Math 3210 § 3. Third Midterm Exam
Treibergs

Name:
November 9, 2011
(1.) Let f be a function with domain $D \subset \mathbb{R}$ and let $a \in D$. Define: f is continuous at a. Let $D=(0, \infty)$ and let a be a point in D. Using just the definition, show that $f(x)=\frac{1}{x}$ is continuous at a.

A function $f: D \rightarrow \mathbb{R}$ is continuous at $a \in D$ iff for every $\varepsilon>0$ there is a $\delta>0$ such that $|f(x)-f(a)|<\varepsilon$ whenever $x \in D$ and $|x-a|<\delta$.

Take any $a \in(0, \infty)$. Choose $\varepsilon>0$. Let $\delta=\min \left\{\frac{a}{2}, \frac{|a|^{2} \epsilon}{2}\right\}$. Then for any $x \in(0, \infty)$ such that $|x-a|<\delta$, since $\delta<\frac{a}{2}$ we have $x=a+(x-a) \geq a-|x-a|>a-\delta=a-\frac{a}{2}=\frac{a}{2}$ and so for such x,

$$
\left|\frac{1}{x}-\frac{1}{a}\right|=\frac{|x-a|}{|x||a|} \leq \frac{2|x-a|}{|a|^{2}}<\frac{2 \delta}{|a|^{2}} \leq \frac{2}{|a|^{2}} \cdot \frac{|a|^{2} \epsilon}{2}=\epsilon
$$

(2.) Define: the sequence $\left\{a_{n}\right\}$ satisfies the Cauchy Criterion. For the sequence $\left\{a_{n}\right\}$, suppose that there is a number r with $0<r<1$ such that $\left|a_{n}-a_{n+1}\right| \leq r^{n}$ for all $n \in \mathbb{N}$. Show that there is $L \in \mathbb{R}$ such that $a_{n} \rightarrow L$ as $n \rightarrow \infty$.

The sequence $\left\{a_{n}\right\}$ is a Cauchy Sequence iff for every $\varepsilon>0$ there is an $N \in \mathbb{R}$ such that $\left|a_{j}-a_{\ell}\right|<\varepsilon$ whenever $j, \ell>N$.

We show that the sequence satisfies the Cauchy Criterion. Then since a Cauchy sequence is convergent, there is $L \in \mathbb{R}$ such that $a_{n} \rightarrow L$ as $n \rightarrow \infty$. Choose $\varepsilon>0$. Since $r^{N} \rightarrow 0$ as $N \rightarrow \infty$, we may take $N \in \mathbb{N}$ so that $r^{N}<(1-r) \varepsilon$. Then if $k, \ell \in \mathbb{N}$ such that $k, \ell>N$, either $k=\ell$ so that $\left|a_{k}-a_{\ell}\right|=0<\varepsilon$ or $k \neq \ell$. By swapping roles if necessary, we may assume $k>\ell$. In this case,

$$
\begin{gathered}
\left|a_{k}-a_{\ell}\right|=\left|\sum_{i=\ell}^{k-1}\left(a_{i+1}-a_{i}\right)\right| \leq \sum_{i=\ell}^{k-1}\left|a_{i+1}-a_{i}\right| \leq \sum_{i=\ell}^{k-1} r^{i} \leq r^{\ell} \sum_{i=0}^{k-\ell-1} r^{i} \\
=\frac{r^{\ell}\left(1-r^{k-\ell}\right)}{1-r}<\frac{r^{\ell}}{1-r}<\frac{r^{N}}{1-r}<\varepsilon
\end{gathered}
$$

(3.) Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
a. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is not continuous at $a \in \mathbb{R}$, then for every $b>a$, the function must be continuous for at least one point in (a, b).
FAlse. The Dirichlet function $f(x)=1$, if $x \in \mathbb{Q}$ and $f(x)=0$, if $x \in \mathbb{R} \backslash \mathbb{Q}$ is not continuous at any point.
b. The polynomial $p(x)=x^{4}+3 x^{3}+1$ has at least one real root.

