Math 3210 § 3.
Treibergs

First Midterm Exam Name: Solutions
September 10, 2014

1. Show that $2^{n}+3^{n}$ is a multiple of 5 for all odd n in \mathbf{N}.

Odd numbers are given by $2 n-1$ as n runs through \mathbf{N}. The statements being proved are

$$
\mathcal{P}_{n}=" 2^{2 n-1}+3^{2 n-1} \text { is a multiple of } 5, "
$$

where $n \in \mathbf{N}$. We argue by induction. For the base case $n=1$, the statement \mathcal{P}_{1} is " $2^{1}+3^{1}=5 \cdot 1$ is a multiple of 5 " which is true.
For the induction case, assume that for some $n \in \mathbf{N}$ that $2^{2 n-1}+3^{2 n-1}$ is a multiple of 5 . Now for $n+1$,

$$
2^{2(n+1)-1}+3^{2(n+1)-1}=4 \cdot 2^{2 n-1}+9 \cdot 3^{2 n-1}=4 \cdot\left(2^{2 n-1}+3^{2 n-1}\right)+5 \cdot 3^{2 n-1} .
$$

By the induction hypothesis the first summand is a multiple of 5 and the second summand has 5 as a factor. Since both are multiples of 5 it follows that $2^{2(n+1)-1}+3^{2(n+1)-1}$ is a multiple of 5 , which is \mathcal{P}_{n+1}.
Since both cases hold, by induction, for all $n \in \mathbf{N}, 2^{2 n-1}+3^{2 n-1}$ is a multiple of 5 .
2. Recall the axioms of a field $(F,+, \times)$. For any $x, y, z \in F$,

A1. (Commutativity of Addition.) $x+y=y+x$.
A2. (Associativity of Addition.) $x+(y+z)=(x+y)+z$.
A3. (Additive Identity.) $(\exists 0 \in F)(\forall t \in F) 0+t=t$.
A4. (Additive Inverse) $(\exists-x \in F) x+(-x)=0$.
M1. (Commutativity of Multiplication.) $x y=y x$.
M2. (Associativity of Multiplication.) $x(y z)=(x y) z$.
M3. (Multiplicative Identity.) $(\exists 1 \in F) 1 \neq 0$ and $(\forall t \in F) 1 t=t$.
M4. (Multiplicative Inverse.) If $x \neq 0$ then $\left(\exists x^{-1} \in F\right) x^{-1} x=1$.
D. (Distributivity) $x(y+z)=x y+x z$.

Using only the axioms of a field, show that the multiplicative identity is unique. Justify every step of your argument using just the axioms listed here.
Assume a and b are multiplicative identities. We wish to show that $a=b$ so that all multiplicative identities are the same and are called "1."

Since we assume a is a multiplicative identity, by M3, $a \neq 0$ and $(\forall t \in F) a t=t$. In particular, for $t=b$ we have $a b=b$.
Since we assume b is a multiplicative identity, by M3, $b \neq 0$ and $(\forall t \in F) b t=t$. In particular, for $t=a$ we have $b a=a$.
By commutativity of multiplication M1, $a=b a=a b=b$, as to be shown.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement: Let $f: \mathbf{A} \rightarrow \mathbf{B}$ be a function. If for all $x \in \mathbf{A}$ there is a $y \in \mathbf{B}$ such that $f(x)=y$ then f is onto.
FALSE. The statement is true of any function. eg., if $f: \mathbf{R} \rightarrow \mathbf{R}$ is given by $f(x)=0$ then for every x there is a y, namely $y=0$ so that $f(x)=y$. But this f is not onto since $y=1$ is not an image point.
(b) Statement: Let $f: A \rightarrow B$ and $E \subset A$ be a subset. Then $E=f^{-1}(f(E))$.

FALSE. Consider $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=x^{2}$ and let $E=[1,2]$. Then $f(E)=[1,4]$ and $f^{-1}(f(E))=[-2,-1] \cup[1,2] \neq E$.
(c) Statement: Suppose $E, G \subset A$. If $f: A \rightarrow B$ is a one-to-one function then $f(E)=$ $f(G)$ implies $E=G$.
TRUE. We show if $x \in E$ then $x \in G$ and if $x \in G$ then $x \in E$. To show the first claim, if $x \in E$ then $f(x) \in f(E)=f(G)$ so there is $z \in G$ so that $f(z)=f(x)$. Since f is one-to-one, we have $x=z$ so $x \in G$. The second claim is symmetric with the roles of E and G swapped.
4. Let $(F,+, \times)$ be a field. F is an ordered field if it has a relation " \leq " that satisfies these additional axioms. For any $x, y, z \in F$,

O1. (Comparability Property.) $x \leq y$ or $y \leq x$.
O2. (Trichotomy Property.) If $x \leq y$ and $y \leq x$ then $x=y$.
O3. (Transitivity Property.) If $x \leq y$ and $y \leq z$ then $x \leq z$.
O4. (Additivity Property.) If $x \leq y$ and then $x+z \leq y+z$.
O5. (Multiplicative Property.) If $x \leq y$ and $0 \leq z$ then $x z \leq y z$.

Show that $0 \leq a \leq b$ implies $a^{2} \leq b^{2}$. Justify every step of your argument using just the field axioms and axioms listed here.
(a) Assumptions $0 \leq a$ and $a \leq b$ imply $a^{2} \leq b a$ using the multiplicative property O 5 .
(b) Assumptions $0 \leq a$ and $a \leq b$ imply $0 \leq b$ using transitivity O3.
(c) The result from (b) $0 \leq b$ and the assumption $a \leq b$ imply $a b \leq b^{2}$ using the multiplicative property O 5.
(d) The result from (c) $a b \leq b^{2}$ implies $b a \leq b^{2}$ using the commutative property of multiplication M1.
(e) The results from (a) $a^{2} \leq b a$ and from (d) $b a \leq b^{2}$ imply $a^{2} \leq b^{2}$ using the transitive property O3.
5. Let $E \subset \mathbb{R}$ be a set of real numbers given by

$$
E=\{x \in \mathbf{R}:(\exists \sigma>0) \quad(\forall \tau>\sigma) \quad(\sigma \leq x \leq \tau) \quad\}
$$

Find a simple expression for E in terms of intervals and prove your result.
The set may be written

$$
E=\bigcup_{\sigma>0} \bigcap_{\tau>\sigma}[\sigma, \tau]=\bigcup_{\sigma>0}\{\sigma\}=(0, \infty)
$$

To prove it we show if $x \in E$ then $x \in(0, \infty)$ and if $x \in(0, \infty)$ then $x \in E$.
Suppose $x \in E$. Then there exists $\sigma_{0}>0$ such that $\left(\forall \tau>\sigma_{0}\right)\left(\sigma_{0} \leq x \leq \tau\right)$. Hence $0<\sigma_{0} \leq x$ which says $x \in(0, \infty)$.
On the other hand, if $x \in(0, \infty)$ then $0<x$. If one takes $\sigma=x>0$ then $(\forall \tau>\sigma)(\sigma \leq x \leq \tau)$ which is the condition that $x \in E$.

