
Math 3210 § 2.
Treibergs

First Midterm Exam Name: Solutions
January 29, 2014

1. Let {x0, x1, x2, . . .} be a sequence defined recursively by x0 = 1, x1 = 2, and for n ∈ N,
xn+1 = 3xn − 2xn−1. Prove that xn = 2n for every integer n ≥ 0.

For n ∈ N, let the statement

Pn = “xn = 2n and xn−1 = 2n−1.”

We prove it for all n by induction.
Base case n = 1: We are given x1 = 2 = 21 and x0 = 1 = 20, so P1 is true.
Induction Case: Assume that for some n ∈ N, Pn is true to show that Pn+1 is also true. Thus

we are assuming xn = 2n and xn−1 = 2n−1 which says x(n+1)−1 = 2(n+1)−1 so that the second
equation of Pn+1 holds. Using the recursion and the induction hypothesis

xn+1 = 3xn − 2xn−1 = 3 · 2n − 2 · 2n−1 = 3 · 2n − 2n = 2 · 2n = 2n+1

so that the first equation of Pn+1 is also true. thus the induction case is done.
Hence Pn holds for all n ∈ N, so xn = 2n for all n ∈ N.

2. Using only the axioms of a commutative ring, show that for every a, b ∈ R, if a = a + b then
b = 0. Justify every step of your argument using just the axioms listed here. Use ONLY the
axioms listed and DO NOT SKIP STEPS.

Recall the axioms of a commutative ring (R,+,×). For any x, y, z ∈ R,

A1. (Commutativity of Addition.) x+ y = y + x.

A2. (Associativity of Addition.) x+ (y + z) = (x+ y) + z.

A3. (Additive Identity.) (∃ 0 ∈ R) (∀ t ∈ R) 0 + t = t.

A4. (Additive Inverse) (∃−x ∈ R) x+ (−x) = 0.

M1. (Commutativity of Multiplication.) xy = yx.

M2. (Associativity of Multiplication.) x(yz) = (xy)z.

M3. (Multiplicative Identity.) (∃ 1 ∈ R) 1 6= 0 and (∀ t ∈ R) 1t = t.

D. (Distributivity) x(y + z) = xy + xz.

a = a+ b Assumption.

a+ (−a) = (a+ b) + (−a) By A4 there is −a. Add to both sides.

a+ (−a) = (b+ a) + (−a) By A1.

a+ (−a) = b+ (a+ (−a)) By A2.

0 = b+ 0 By A4.

0 = 0 + b By A1.

0 = b By A3.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.
a. Statement:If f : A→ B and A = f−1(B) then f is onto.

False. Let A = {1}, B = {2, 3}, f(1) = 2. Then f−1(B) = {1} = A but f is not onto
because 3 ∈ B is not the value, 3 6= f(x), of any x ∈ A.

b. Statement:Let f : X → Y and A,B ⊂ X be subsets. If f(A) ∩ f(B) 6= ∅ then A ∩B 6= ∅.
False. Let X = {1, 2}, Y = {3}, f(1) = f(2) = 3, A = {1} and B = {2}. Then f(A)∩f(B) =

{3} ∩ {3} = {3} 6= ∅ but A ∩B = ∅.

c. Statement:Suppose A,B ⊂ X. Then X\(A ∪B) = (X\A) ∩ (X\B).
True. This is deMorgan’s formula. Using the deMorgan’s formula from logic,

x ∈ X\(A ∪B) ⇐⇒ x ∈ X and x /∈ (A ∪B)

⇐⇒ x ∈ X and ∼
(
x ∈ (A ∪B)

)
⇐⇒ x ∈ X and ∼

(
x ∈ A or x ∈ B

)
⇐⇒ x ∈ X and

(
∼ (x ∈ A) and ∼ (x ∈ B)

)
⇐⇒ x ∈ X and

(
x /∈ A and x /∈ B

)
⇐⇒ (x ∈ X and x /∈ A) and (x ∈ X and x /∈ B)

⇐⇒ (x ∈ X\A) and (x ∈ X\B)

⇐⇒ x ∈ (X\A) ∩ (X\B) .

4. Let (F,+,×) be a field with order relation “≤.” How is x < y defined? Using properties of a
field and the order axioms, show that if x, y, z ∈ F satisfy x < y and 0 < z then xz < yz.

Recall that “≤” is a relation that satisfies the following axioms: for all x, y, z ∈ F ,

O1. Either x ≤ y or y ≤ x.

O2. If x ≤ y and y ≤ x then x = y.

O3. If x ≤ y and y ≤ z then x ≤ z.

O4. If x ≤ y then x+ z ≤ y + z.

O5. If x ≤ y and 0 ≤ z then xz ≤ yz.

x < y means x ≤ y and x 6= y.
We assume x < y and 0 < z. By definition of “<,” this means x ≤ y and x 6= y and 0 ≤ z

and 0 6= z. Since x ≤ y and 0 ≤ z we have that xz ≤ yz by O5.
Also we have 0 6= z and we wish to show x 6= y implies xz 6= yz. By contraposition, this is

equivalent to showing xz = yz implies x = y. Since z 6= 0, by the multiplicative inverse in the
field, there is z−1 such that z−1z = 1.

xz = yz Assumption.

z−1(xz) = z−1(yz) By M4 there is z−1. Multiply both sides.

z−1(zx) = z−1(zy) By M1.

(z−1z)x = (z−1z)y By M2.

1x = 1y By M4.

x = y By M3.

Hence we have shown that xz ≤ yz and xz 6= yz. It follows that xz < yz as to be shown.
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5. For ε, δ real, let E the given subset of the real numbers. Determine E. Prove that your set
equals the given E.

E =
{
x ∈ R :

[
(∀ε > 0) (x < ε)

]
and

[
(∃δ > 0) (−δ < x)

]}
We can see what E is by replacing it with unions and intersections of intervals.

E =

(⋂
ε>0

(−∞, ε)

)
∩

(⋃
δ>0

(−δ,∞)

)
= (−∞, 0] ∩R = (−∞, 0].

To prove E = (−∞, 0] we argue “⊂” and “⊃.”
To show (−∞, 0] ⊂ E, we choose x ∈ (−∞, 0]. Hence x ≤ 0. It follows that x < ε for every

ε > 0. Also, let δ = −x + 1. Since x ≤ 0, δ > 0. Also, −δ = x − 1 < x. Thus we have shown
there is a δ > 0 so that −δ < x. Both conditions defining E hold so x ∈ E.

To show E ⊂ (−∞, 0] or x ∈ E implies x ∈ (−∞, 0] we argue the contrapositive: if x /∈ (−∞, 0]
then x /∈ E. But an arbitrary x /∈ (−∞, 0] means that x > 0. But then let ε = x > 0. Thus
there is ε > 0 such that ∼ (x < ε). In other words (∀ε > 0) (x < ε) is false. Thus one of the
conditions to be in E is violated. However, since both must hold for a point to be in E, it follows
that x /∈ E, as to be proved.

Thus we have shown both containments, so E = (−∞, 0].
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