
Math 3210 § 3.
Treibergs

Third Midterm Exam Name:
November 9, 2011

(1.) Let f be a function with domain D ⊂ R and let a ∈ D. Define: f is continuous at a. Let

D = (0,∞) and let a be a point in D. Using just the definition, show that f(x) =
1
x

is continuous
at a.

A function f : D → R is continuous at a ∈ D iff for every ε > 0 there is a δ > 0 such that
|f(x)− f(a)| < ε whenever x ∈ D and |x− a| < δ.

Take any a ∈ (0,∞). Choose ε > 0. Let δ = min
{
a

2
,
|a|2ε

2

}
. Then for any x ∈ (0,∞) such

that |x− a| < δ, since δ <
a

2
we have x = a+ (x− a) ≥ a− |x− a| > a− δ = a− a

2
=
a

2
and so

for such x, ∣∣∣∣ 1x − 1
a

∣∣∣∣ =
|x− a|
|x||a|

≤ 2|x− a|
|a|2

<
2δ
|a|2
≤ 2
|a|2
· |a|

2ε

2
= ε .

(2.) Define: the sequence {an} satisfies the Cauchy Criterion. For the sequence {an}, suppose
that there is a number r with 0 < r < 1 such that |an− an+1| ≤ rn for all n ∈ N. Show that there
is L ∈ R such that an → L as n→∞.

The sequence {an} is a Cauchy Sequence iff for every ε > 0 there is an N ∈ R such that
|aj − a`| < ε whenever j, ` > N .

We show that the sequence satisfies the Cauchy Criterion. Then since a Cauchy sequence is
convergent, there is L ∈ R such that an → L as n→∞. Choose ε > 0. Since rN → 0 as N →∞,
we may take N ∈ N so that rN < (1 − r)ε. Then if k, ` ∈ N such that k, ` > N , either k = ` so
that |ak − a`| = 0 < ε or k 6= `. By swapping roles if necessary, we may assume k > `. In this
case,

|ak − a`| =

∣∣∣∣∣
k−1∑
i=`

(ai+1 − ai)

∣∣∣∣∣ ≤
k−1∑
i=`

|ai+1 − ai| ≤
k−1∑
i=`

ri ≤ r`
k−`−1∑

i=0

ri

=
r`(1− rk−`)

1− r
<

r`

1− r
<

rN

1− r
< ε.

(3.) Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

a. If f : R → R is not continuous at a ∈ R, then for every b > a, the function must be
continuous for at least one point in (a, b).

False. The Dirichlet function f(x) = 1, if x ∈ Q and f(x) = 0, if x ∈ R\Q is not continuous
at any point.

b. The polynomial p(x) = x4 + 3x3 + 1 has at least one real root.

True. p(x) is continuous on R because it is a polynomial. p(−1) = −1 and p(0) = 1 so that
y = 0 is an intermediate value. By the Intermediate Value Theorem, there is a c ∈ [−1, 0]
such that p(c) = 0.

c. Suppose that the continuous function f : (0, 1) → R has the property that {f(xn)} has a
convergent subsequence for every sequence {xn} ⊂ (0, 1). Then f is uniformly continuous.

False. The function f(x) = sin
(

1
x

)
is continuous but not uniformly continuous on (0, 1).

f is also bounded, so that for any {xn} ⊂ (0, 1), the sequence {f(xn)} is bounded and
therefore has a convergent subsequence by the Bolzano Weierstrass Theorem.
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(4.) Let f be a function with domain D ⊂ R. Define: f is uniformly continuous on D. Suppose
f and g are uniformly continuous and bounded on the nonempty domain D ⊂ R. Show that fg
is uniformly continuous on D.

A function f : D → R is uniformly continuous on D iff for every ε > 0 there is a δ > 0 such
that |f(x)− f(y)| < ε whenever x, y ∈ D and |x− y| < δ.

First, since f and g are bounded, there is M1,M2 ∈ R so that |f(x)| < M1 and |g(x)| < M2

for all x ∈ D. To show that the product fg is uniformly continuous, choose ε > 0. By the
uniform continuity of f , there is a δ1 > 0 such that |f(x)− f(y)| < ε

2M1
whenever x, y ∈ D and

|x − y| < δ1. By the uniform continuity of g, there is a δ2 > 0 such that |g(x) − g(y)| < ε

2M2
whenever x, y ∈ D and |x − y| < δ2. Let δ = min{δ1, δ2}. Then for any x, y ∈ D such that
|x− y| < δ we have

|f(x)g(x)− f(y)g(y)| = |f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)|
≤ |f(x)| |g(x)− g(y)|+ |g(y)| |f(x)− f(y)|

< M1 ·
ε

2M1
+M2 ·

ε

2M2
= ε.

(5.) Suppose we are given functions fn : D → R for all n ∈ N and f : D → R. Define: fn

converges uniformly to f on D. Let gn(x) =
√
x2 +

1
n

. Show that the pointwise limit g(x) =

lim
n→∞

gn(x) exists for all x ∈ R. What is g(x)? Determine whether the convergence is uniform on
R and give the proof.

The sequence of functions {fn} converges uniformly to a function f on D iff for each ε > 0
there is an N ∈ R such that |fn(x)− f(x)| < ε whenever x ∈ D and n > N .

Since
√
x is continuous on [0,∞) and by the main limit theorem x2 +

1
n
→ x2 as n→∞, we

see by the sequence characterization of continuity at x2, gn(x) =
√
x2 +

1
n
→
√
x2 = |x| = g(x)

as n→∞.
To show that the convergence is uniform on R, choose ε > 0. Let N =

1
ε2

. Then if n > N ,
and x ∈ R,

|gn(x)− g(x)| =

∣∣∣∣∣
√
x2 +

1
n
− |x|

∣∣∣∣∣ =

∣∣∣∣∣∣
(√

x2 +
1
n
− |x|

) √
x2 + 1

n + |x|√
x2 + 1

n + |x|

∣∣∣∣∣∣ =

∣∣∣∣∣∣ x
2 + 1

n − |x|
2√

x2 + 1
n + |x|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1
n√

x2 + 1
n + |x|

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

1
n√

0 + 1
n + 0

∣∣∣∣∣∣ =
1√
n
<

1√
N

=
1√
1/ε2

= ε.
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