| Math 3210 § 3.
 Treibergs | Third Midterm Exam |
| :--- | :--- | | Name:Solutions
 November 12, 2014 |
| :--- |

1. Let $\mathcal{D} \subset \mathbf{R}$ be a nonempty set and $f_{n}, f: \mathcal{D} \rightarrow \mathbf{R}$ be functions. Define: $\left\{f_{n}\right\}$ converges uniformly on \mathcal{D} to a function f. Find the limiting function $f(x)$ and prove that the sequence $f_{n}(x)=\frac{1}{1+n x}$ converges pointwise to $f(x)$ on $[0, \infty)$. Determine whether the convergence is uniform and prove your result.
A sequence of functions $\left\{f_{n}\right\}$ is said to converge uniformly on \mathcal{D} to a function f if for every $\varepsilon>0$ there is an $N \in \mathbf{R}$ such that

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon \quad \text { whenever } x \in \mathcal{D} \text { and } n>N .
$$

Note that $f_{n}(0)=1$ for every n so that $f_{n}(0) \rightarrow 1$ as $n \rightarrow \infty$. On the other hand, if $x>0$, then by the Main Limit Theorem,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{1}{1+n x}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n}+x}=\frac{0}{0+x}=0
$$

Thus we have shown that $f_{n}(x) \rightarrow f(x)=\left\{\begin{array}{ll}1, & \text { if } x=0 ; \\ 0, & \text { if } x>0 .\end{array}\right.$ pointwise on $[0, \infty)$.
This convergence is Not Uniform. We verify the definition that the convergence $f_{n} \rightarrow f$ is not uniform on $[0, \infty)$. Let $\varepsilon=\frac{1}{2}$. Choose $N \in \mathbf{R}$. By the Archimedean Property, there is $n \in \mathbf{N}$ such that $n>N$. Let $x_{n}=\frac{1}{n}$. Then for these n and $x_{n} \in[0, \infty)$ we have

$$
\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|=\left|\frac{1}{1+n x_{n}}-0\right|=\frac{1}{1+1} \geq \varepsilon
$$

Alternately we could have observed that that the discontinuous f could not have been the uniform limit of the contnuous f_{n} 's. Or we may have observed that $\left\{x_{n}\right\}$ is a sequence in \mathcal{D} such that $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|$ does not converge to zero as it must do for every sequence when the convergence is uniform.
2. Suppose that a function $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous at $a \in \mathbf{R}$ and that $f(x)>0$ for all $x \neq a$. Prove that $f(a) \geq 0$.
Choose $\varepsilon>0$. By the continuity of f at a, there is a $\delta>0$ such that

$$
|f(x)-f(a)|<\varepsilon \quad \text { whenever } x \in \mathbf{R} \text { such that }|x-a|<\delta
$$

Pick such x, say, $x_{0}=a+\delta / 2$. Then for this x_{0}, since $a<x_{0}<a+\delta$ and $f\left(x_{0}\right)>0$ we have

$$
f(a)=f\left(x_{0}\right)+f(a)-f\left(x_{0}\right) \geq f\left(x_{0}\right)-\left|f(a)-f\left(x_{0}\right)\right|>0-\varepsilon=-\varepsilon
$$

But since $\varepsilon>0$ is arbitrary, we conclude that $f(a) \geq 0$.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement Let $f:[0,1] \rightarrow \mathbf{R}$. If $f([0,1])$ is a closed and bounded interval, then f is continuous.
FALSE. If we knew that f were strictly monotone then the conclusion follows. Without monotonicity we construct a counterexample. Take

$$
f(x)= \begin{cases}x, & \text { if } x \leq \frac{1}{2} \\ x-\frac{1}{2}, & \text { if } x>\frac{1}{2}\end{cases}
$$

Then f is not continuous at $x=\frac{1}{2} \in[0,1]$ but $f([0,1])=\left[0, \frac{1}{2}\right]$.
(b) Statement There is a point $x \in \mathbf{R}$ such that $f(x)=\frac{1+x+x^{2}+x^{3}}{1+x+x^{2}}=2$.

True. Since $f(x)$ is a rational function whose denominator doesn't vanish because

$$
1+x+x^{2}=\frac{3}{4}+\left(\frac{1}{2}+x\right)^{2} \geq \frac{3}{4}
$$

we know that f is continuous on \mathbf{R}. Because $f(0)=\frac{1}{1}=1$ and $f(2)=\frac{1+2+4+8}{1+2+4}=$ $\frac{15}{7}>2$ we see that $y=2$ is between $f(0)$ and $f(2)$. It follows from the Intermediate Value Theorem that there is $c \in[0,2]$ such that $f(c)=2$.
(c) Statement Suppose the real sequence $\left\{a_{n}\right\}$ satisfies $\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right|=0$. Then $\left\{a_{n}\right\}$ is convergent.
FALSE. Consider the sequence $a_{n}=\sqrt{n}$. Then $\left|a_{n+1}-a_{n}\right|=$

$$
=|\sqrt{n+1}-\sqrt{n}|=\left|\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}\right|=\left|\frac{1}{\sqrt{n+1}+\sqrt{n}}\right| \rightarrow 0
$$

as $n \rightarrow \infty$, but $\left\{a_{n}\right\}$ is not convergent because it is not bounded.
4. Let $f:(0,1) \rightarrow \mathbf{R}$ be a function. Define: f is uniformly continuous on $(0,1)$. Using just the definition, show that f is uniformly continuous on $(0,1)$ where $f(x)=\frac{x^{2}}{3-x}$.
$f:(0,1) \rightarrow \mathbf{R}$ is called uniformly continuous if for every $\varepsilon>0$ there is a $\delta>0$ such that

$$
|f(x)-f(y)|<\varepsilon \quad \text { whenever } x, y \in(0,1) \text { and }|x-y|<\delta
$$

