Math 3210 § 2.
Treibergs

Second Midterm Exam
(1.) Let $\left\{a_{n}\right\}$ be a real sequence and $L \in \mathbb{R}$. State the definition: $a_{n} \rightarrow L$ as $n \rightarrow \infty$. Find L. Using just the definition of limit, prove that your answer is correct.

$$
L=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{2 \sqrt{n}-1}
$$

The sequence is said to converge $a_{n} \rightarrow \mathrm{~L}$ as $n \rightarrow \infty$ if for every $\epsilon>0$ there is $N \in \mathbb{R}$ such that $\left|a_{n}-L\right|<\epsilon$ whenever $n>N$.

By dividing we see that

$$
a_{n}=\frac{\sqrt{n}}{2 \sqrt{n}-1}=\frac{1}{2-\frac{1}{\sqrt{n}}} \rightarrow \frac{1}{2}=L \quad \text { as } n \rightarrow \infty
$$

To prove it, choose $\epsilon>0$. Let $N=\frac{1}{4 \epsilon^{2}}$. For any $n \in \mathbb{N}$ such that $n>N$ we have $\sqrt{n} \geq 1$ so

$$
\begin{aligned}
\left|a_{n}-L\right| & =\left|\frac{\sqrt{n}}{2 \sqrt{n}-1}-\frac{1}{2}\right|=\left|\frac{2 \sqrt{n}-(2 \sqrt{n}-1)}{2(2 \sqrt{n}-1)}\right|=\frac{1}{4 \sqrt{n}-2} \\
& \leq \frac{1}{4 \sqrt{n}-2 \sqrt{n}}=\frac{1}{2 \sqrt{n}}<\frac{1}{2 \sqrt{N}}=\frac{1}{2 \sqrt{1 / 4 \epsilon^{2}}}=\epsilon
\end{aligned}
$$

(2.) Suppose that $\left\{a_{n}\right\}$ is a real sequence such that $a_{n} \rightarrow L$ as $n \rightarrow \infty$. Prove that if $L<0$ then then there is $N \in \mathbb{R}$ such that

$$
a_{n}<0 \quad \text { whenever } \quad n>N .
$$

Proof. Choose $\epsilon=|L|$ which is positive since $L<0$. By convergence of $\left\{a_{n}\right\}$, there is an $N \in \mathbb{R}$ so that $\left|a_{n}-L\right|<\epsilon$ whenever $n>N$. For this same N, if any $n>N$, then

$$
a_{n}=L+a_{n}-L \leq L+\left|a_{n}-L\right|<L+\epsilon=L+|L|=0
$$

since $L<0$. Hence we have shown for this N that $a_{n}<0$ whenever $n>N$.
(3.) Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement: Let $\left\{I_{n}\right\}$ be a sequence of nonempty, closed intervals such that $I_{n} \subset[0,1]$ for all $n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset$.

False. The intervals need not be nested. Thus if $I_{2 n-1}=\left[0, \frac{1}{3}\right]$ and $I_{2 n}=\left[\frac{2}{3}, 1\right]$ then $I_{1} \cap I_{2}=\emptyset$ so $\bigcap_{n=1}^{\infty} I_{n}=\emptyset$.
(b.) Statement: $\frac{1}{1+|x+y|} \leq \frac{1}{1+|x|+|y|}$ for all $x, y \in \mathbb{R}$.

False. Let $x=2, y=-3$. Then

$$
\frac{1}{1+|x+y|}=\frac{1}{1+|2-3|}=\frac{1}{1+1}=\frac{1}{2}>\frac{1}{6}=\frac{1}{1+|2|+|-3|}=\frac{1}{1+|x|+|y|}
$$

(c.) Statement: Let $\left\{a_{n}\right\}$ be a real sequence. If $\left\{a_{n}\right\}$ has a convergent subsequence then $\left\{a_{n}\right\}$ is bounded.

FALSE. Consider the sequence $a_{2 n-1}=1$ and $a_{2 n}=n$. Then the odd subsequence converges $a_{2 n-1} \rightarrow 1$ as $n \rightarrow \infty$ but $\left\{a_{n}\right\}$ is not bounded because $\left|a_{2 n}\right|$ is larger than any number for n sufficiently large.
(4.) For the given real sequence of numbers $\left\{a_{n}\right\}$, prove that this sequence converges.

$$
a_{n}=\frac{1}{2}+\frac{1}{2^{3}}+\frac{1}{2^{5}}+\frac{1}{2^{7}}+\cdots+\frac{1}{2^{2 n-1}}
$$

The sequence is monotonically non-decreasing. To see it, observe that for every $n \in \mathbb{N}$

$$
a_{n+1}=a_{n}+\frac{1}{2^{2(n+1)-1}}>a_{n}
$$

The sequence is bounded above. Use the fact that for every $k \in \mathbb{N}$ we have $2 k-1 \geq k-1$ so that $a_{n}=\frac{1}{2}+\cdots+\frac{1}{2^{2 k-1}}+\cdots+\frac{1}{2^{2 n-1}} \leq \frac{1}{2^{0}}+\cdots+\frac{1}{2^{k-1}}+\cdots+\frac{1}{2^{n-1}}=\sum_{k=1}^{n}\left(\frac{1}{2}\right)^{k-1}=\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}} \leq 2$.

It follows that the sequence converges by the monotone convergence theorem.
(5.) Let $E \subset \mathbb{R}, s \in \mathbb{R}$ and $f: E \rightarrow \mathbb{R}$ be a function. Define: $s=\sup _{x \in E} f(x)$. Find $s=\sup _{x \in E} f(x)$ where $f(x)=x^{2}$ and $E=(0,1)$. Prove your answer.

If $f(x)$ is not bounded above we say the supremum $\sup _{x \in E} f(x)=\infty$. If f is bounded above then the supremum of the function, $s=\sup _{x \in E} f(x)$, is a number $s \in \mathbb{R}$ that is (1) an upper bound: for every $x \in E, f(x) \leq s$ and (2) the least among upper bounds: for every smaller number $b<s$ there is $x \in E$ so that $b<f(x)$, in other words, no smaller number is an upper bound.
$\sup _{x \in(0,1)} x^{2}=1$. To see it, observe that if $0<y<1$ then we can take a number $x=1-c$ for $x \in(0,1)$
some small $c>0$ so that $x^{2}=1-2 c+c^{2}>1-2 c=b$ if $c=(1-b) / 2$. From this we may write a proof.

Proof. To see that 1 is an upper bound, note that any $x \in(0,1)$ satisfies $0<x<1$ so (multiplying by $x>0$) $0<x^{2}<x<1$ so that for every $x \in E$ we have $f(x) \leq 1$. To see that 1 is the least of all upper bounds, suppose that $b<1$ to show b cannot be an upper bound. If $b \leq 0$ then let $x=\frac{1}{2} \in(0,1)$. In this case we have $b \leq 0<\frac{1}{4}=f(x)$ for this $x \in E$. On the other hand, if $0<b<1$ we have $0<\frac{1}{2}(1-b)<1$ so $x=1-\frac{1}{2}(1-b) \in(0,1)$. It also satisfies

$$
x^{2}=1-(1-b)+\frac{1}{4}(1-b)^{2}>1-(1-b)=b .
$$

In both cases, for every $b<1$ there is $x \in E$ so that $b<f(x)$, proving 1 is least among upper bounds.

