Math 3210 § 3.	Third Midterm Exam	Name:
Treibergs		November 9, 2011

(1.) Let f be a function with domain $D \subset \mathbb{R}$ and let $a \in D$. Define: f is continuous at a. Let $D = (0, \infty)$ and let a be a point in D. Using just the definition, show that $f(x) = \frac{1}{x}$ is continuous at a.

A function $f: D \to \mathbb{R}$ is continuous at $a \in D$ iff for every $\varepsilon > 0$ there is a $\delta > 0$ such that $|f(x) - f(a)| < \varepsilon$ whenever $x \in D$ and $|x - a| < \delta$.

Take any $a \in (0,\infty)$. Choose $\varepsilon > 0$. Let $\delta = \min\left\{\frac{a}{2}, \frac{|a|^2\epsilon}{2}\right\}$. Then for any $x \in (0,\infty)$ such that $|x-a| < \delta$, since $\delta < \frac{a}{2}$ we have $x = a + (x-a) \ge a - |x-a| > a - \delta = a - \frac{a}{2} = \frac{a}{2}$ and so for such x,

$$\left|\frac{1}{x} - \frac{1}{a}\right| = \frac{|x-a|}{|x||a|} \le \frac{2|x-a|}{|a|^2} < \frac{2\delta}{|a|^2} \le \frac{2}{|a|^2} \cdot \frac{|a|^2\epsilon}{2} = \epsilon \quad \Box.$$

(2.) Define: the sequence $\{a_n\}$ satisfies the Cauchy Criterion. For the sequence $\{a_n\}$, suppose that there is a number r with 0 < r < 1 such that $|a_n - a_{n+1}| \le r^n$ for all $n \in \mathbb{N}$. Show that there is $L \in \mathbb{R}$ such that $a_n \to L$ as $n \to \infty$.

The sequence $\{a_n\}$ is a Cauchy Sequence iff for every $\varepsilon > 0$ there is an $N \in \mathbb{R}$ such that $|a_j - a_\ell| < \varepsilon$ whenever $j, \ell > N$.

We show that the sequence satisfies the Cauchy Criterion. Then since a Cauchy sequence is convergent, there is $L \in \mathbb{R}$ such that $a_n \to L$ as $n \to \infty$. Choose $\varepsilon > 0$. Since $r^N \to 0$ as $N \to \infty$, we may take $N \in \mathbb{N}$ so that $r^N < (1 - r)\varepsilon$. Then if $k, \ell \in \mathbb{N}$ such that $k, \ell > N$, either $k = \ell$ so that $|a_k - a_\ell| = 0 < \varepsilon$ or $k \neq \ell$. By swapping roles if necessary, we may assume $k > \ell$. In this case,

$$|a_k - a_\ell| = \left| \sum_{i=\ell}^{k-1} (a_{i+1} - a_i) \right| \le \sum_{i=\ell}^{k-1} |a_{i+1} - a_i| \le \sum_{i=\ell}^{k-1} r^i \le r^\ell \sum_{i=0}^{k-\ell-1} r^i$$
$$= \frac{r^\ell (1 - r^{k-\ell})}{1 - r} < \frac{r^\ell}{1 - r} < \frac{r^N}{1 - r} < \varepsilon. \quad \Box$$

(3.) Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

a. If $f : \mathbb{R} \to \mathbb{R}$ is not continuous at $a \in \mathbb{R}$, then for every b > a, the function must be continuous for at least one point in (a, b).

FALSE. The Dirichlet function f(x) = 1, if $x \in \mathbb{Q}$ and f(x) = 0, if $x \in \mathbb{R} \setminus \mathbb{Q}$ is not continuous at any point.

b. The polynomial $p(x) = x^4 + 3x^3 + 1$ has at least one real root.

TRUE. p(x) is continuous on \mathbb{R} because it is a polynomial. p(-1) = -1 and p(0) = 1 so that y = 0 is an intermediate value. By the Intermediate Value Theorem, there is a $c \in [-1, 0]$ such that p(c) = 0.

c. Suppose that the continuous function $f : (0,1) \to \mathbb{R}$ has the property that $\{f(x_n)\}$ has a convergent subsequence for every sequence $\{x_n\} \subset (0,1)$. Then f is uniformly continuous.