Choose $\varepsilon>0$. Let $\delta=\frac{4}{7} \varepsilon$. For any $x, y \in(0,1)$ such that $|x-y|<\delta$ we have $|x| \leq 1$, $|y| \leq 1,2 \leq 3-x$ and $2 \leq 3-y$ so that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\frac{x^{2}}{3-x}-\frac{y^{2}}{3-y}\right| \\
& =\frac{\left|(3-y) x^{2}-(3-x) y^{2}\right|}{(3-x)(3-y)} \\
& =\frac{\left|3\left(x^{2}-y^{2}\right)-x^{2} y+x y^{2}\right|}{(3-x)(3-y)} \\
& =\frac{|3(x+y)(x-y)-x y(x-y)|}{(3-x)(3-y)} \\
& =\frac{|3 x+3 y-x y||x-y|}{(3-x)(3-y)} \\
& \leq \frac{(3|x|+3|y|+|x||y|)}{(3-x)(3-y)}|x-y| \\
& \leq \frac{(3 \cdot 1+3 \cdot 1+1 \cdot 1)}{2 \cdot 2}|x-y|=\frac{7}{4}|x-y|<\frac{7}{4} \delta=\varepsilon
\end{aligned}
$$

5. Let $\left\{s_{n}\right\}$ be a real sequence. State the definition: $\left\{s_{n}\right\}$ is a Cauchy Sequence. Using just the definition, show that $\left\{s_{n}\right\}$ is a Cauchy Sequence, where the sequence of partial sums is defined for $n \in \mathbf{N}$ by

$$
s_{n}=\sum_{k=0}^{n} \frac{(-2)^{k}}{k!}
$$

$\left\{s_{n}\right\}$ is a Cauchy Sequence if for every $\varepsilon>0$ there is an $N \in \mathbf{R}$ such that

$$
\left|s_{m}-s_{\ell}\right|<\varepsilon \quad \text { whenver } m, \ell>N
$$

We observe that for $k \geq 2$ that we have

$$
\frac{|-2|^{k}}{k!}=\frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{4} \cdots \frac{2}{k} \leq \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdots \frac{2}{3}=\frac{2 \cdot 2}{1 \cdot 2}\left(\frac{2}{3}\right)^{k-2}=\frac{9}{2}\left(\frac{2}{3}\right)^{k} .
$$

To prove that the partial sums are a Cauchy Sequence, choose $\varepsilon>0$. Let

$$
N=\max \left\{2, \frac{\log \left(\frac{2 \varepsilon}{27}\right)}{\log \left(\frac{2}{3}\right)}-1\right\}
$$

For any $m, \ell \in \mathbf{N}$ such that $m, \ell>N$ we have either $m=\ell$ in which case $\left|s_{m}-s_{\ell}\right|=0<\varepsilon$. Or we have $m \neq \ell$. By swapping the names if necessary, we may assume that $m>\ell$. Then since $N \geq 2$ by using the triangle inequality and the observation

$$
\begin{aligned}
\left|s_{m}-s_{\ell}\right| & =\left|\sum_{k=0}^{m} \frac{(-2)^{k}}{k!}-\sum_{k=0}^{\ell} \frac{(-2)^{k}}{k!}\right| \\
& =\left|\sum_{k=\ell+1}^{m} \frac{(-2)^{k}}{k!}\right|^{m} \\
& \leq \sum_{k=\ell+1}^{m} \frac{|-2|^{k}}{k!} \\
& \leq \sum_{k=\ell+1}^{m} \frac{9}{2}\left(\frac{2}{3}\right)^{k} \\
& =\frac{9}{2}\left(\sum_{k=0}^{m}\left(\frac{2}{3}\right)^{k}-\sum_{k=0}^{\ell}\left(\frac{2}{3}\right)^{k}\right) \\
& =\frac{9}{2}\left(\frac{1-\left(\frac{2}{3}\right)^{m+1}}{1-\frac{2}{3}}-\frac{1-\left(\frac{2}{3}\right)^{\ell+1}}{1-\frac{2}{3}}\right) \\
& =\frac{9}{2}\left(\frac{\left(\frac{2}{3}\right)^{\ell+1}-\left(\frac{2}{3}\right)^{m+1}}{1-\frac{2}{3}}\right)^{\ell+1}<\frac{27}{2}\left(\frac{2}{3}\right)^{N+1} \leq \varepsilon \\
& \leq \frac{27}{2}\left(\frac{2}{3}\right)^{\ell+1}<
\end{aligned}
$$

