Math 3210 § 3.	First Midterm Exam	Name:	Solutions
Treibergs		September	r 10, 2014

1. Show that $2^n + 3^n$ is a multiple of 5 for all odd n in **N**.

Odd numbers are given by 2n-1 as n runs through N. The statements being proved are

 $\mathcal{P}_n = "2^{2n-1} + 3^{2n-1}$ is a multiple of 5, "

where $n \in \mathbf{N}$. We argue by induction. For the base case n = 1, the statement \mathcal{P}_1 is " $2^1 + 3^1 = 5 \cdot 1$ is a multiple of 5" which is true.

For the induction case, assume that for some $n \in \mathbb{N}$ that $2^{2n-1} + 3^{2n-1}$ is a multiple of 5. Now for n + 1,

$$2^{2(n+1)-1} + 3^{2(n+1)-1} = 4 \cdot 2^{2n-1} + 9 \cdot 3^{2n-1} = 4 \cdot (2^{2n-1} + 3^{2n-1}) + 5 \cdot 3^{2n-1}.$$

By the induction hypothesis the first summand is a multiple of 5 and the second summand has 5 as a factor. Since both are multiples of 5 it follows that $2^{2(n+1)-1} + 3^{2(n+1)-1}$ is a multiple of 5, which is \mathcal{P}_{n+1} .

Since both cases hold, by induction, for all $n \in \mathbf{N}$, $2^{2n-1} + 3^{2n-1}$ is a multiple of 5.

- 2. Recall the axioms of a field $(F, +, \times)$. For any $x, y, z \in F$,
 - A1. (Commutativity of Addition.) x + y = y + x.
 - A2. (Associativity of Addition.) x + (y + z) = (x + y) + z.
 - A3. (Additive Identity.) $(\exists 0 \in F) (\forall t \in F) 0 + t = t.$
 - A4. (Additive Inverse) $(\exists -x \in F) x + (-x) = 0.$
 - M1. (Commutativity of Multiplication.) xy = yx.
 - M2. (Associativity of Multiplication.) x(yz) = (xy)z.
 - M3. (Multiplicative Identity.) $(\exists 1 \in F) \ 1 \neq 0$ and $(\forall t \in F) \ 1t = t$.
 - M4. (Multiplicative Inverse.) If $x \neq 0$ then $(\exists x^{-1} \in F) x^{-1}x = 1$.
 - D. (Distributivity) x(y+z) = xy + xz.

Since we assume b is a multiplicative identity, by M3, $b \neq 0$ and $(\forall t \in F) bt = t$. In particular, for t = a we have ba = a.

By commutativity of multiplication M1, a = ba = ab = b, as to be shown.

Using only the axioms of a field, show that the multiplicative identity is unique. Justify every step of your argument using just the axioms listed here.

Assume a and b are multiplicative identities. We wish to show that a = b so that all multiplicative identities are the same and are called "1."

Since we assume a is a multiplicative identity, by M3, $a \neq 0$ and $(\forall t \in F) at = t$. In particular, for t = b we have ab = b.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) Statement: Let f: A → B be a function. If for all x ∈ A there is a y ∈ B such that f(x) = y then f is onto.
 FALSE. The statement is true of any function. eg., if f: R → R is given by f(x) = 0 then for every x there is a y, namely y = 0 so that f(x) = y. But this f is not onto since y = 1 is not an image point.
 - (b) Statement: Let $f : A \to B$ and $E \subset A$ be a subset. Then $E = f^{-1}(f(E))$. FALSE. Consider $f : \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^2$ and let E = [1, 2]. Then f(E) = [1, 4] and $f^{-1}(f(E)) = [-2, -1] \cup [1, 2] \neq E$.
 - (c) Statement: Suppose $E, G \subset A$. If $f : A \to B$ is a one-to-one function then f(E) = f(G) implies E = G. TRUE. We show if $x \in E$ then $x \in G$ and if $x \in G$ then $x \in E$. To show the first claim, if $x \in E$ then $f(x) \in f(E) = f(G)$ so there is $z \in G$ so that f(z) = f(x). Since f is one-to-one, we have x = z so $x \in G$. The second claim is symmetric with the roles of E and G swapped.
- 4. Let $(F, +, \times)$ be a field. F is an ordered field if it has a relation " \leq " that satisfies these additional axioms. For any $x, y, z \in F$,
 - O1. (Comparability Property.) $x \leq y$ or $y \leq x$.
 - O2. (Trichotomy Property.) If $x \leq y$ and $y \leq x$ then x = y.
 - O3. (Transitivity Property.) If $x \leq y$ and $y \leq z$ then $x \leq z$.
 - O4. (Additivity Property.) If $x \leq y$ and then $x + z \leq y + z$.
 - O5. (Multiplicative Property.) If $x \leq y$ and $0 \leq z$ then $xz \leq yz$.

Show that $0 \le a \le b$ implies $a^2 \le b^2$. Justify every step of your argument using just the field axioms and axioms listed here.

- (a) Assumptions $0 \le a$ and $a \le b$ imply $a^2 \le ba$ using the multiplicative property O5.
- (b) Assumptions $0 \le a$ and $a \le b$ imply $0 \le b$ using transitivity O3.
- (c) The result from (b) $0 \le b$ and the assumption $a \le b$ imply $ab \le b^2$ using the multiplicative property O5.
- (d) The result from (c) $ab \le b^2$ implies $ba \le b^2$ using the commutative property of multiplication M1.
- (e) The results from (a) $a^2 \leq ba$ and from (d) $ba \leq b^2$ imply $a^2 \leq b^2$ using the transitive property O3.

5. Let $E \subset \mathbb{R}$ be a set of real numbers given by

$$E = \{ x \in \mathbf{R} : (\exists \sigma > 0) \quad (\forall \tau > \sigma) \quad (\sigma \le x \le \tau) \}.$$

Find a simple expression for E in terms of intervals and prove your result. The set may be written

$$E = \bigcup_{\sigma > 0} \bigcap_{\tau > \sigma} [\sigma, \tau] = \bigcup_{\sigma > 0} \{\sigma\} = (0, \infty).$$

To prove it we show if $x \in E$ then $x \in (0, \infty)$ and if $x \in (0, \infty)$ then $x \in E$. Suppose $x \in E$. Then there exists $\sigma_0 > 0$ such that $(\forall \tau > \sigma_0)(\sigma_0 \le x \le \tau)$. Hence $0 < \sigma_0 \le x$ which says $x \in (0, \infty)$.

On the other hand, if $x \in (0, \infty)$ then 0 < x. If one takes $\sigma = x > 0$ then $(\forall \tau > \sigma)(\sigma \le x \le \tau)$ which is the condition that $x \in E$.