Math 3210 § 2.
Treibergs

First Midterm Exam

1. Let $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ be a sequence defined recursively by $x_{0}=1, x_{1}=2$, and for $n \in \mathbb{N}$, $x_{n+1}=3 x_{n}-2 x_{n-1}$. Prove that $x_{n}=2^{n}$ for every integer $n \geq 0$.

For $n \in \mathbb{N}$, let the statement

$$
\mathcal{P}_{n}=" x_{n}=2^{n} \text { and } x_{n-1}=2^{n-1} . "
$$

We prove it for all n by induction.
Base case $n=1$: We are given $x_{1}=2=2^{1}$ and $x_{0}=1=2^{0}$, so \mathcal{P}_{1} is true.
Induction Case: Assume that for some $n \in \mathbb{N}, \mathcal{P}_{n}$ is true to show that \mathcal{P}_{n+1} is also true. Thus we are assuming $x_{n}=2^{n}$ and $x_{n-1}=2^{n-1}$ which says $x_{(n+1)-1}=2^{(n+1)-1}$ so that the second equation of \mathcal{P}_{n+1} holds. Using the recursion and the induction hypothesis

$$
x_{n+1}=3 x_{n}-2 x_{n-1}=3 \cdot 2^{n}-2 \cdot 2^{n-1}=3 \cdot 2^{n}-2^{n}=2 \cdot 2^{n}=2^{n+1}
$$

so that the first equation of \mathcal{P}_{n+1} is also true. thus the induction case is done.
Hence \mathcal{P}_{n} holds for all $n \in \mathbb{N}$, so $x_{n}=2^{n}$ for all $n \in \mathbb{N}$.
2. Using only the axioms of a commutative ring, show that for every $a, b \in R$, if $a=a+b$ then $b=0$. Justify every step of your argument using just the axioms listed here. Use ONLY the axioms listed and DO NOT SKIP STEPS.

Recall the axioms of a commutative ring $(R,+, \times)$. For any $x, y, z \in R$,
A1. (Commutativity of Addition.) $x+y=y+x$.
A2. (Associativity of Addition.) $x+(y+z)=(x+y)+z$.
A3. (Additive Identity.) $(\exists 0 \in R)(\forall t \in R) 0+t=t$.
A4. (Additive Inverse) $(\exists-x \in R) x+(-x)=0$.
M1. (Commutativity of Multiplication.) $x y=y x$.
M2. (Associativity of Multiplication.) $x(y z)=(x y) z$.
M3. (Multiplicative Identity.) $(\exists 1 \in R) 1 \neq 0$ and $(\forall t \in R) 1 t=t$.
D. (Distributivity) $x(y+z)=x y+x z$.

$$
\begin{aligned}
a & =a+b \\
a+(-a) & =(a+b)+(-a) \\
a+(-a) & =(b+a)+(-a) \\
a+(-a) & =b+(a+(-a)) \\
0 & =b+0 \\
0 & =0+b \\
0 & =b
\end{aligned}
$$

Assumption.
By A4 there is $-a$. Add to both sides.
By A1.
By A2.
By A4.
By A1.
By A3.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
a. Statement:If $f: A \rightarrow B$ and $A=f^{-1}(B)$ then f is onto.

False. Let $A=\{1\}, B=\{2,3\}, f(1)=2$. Then $f^{-1}(B)=\{1\}=A$ but f is not onto because $3 \in B$ is not the value, $3 \neq f(x)$, of any $x \in A$.
b. Statement:Let $f: X \rightarrow Y$ and $A, B \subset X$ be subsets. If $f(A) \cap f(B) \neq \emptyset$ then $A \cap B \neq \emptyset$.

FAlse. Let $X=\{1,2\}, Y=\{3\}, f(1)=f(2)=3, A=\{1\}$ and $B=\{2\}$. Then $f(A) \cap f(B)=$ $\{3\} \cap\{3\}=\{3\} \neq \emptyset$ but $A \cap B=\emptyset$.
c. Statement:Suppose $A, B \subset X$. Then $X \backslash(A \cup B)=(X \backslash A) \cap(X \backslash B)$.