FALSE. The function $f(x) = \sin\left(\frac{1}{x}\right)$ is continuous but not uniformly continuous on (0, 1). f is also bounded, so that for any $\{x_n\} \subset (0, 1)$, the sequence $\{f(x_n)\}$ is bounded and therefore has a convergent subsequence by the Bolzano Weierstrass Theorem. (4.) Let f be a function with domain $D \subset \mathbb{R}$. Define: f is uniformly continuous on D. Suppose f and g are uniformly continuous and bounded on the nonempty domain $D \subset \mathbb{R}$. Show that fg is uniformly continuous on D.

A function $f: D \to \mathbb{R}$ is uniformly continuous on D iff for every $\varepsilon > 0$ there is a $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $x, y \in D$ and $|x - y| < \delta$.

First, since f and g are bounded, there is $M_1, M_2 \in \mathbb{R}$ so that $|f(x)| < M_1$ and $|g(x)| < M_2$ for all $x \in D$. To show that the product fg is uniformly continuous, choose $\varepsilon > 0$. By the uniform continuity of f, there is a $\delta_1 > 0$ such that $|f(x) - f(y)| < \frac{\varepsilon}{2M_1}$ whenever $x, y \in D$ and $|x - y| < \delta_1$. By the uniform continuity of g, there is a $\delta_2 > 0$ such that $|g(x) - g(y)| < \frac{\varepsilon}{2M_2}$ whenever $x, y \in D$ and $|x - y| < \delta_2$. Let $\delta = \min\{\delta_1, \delta_2\}$. Then for any $x, y \in D$ such that $|x - y| < \delta$ we have

$$\begin{aligned} |f(x)g(x) - f(y)g(y)| &= |f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)| \\ &\leq |f(x)| |g(x) - g(y)| + |g(y)| |f(x) - f(y)| \\ &< M_1 \cdot \frac{\varepsilon}{2M_1} + M_2 \cdot \frac{\varepsilon}{2M_2} = \varepsilon. \quad \Box \end{aligned}$$

(5.) Suppose we are given functions $f_n : D \to \mathbb{R}$ for all $n \in \mathbb{N}$ and $f : D \to \mathbb{R}$. Define: f_n converges uniformly to f on D. Let $g_n(x) = \sqrt{x^2 + \frac{1}{n}}$. Show that the pointwise limit $g(x) = \lim_{n \to \infty} g_n(x)$ exists for all $x \in \mathbb{R}$. What is g(x)? Determine whether the convergence is uniform on \mathbb{R} and give the proof.

The sequence of functions $\{f_n\}$ converges uniformly to a function f on D iff for each $\varepsilon > 0$ there is an $N \in \mathbb{R}$ such that $|f_n(x) - f(x)| < \varepsilon$ whenever $x \in D$ and n > N.

Since \sqrt{x} is continuous on $[0, \infty)$ and by the main limit theorem $x^2 + \frac{1}{n} \to x^2$ as $n \to \infty$, we see by the sequence characterization of continuity at x^2 , $g_n(x) = \sqrt{x^2 + \frac{1}{n}} \to \sqrt{x^2} = |x| = g(x)$ as $n \to \infty$.

To show that the convergence is uniform on \mathbb{R} , choose $\varepsilon > 0$. Let $N = \frac{1}{\varepsilon^2}$. Then if n > N, and $x \in \mathbb{R}$,

$$|g_n(x) - g(x)| = \left| \sqrt{x^2 + \frac{1}{n}} - |x| \right| = \left| \left(\sqrt{x^2 + \frac{1}{n}} - |x| \right) \frac{\sqrt{x^2 + \frac{1}{n}} + |x|}{\sqrt{x^2 + \frac{1}{n}} + |x|} \right| = \left| \frac{x^2 + \frac{1}{n} - |x|^2}{\sqrt{x^2 + \frac{1}{n}} + |x|} \right|$$
$$= \left| \frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n}} + |x|} \right| \le \left| \frac{\frac{1}{n}}{\sqrt{0 + \frac{1}{n}} + 0} \right| = \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} = \frac{1}{\sqrt{1/\varepsilon^2}} = \varepsilon. \quad \Box$$