
Math 3210 § 3.
Treibergs

Third Midterm Exam Name: Solutions
November 12, 2014

1. Let D ⊂ R be a nonempty set and fn, f : D → R be functions. Define: {fn} converges
uniformly on D to a function f . Find the limiting function f(x) and prove that the sequence

fn(x) =
1

1 + nx
converges pointwise to f(x) on [0,∞). Determine whether the convergence

is uniform and prove your result.

A sequence of functions {fn} is said to converge uniformly on D to a function f if for every
ε > 0 there is an N ∈ R such that

|fn(x)− f(x)| < ε whenever x ∈ D and n > N .

Note that fn(0) = 1 for every n so that fn(0)→ 1 as n→∞. On the other hand, if x > 0,
then by the Main Limit Theorem,

lim
n→∞

fn(x) = lim
n→∞

1

1 + nx
= lim

n→∞

1
n

1
n + x

=
0

0 + x
= 0.

Thus we have shown that fn(x)→ f(x) =

{
1, if x = 0;

0, if x > 0.
pointwise on [0,∞).

This convergence is Not Uniform. We verify the definition that the convergence fn → f
is not uniform on [0,∞). Let ε = 1

2 . Choose N ∈ R. By the Archimedean Property, there
is n ∈ N such that n > N . Let xn = 1

n . Then for these n and xn ∈ [0,∞) we have

|fn(xn)− f(xn)| =
∣∣∣∣ 1

1 + nxn
− 0

∣∣∣∣ =
1

1 + 1
≥ ε.

Alternately we could have observed that that the discontinuous f could not have been the
uniform limit of the contnuous fn’s. Or we may have observed that {xn} is a sequence in
D such that |fn(xn) − f(xn)| does not converge to zero as it must do for every sequence
when the convergence is uniform.

2. Suppose that a function f : R→ R is continuous at a ∈ R and that f(x) > 0 for all x 6= a.
Prove that f(a) ≥ 0.

Choose ε > 0. By the continuity of f at a, there is a δ > 0 such that

|f(x)− f(a)| < ε whenever x ∈ R such that |x− a| < δ.

Pick such x, say, x0 = a + δ/2. Then for this x0, since a < x0 < a + δ and f(x0) > 0 we
have

f(a) = f(x0) + f(a)− f(x0) ≥ f(x0)− |f(a)− f(x0)| > 0− ε = −ε.
But since ε > 0 is arbitrary, we conclude that f(a) ≥ 0.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement Let f : [0, 1]→ R. If f( [0, 1] ) is a closed and bounded interval, then f is
continuous.

False. If we knew that f were strictly monotone then the conclusion follows. Without
monotonicity we construct a counterexample. Take

f(x) =

{
x, if x ≤ 1

2 ;

x− 1
2 , if x > 1

2 .

Then f is not continuous at x = 1
2 ∈ [0, 1] but f( [0, 1] ) = [0, 12 ].
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(b) Statement There is a point x ∈ R such that f(x) =
1 + x+ x2 + x3

1 + x+ x2
= 2.

True. Since f(x) is a rational function whose denominator doesn’t vanish because

1 + x+ x2 =
3

4
+

(
1

2
+ x

)2

≥ 3

4

we know that f is continuous on R. Because f(0) =
1

1
= 1 and f(2) =

1 + 2 + 4 + 8

1 + 2 + 4
=

15

7
> 2 we see that y = 2 is between f(0) and f(2). It follows from the Intermediate

Value Theorem that there is c ∈ [0, 2] such that f(c) = 2.

(c) Statement Suppose the real sequence {an} satisfies lim
n→∞

|an+1 − an| = 0.

Then {an} is convergent.

False. Consider the sequence an =
√
n. Then |an+1 − an| =

= |
√
n+ 1−

√
n| =

∣∣∣∣ (√n+ 1−
√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

∣∣∣∣ =

∣∣∣∣ 1√
n+ 1 +

√
n

∣∣∣∣→ 0

as n→∞, but {an} is not convergent because it is not bounded.

4. Let f : (0, 1) → R be a function. Define: f is uniformly continuous on (0, 1). Using just

the definition, show that f is uniformly continuous on (0, 1) where f(x) =
x2

3− x
.

f : (0, 1)→ R is called uniformly continuous if for every ε > 0 there is a δ > 0 such that

|f(x)− f(y)| < ε whenever x, y ∈ (0, 1) and |x− y| < δ.

Choose ε > 0. Let δ =
4

7
ε. For any x, y ∈ (0, 1) such that |x − y| < δ we have |x| ≤ 1,

|y| ≤ 1, 2 ≤ 3− x and 2 ≤ 3− y so that

|f(x)− f(y)| =
∣∣∣∣ x2

3− x
− y2

3− y

∣∣∣∣
=
|(3− y)x2 − (3− x)y2|

(3− x)(3− y)

=
|3(x2 − y2)− x2y + xy2|

(3− x)(3− y)

=
|3(x+ y)(x− y)− xy(x− y)|

(3− x)(3− y)

=
|3x+ 3y − xy| |x− y|

(3− x)(3− y)

≤ (3|x|+ 3|y|+ |x| |y|)
(3− x)(3− y)

|x− y|

≤ (3 · 1 + 3 · 1 + 1 · 1)

2 · 2
|x− y| = 7

4
|x− y| < 7

4
δ = ε.
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5. Let {sn} be a real sequence. State the definition: {sn} is a Cauchy Sequence. Using just
the definition, show that {sn} is a Cauchy Sequence, where the sequence of partial sums is
defined for n ∈ N by

sn =

n∑
k=0

(−2)k

k!

{sn} is a Cauchy Sequence if for every ε > 0 there is an N ∈ R such that

|sm − s`| < ε whenver m, ` > N .

We observe that for k ≥ 2 that we have

| − 2|k

k!
=

2

1
· 2

2
· 2

3
· 2

4
· · · 2

k
≤ 2

1
· 2

2
· 2

3
· 2

3
· · · 2

3
=

2 · 2
1 · 2

(
2

3

)k−2

=
9

2

(
2

3

)k

.

To prove that the partial sums are a Cauchy Sequence, choose ε > 0. Let

N = max

{
2,

log
(
2ε
27

)
log
(
2
3

) − 1

}
.

For any m, ` ∈ N such that m, ` > N we have either m = ` in which case |sm− s`| = 0 < ε.
Or we have m 6= `. By swapping the names if necessary, we may assume that m > `. Then
since N ≥ 2 by using the triangle inequality and the observation

|sm − s`| =

∣∣∣∣∣
m∑

k=0

(−2)k

k!
−
∑̀
k=0

(−2)k

k!

∣∣∣∣∣
=

∣∣∣∣∣
m∑

k=`+1

(−2)k

k!

∣∣∣∣∣
≤

m∑
k=`+1

| − 2|k

k!

≤
m∑

k=`+1

9

2

(
2

3

)k

=
9

2

(
m∑

k=0

(
2

3

)k

−
∑̀
k=0

(
2

3

)k
)

=
9

2

(
1−

(
2
3

)m+1

1− 2
3

−
1−

(
2
3

)`+1

1− 2
3

)

=
9

2

((
2
3

)`+1 −
(
2
3

)m+1

1− 2
3

)

≤ 27

2

(
2

3

)`+1

<
27

2

(
2

3

)N+1

≤ ε.
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