < 1,
ly <1,2<3—2 and 2 <3 — y so that

2 2
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5. Let {sn} be a real sequence. State the definition: {s,} is a Cauchy Sequence. Using just
the definition, show that {s,} is a Cauchy Sequence, where the sequence of partial sums is

defined for n € N by
o3 22
" k!

k=0

{sn} is a Cauchy Sequence if for every € > 0 there is an N € R such that

[$m — se| < € whenver m, £ > N.

We observe that for k¥ > 2 that we have

2022 2 2222 2 2.2/0"F 002\
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To prove that the partial sums are a Cauchy Sequence, choose € > 0. Let
1 2e
N = max< 2, &227) —-15.
log (3)

For any m, ¢ € N such that m,¢ > N we have either m = ¢ in which case |s,,, — s¢| =0 < .
Or we have m # {. By swapping the names if necessary, we may assume that m > ¢. Then
since N > 2 by using the triangle inequality and the observation
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)
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