Math 3210 § 3.	Third Midterm Exam	Name:	Solutions
Treibergs		November	: 12, 2014

1. Let $\mathcal{D} \subset \mathbf{R}$ be a nonempty set and $f_n, f : \mathcal{D} \to \mathbf{R}$ be functions. Define: $\{f_n\}$ converges uniformly on \mathcal{D} to a function f. Find the limiting function f(x) and prove that the sequence $f_n(x) = \frac{1}{1+nx}$ converges pointwise to f(x) on $[0,\infty)$. Determine whether the convergence is uniform and prove your result.

A sequence of functions $\{f_n\}$ is said to *converge uniformly* on \mathcal{D} to a function f if for every $\varepsilon > 0$ there is an $N \in \mathbf{R}$ such that

 $|f_n(x) - f(x)| < \varepsilon$ whenever $x \in \mathcal{D}$ and n > N.

Note that $f_n(0) = 1$ for every n so that $f_n(0) \to 1$ as $n \to \infty$. On the other hand, if x > 0, then by the Main Limit Theorem,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{1}{1 + nx} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{n} + x} = \frac{0}{0 + x} = 0.$$

Thus we have shown that $f_n(x) \to f(x) = \begin{cases} 1, & \text{if } x = 0; \\ 0, & \text{if } x > 0. \end{cases}$ pointwise on $[0, \infty)$.

This convergence is NOT UNIFORM. We verify the definition that the convergence $f_n \to f$ is not uniform on $[0, \infty)$. Let $\varepsilon = \frac{1}{2}$. Choose $N \in \mathbf{R}$. By the Archimedean Property, there is $n \in \mathbf{N}$ such that n > N. Let $x_n = \frac{1}{n}$. Then for these n and $x_n \in [0, \infty)$ we have

$$|f_n(x_n) - f(x_n)| = \left|\frac{1}{1+nx_n} - 0\right| = \frac{1}{1+1} \ge \varepsilon.$$

Alternately we could have observed that that the discontinuous f could not have been the uniform limit of the continuous f_n 's. Or we may have observed that $\{x_n\}$ is a sequence in \mathcal{D} such that $|f_n(x_n) - f(x_n)|$ does not converge to zero as it must do for every sequence when the convergence is uniform.

2. Suppose that a function $f : \mathbf{R} \to \mathbf{R}$ is continuous at $a \in \mathbf{R}$ and that f(x) > 0 for all $x \neq a$. Prove that $f(a) \geq 0$.

Choose $\varepsilon > 0$. By the continuity of f at a, there is a $\delta > 0$ such that

 $|f(x) - f(a)| < \varepsilon$ whenever $x \in \mathbf{R}$ such that $|x - a| < \delta$.

Pick such x, say, $x_0 = a + \delta/2$. Then for this x_0 , since $a < x_0 < a + \delta$ and $f(x_0) > 0$ we have

$$f(a) = f(x_0) + f(a) - f(x_0) \ge f(x_0) - |f(a) - f(x_0)| > 0 - \varepsilon = -\varepsilon.$$

But since $\varepsilon > 0$ is arbitrary, we conclude that $f(a) \ge 0$.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) STATEMENT Let $f : [0,1] \to \mathbf{R}$. If f([0,1]) is a closed and bounded interval, then f is continuous.

FALSE. If we knew that f were strictly monotone then the conclusion follows. Without monotonicity we construct a counterexample. Take

$$f(x) = \begin{cases} x, & \text{if } x \le \frac{1}{2}; \\ x - \frac{1}{2}, & \text{if } x > \frac{1}{2}. \end{cases}$$

Then f is not continuous at $x = \frac{1}{2} \in [0, 1]$ but $f([0, 1]) = [0, \frac{1}{2}]$.

(b) STATEMENT There is a point $x \in \mathbf{R}$ such that $f(x) = \frac{1 + x + x^2 + x^3}{1 + x + x^2} = 2$. TRUE. Since f(x) is a rational function whose denominator doesn't vanish because

$$1 + x + x^{2} = \frac{3}{4} + \left(\frac{1}{2} + x\right)^{2} \ge \frac{3}{4}$$

we know that f is continuous on **R**. Because $f(0) = \frac{1}{1} = 1$ and $f(2) = \frac{1+2+4+8}{1+2+4} = \frac{15}{7} > 2$ we see that y = 2 is between f(0) and f(2). It follows from the Intermediate Value Theorem that there is $c \in [0, 2]$ such that f(c) = 2.

(c) STATEMENT Suppose the real sequence $\{a_n\}$ satisfies $\lim_{n \to \infty} |a_{n+1} - a_n| = 0$. Then $\{a_n\}$ is convergent.

FALSE. Consider the sequence $a_n = \sqrt{n}$. Then $|a_{n+1} - a_n| =$

$$= |\sqrt{n+1} - \sqrt{n}| = \left| \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} \right| = \left| \frac{1}{\sqrt{n+1} + \sqrt{n}} \right| \to 0$$

as $n \to \infty$, but $\{a_n\}$ is not convergent because it is not bounded.

