
Math 3210 § 2.
Treibergs

Second Midterm Exam Name: Solutions
February 26, 2014

(1.) Let {an} be a real sequence and L ∈ R. State the definition: an → L as n → ∞. Find L.
Using just the definition of limit, prove that your answer is correct.

L = lim
n→∞

√
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2
√
n− 1

The sequence is said to converge an →  L as n → ∞ if for every ε > 0 there is N ∈ R such that
|an − L| < ε whenever n > N .

By dividing we see that
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2
= L as n→∞.

To prove it, choose ε > 0. Let N =
1

4ε2
. For any n ∈ N such that n > N we have
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(2.) Suppose that {an} is a real sequence such that an → L as n→∞. Prove that if L < 0 then
then there is N ∈ R such that

an < 0 whenever n > N.

Proof. Choose ε = |L| which is positive since L < 0. By convergence of {an}, there is an
N ∈ R so that |an − L| < ε whenever n > N . For this same N , if any n > N , then

an = L+ an − L ≤ L+ |an − L| < L+ ε = L+ |L| = 0

since L < 0. Hence we have shown for this N that an < 0 whenever n > N .

(3.) Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Let {In} be a sequence of nonempty, closed intervals such that In ⊂ [0, 1] for
all n ∈ N. Then

⋂∞
n=1 In 6= ∅.

False. The intervals need not be nested. Thus if I2n−1 = [0, 13 ] and I2n = [ 23 , 1] then I1∩I2 = ∅
so
⋂∞

n=1 In = ∅.

(b.) Statement:
1

1 + |x+ y|
≤ 1

1 + |x|+ |y|
for all x, y ∈ R.

False. Let x = 2, y = −3. Then

1

1 + |x+ y|
=

1

1 + |2− 3|
=

1

1 + 1
=

1

2
>

1

6
=

1

1 + |2|+ | − 3|
=

1

1 + |x|+ |y|
.

(c.) Statement: Let {an} be a real sequence. If {an} has a convergent subsequence then {an}
is bounded.

False. Consider the sequence a2n−1 = 1 and a2n = n. Then the odd subsequence converges
a2n−1 → 1 as n → ∞ but {an} is not bounded because |a2n| is larger than any number for n
sufficiently large.
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(4.) For the given real sequence of numbers {an}, prove that this sequence converges.

an =
1

2
+

1

23
+

1

25
+

1

27
+ · · ·+ 1

22n−1

The sequence is monotonically non-decreasing. To see it, observe that for every n ∈ N

an+1 = an +
1

22(n+1)−1 > an.

The sequence is bounded above. Use the fact that for every k ∈ N we have 2k− 1 ≥ k− 1 so that

an =
1

2
+ · · ·+ 1

22k−1
+ · · ·+ 1

22n−1
≤ 1

20
+ · · ·+ 1

2k−1
+ · · ·+ 1

2n−1
=

n∑
k=1

(
1

2

)k−1

=
1−

(
1
2

)n
1− 1

2

≤ 2.

It follows that the sequence converges by the monotone convergence theorem.

(5.) Let E ⊂ R, s ∈ R and f : E → R be a function. Define: s = sup
x∈E

f(x). Find s = sup
x∈E

f(x)

where f(x) = x2 and E = (0, 1). Prove your answer.
If f(x) is not bounded above we say the supremum sup

x∈E
f(x) =∞. If f is bounded above then

the supremum of the function, s = sup
x∈E

f(x), is a number s ∈ R that is (1) an upper bound: for

every x ∈ E, f(x) ≤ s and (2) the least among upper bounds: for every smaller number b < s
there is x ∈ E so that b < f(x), in other words, no smaller number is an upper bound.

sup
x∈(0,1)

x2 = 1. To see it, observe that if 0 < y < 1 then we can take a number x = 1 − c for

some small c > 0 so that x2 = 1− 2c+ c2 > 1− 2c = b if c = (1− b)/2. From this we may write
a proof.

Proof. To see that 1 is an upper bound, note that any x ∈ (0, 1) satisfies 0 < x < 1 so
(multiplying by x > 0) 0 < x2 < x < 1 so that for every x ∈ E we have f(x) ≤ 1. To see that
1 is the least of all upper bounds, suppose that b < 1 to show b cannot be an upper bound. If
b ≤ 0 then let x = 1

2 ∈ (0, 1). In this case we have b ≤ 0 < 1
4 = f(x) for this x ∈ E. On the other

hand, if 0 < b < 1 we have 0 < 1
2 (1− b) < 1 so x = 1− 1

2 (1− b) ∈ (0, 1). It also satisfies

x2 = 1− (1− b) +
1

4
(1− b)2 > 1− (1− b) = b.

In both cases, for every b < 1 there is x ∈ E so that b < f(x), proving 1 is least among upper
bounds.
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