True. This is deMorgan's formula. Using the deMorgan's formula from logic,

$$
\begin{aligned}
x \in X \backslash(A \cup B) & \Longleftrightarrow x \in X \text { and } x \notin(A \cup B) \\
& \Longleftrightarrow x \in X \text { and } \sim(x \in(A \cup B)) \\
& \Longleftrightarrow x \in X \text { and } \sim(x \in A \text { or } x \in B) \\
& \Longleftrightarrow x \in X \text { and }(\sim(x \in A) \text { and } \sim(x \in B)) \\
& \Longleftrightarrow x \in X \text { and }(x \notin A \text { and } x \notin B) \\
& \Longleftrightarrow(x \in X \text { and } x \notin A) \text { and }(x \in X \text { and } x \notin B) \\
& \Longleftrightarrow(x \in X \backslash A) \text { and }(x \in X \backslash B) \\
& \Longleftrightarrow x \in(X \backslash A) \cap(X \backslash B)
\end{aligned}
$$

4. Let $(F,+, \times)$ be a field with order relation " \leq." How is $x<y$ defined? Using properties of a field and the order axioms, show that if $x, y, z \in F$ satisfy $x<y$ and $0<z$ then $x z<y z$.

Recall that " \leq " is a relation that satisfies the following axioms: for all $x, y, z \in F$,
O1. Either $x \leq y$ or $y \leq x$.
O2. If $x \leq y$ and $y \leq x$ then $x=y$.
O3. If $x \leq y$ and $y \leq z$ then $x \leq z$.
O4. If $x \leq y$ then $x+z \leq y+z$.
O5. If $x \leq y$ and $0 \leq z$ then $x z \leq y z$.
$x<y$ means $x \leq y$ and $x \neq y$.
We assume $x<y$ and $0<z$. By definition of " $<$," this means $x \leq y$ and $x \neq y$ and $0 \leq z$ and $0 \neq z$. Since $x \leq y$ and $0 \leq z$ we have that $x z \leq y z$ by O5.

Also we have $0 \neq z$ and we wish to show $x \neq y$ implies $x z \neq y z$. By contraposition, this is equivalent to showing $x z=y z$ implies $x=y$. Since $z \neq 0$, by the multiplicative inverse in the field, there is z^{-1} such that $z^{-1} z=1$.

$$
\begin{aligned}
x z & =y z \\
z^{-1}(x z) & =z^{-1}(y z) \\
z^{-1}(z x) & =z^{-1}(z y) \\
\left(z^{-1} z\right) x & =\left(z^{-1} z\right) y \\
1 x & =1 y \\
x & =y
\end{aligned}
$$

Assumption.
By M4 there is z^{-1}. Multiply both sides.
By M1.
By M2.
By M4.
By M3.
Hence we have shown that $x z \leq y z$ and $x z \neq y z$. It follows that $x z<y z$ as to be shown.
5. For ϵ, δ real, let E the given subset of the real numbers. Determine E. Prove that your set equals the given E.

$$
E=\{x \in \mathbf{R}:[(\forall \epsilon>0)(x<\epsilon)] \text { and }[(\exists \delta>0)(-\delta<x)]\}
$$

We can see what E is by replacing it with unions and intersections of intervals.

$$
E=\left(\bigcap_{\epsilon>0}(-\infty, \epsilon)\right) \cap\left(\bigcup_{\delta>0}(-\delta, \infty)\right)=(-\infty, 0] \cap \mathbf{R}=(-\infty, 0] .
$$

To prove $E=(-\infty, 0]$ we argue " \subset " and " \supset."
To show $(-\infty, 0] \subset E$, we choose $x \in(-\infty, 0]$. Hence $x \leq 0$. It follows that $x<\epsilon$ for every $\epsilon>0$. Also, let $\delta=-x+1$. Since $x \leq 0, \delta>0$. Also, $-\delta=x-1<x$. Thus we have shown there is a $\delta>0$ so that $-\delta<x$. Both conditions defining E hold so $x \in E$.

To show $E \subset(-\infty, 0]$ or $x \in E$ implies $x \in(-\infty, 0]$ we argue the contrapositive: if $x \notin(-\infty, 0]$ then $x \notin E$. But an arbitrary $x \notin(-\infty, 0]$ means that $x>0$. But then let $\epsilon=x>0$. Thus there is $\epsilon>0$ such that $\sim(x<\epsilon)$. In other words $(\forall \epsilon>0)(x<\epsilon)$ is false. Thus one of the conditions to be in E is violated. However, since both must hold for a point to be in E, it follows that $x \notin E$, as to be proved.

Thus we have shown both containments, so $E=(-\infty, 0]$.