- 4. Let $f:(0,1) \to \mathbf{R}$ be a function. Define: f is uniformly continuous on (0,1). Using just the definition, show that f is uniformly continuous on (0,1) where $f(x) = \frac{x^2}{3-x}$.
 - $f:(0,1)\to \mathbf{R}$ is called *uniformly continuous* if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f(x) - f(y)| < \varepsilon$$
 whenever $x, y \in (0, 1)$ and $|x - y| < \delta$

Choose $\varepsilon > 0$. Let $\delta = \frac{4}{7}\varepsilon$. For any $x, y \in (0, 1)$ such that $|x - y| < \delta$ we have $|x| \le 1$, $|y| \le 1, 2 \le 3 - x$ and $2 \le 3 - y$ so that

$$\begin{split} |f(x) - f(y)| &= \left| \frac{x^2}{3 - x} - \frac{y^2}{3 - y} \right| \\ &= \frac{|(3 - y)x^2 - (3 - x)y^2|}{(3 - x)(3 - y)} \\ &= \frac{|3(x^2 - y^2) - x^2y + xy^2|}{(3 - x)(3 - y)} \\ &= \frac{|3(x + y)(x - y) - xy(x - y)|}{(3 - x)(3 - y)} \\ &= \frac{|3x + 3y - xy| |x - y|}{(3 - x)(3 - y)} \\ &\leq \frac{(3|x| + 3|y| + |x| |y|)}{(3 - x)(3 - y)} |x - y| \\ &\leq \frac{(3 \cdot 1 + 3 \cdot 1 + 1 \cdot 1)}{2 \cdot 2} |x - y| = \frac{7}{4} |x - y| < \frac{7}{4} \delta = \varepsilon. \quad \Box \end{split}$$

5. Let $\{s_n\}$ be a real sequence. State the definition: $\{s_n\}$ is a Cauchy Sequence. Using just the definition, show that $\{s_n\}$ is a Cauchy Sequence, where the sequence of partial sums is defined for $n \in \mathbf{N}$ by

$$s_n = \sum_{k=0}^n \frac{(-2)^k}{k!}$$

 $\{s_n\}$ is a *Cauchy Sequence* if for every $\varepsilon > 0$ there is an $N \in \mathbf{R}$ such that

$$|s_m - s_\ell| < \varepsilon$$
 whenver $m, \ell > N$.

We observe that for $k \ge 2$ that we have

$$\frac{|-2|^k}{k!} = \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{4} \cdots \frac{2}{k} \le \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdots \frac{2}{3} = \frac{2 \cdot 2}{1 \cdot 2} \left(\frac{2}{3}\right)^{k-2} = \frac{9}{2} \left(\frac{2}{3}\right)^k.$$

To prove that the partial sums are a Cauchy Sequence, choose $\varepsilon > 0$. Let

$$N = \max\left\{2, \frac{\log\left(\frac{2\varepsilon}{27}\right)}{\log\left(\frac{2}{3}\right)} - 1\right\}.$$

For any $m, \ell \in \mathbf{N}$ such that $m, \ell > N$ we have either $m = \ell$ in which case $|s_m - s_\ell| = 0 < \varepsilon$. Or we have $m \neq \ell$. By swapping the names if necessary, we may assume that $m > \ell$. Then since $N \ge 2$ by using the triangle inequality and the observation

$$\begin{split} |s_m - s_\ell| &= \left| \sum_{k=0}^m \frac{(-2)^k}{k!} - \sum_{k=0}^\ell \frac{(-2)^k}{k!} \right| \\ &= \left| \sum_{k=\ell+1}^m \frac{(-2)^k}{k!} \right| \\ &\leq \sum_{k=\ell+1}^m \frac{|-2|^k}{k!} \\ &\leq \sum_{k=\ell+1}^m \frac{9}{2} \left(\frac{2}{3} \right)^k \\ &= \frac{9}{2} \left(\sum_{k=0}^m \left(\frac{2}{3} \right)^k - \sum_{k=0}^\ell \left(\frac{2}{3} \right)^k \right) \\ &= \frac{9}{2} \left(\frac{1 - \left(\frac{2}{3} \right)^{m+1}}{1 - \frac{2}{3}} - \frac{1 - \left(\frac{2}{3} \right)^{\ell+1}}{1 - \frac{2}{3}} \right) \\ &= \frac{9}{2} \left(\frac{\left(\frac{2}{3} \right)^{\ell+1} - \left(\frac{2}{3} \right)^{m+1}}{1 - \frac{2}{3}} \right) \\ &\leq \frac{27}{2} \left(\frac{2}{3} \right)^{\ell+1} < \frac{27}{2} \left(\frac{2}{3} \right)^{N+1} \le \varepsilon. \end{split}$$