True. $p(x)$ is continuous on \mathbb{R} because it is a polynomial. $p(-1)=-1$ and $p(0)=1$ so that $y=0$ is an intermediate value. By the Intermediate Value Theorem, there is a $c \in[-1,0]$ such that $p(c)=0$.
c. Suppose that the continuous function $f:(0,1) \rightarrow \mathbb{R}$ has the property that $\left\{f\left(x_{n}\right)\right\}$ has a convergent subsequence for every sequence $\left\{x_{n}\right\} \subset(0,1)$. Then f is uniformly continuous.
FALSE. The function $f(x)=\sin \left(\frac{1}{x}\right)$ is continuous but not uniformly continuous on $(0,1)$. f is also bounded, so that for any $\left\{x_{n}\right\} \subset(0,1)$, the sequence $\left\{f\left(x_{n}\right)\right\}$ is bounded and therefore has a convergent subsequence by the Bolzano Weierstrass Theorem.
(4.) Let f be a function with domain $D \subset \mathbb{R}$. Define: f is uniformly continuous on D. Suppose f and g are uniformly continuous and bounded on the nonempty domain $D \subset \mathbb{R}$. Show that $f g$ is uniformly continuous on D.

A function $f: D \rightarrow \mathbb{R}$ is uniformly continuous on D iff for every $\varepsilon>0$ there is a $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in D$ and $|x-y|<\delta$.

First, since f and g are bounded, there is $M_{1}, M_{2} \in \mathbb{R}$ so that $|f(x)|<M_{1}$ and $|g(x)|<M_{2}$ for all $x \in D$. To show that the product $f g$ is uniformly continuous, choose $\varepsilon>0$. By the uniform continuity of f, there is a $\delta_{1}>0$ such that $|f(x)-f(y)|<\frac{\varepsilon}{2 M_{1}}$ whenever $x, y \in D$ and $|x-y|<\delta_{1}$. By the uniform continuity of g, there is a $\delta_{2}>0$ such that $|g(x)-g(y)|<\frac{\varepsilon}{2 M_{2}}$ whenever $x, y \in D$ and $|x-y|<\delta_{2}$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then for any $x, y \in D$ such that $|x-y|<\delta$ we have

$$
\begin{aligned}
|f(x) g(x)-f(y) g(y)| & =|f(x) g(x)-f(x) g(y)+f(x) g(y)-f(y) g(y)| \\
& \leq|f(x)||g(x)-g(y)|+|g(y)||f(x)-f(y)| \\
& <M_{1} \cdot \frac{\varepsilon}{2 M_{1}}+M_{2} \cdot \frac{\varepsilon}{2 M_{2}}=\varepsilon
\end{aligned}
$$

(5.) Suppose we are given functions $f_{n}: D \rightarrow \mathbb{R}$ for all $n \in \mathbb{N}$ and $f: D \rightarrow \mathbb{R}$. Define: f_{n} converges uniformly to f on D. Let $g_{n}(x)=\sqrt{x^{2}+\frac{1}{n}}$. Show that the pointwise limit $g(x)=$ $\lim _{n \rightarrow \infty} g_{n}(x)$ exists for all $x \in \mathbb{R}$. What is $g(x)$? Determine whether the convergence is uniform on \mathbb{R} and give the proof.

The sequence of functions $\left\{f_{n}\right\}$ converges uniformly to a function f on D iff for each $\varepsilon>0$ there is an $N \in \mathbb{R}$ such that $\left|f_{n}(x)-f(x)\right|<\varepsilon$ whenever $x \in D$ and $n>N$.

Since \sqrt{x} is continuous on $[0, \infty)$ and by the main limit theorem $x^{2}+\frac{1}{n} \rightarrow x^{2}$ as $n \rightarrow \infty$, we see by the sequence characterization of continuity at $x^{2}, g_{n}(x)=\sqrt{x^{2}+\frac{1}{n}} \rightarrow \sqrt{x^{2}}=|x|=g(x)$ as $n \rightarrow \infty$.

To show that the convergence is uniform on \mathbb{R}, choose $\varepsilon>0$. Let $N=\frac{1}{\varepsilon^{2}}$. Then if $n>N$, and $x \in \mathbb{R}$,

$$
\begin{aligned}
\left|g_{n}(x)-g(x)\right| & =\left|\sqrt{x^{2}+\frac{1}{n}}-|x|\right|=\left|\left(\sqrt{x^{2}+\frac{1}{n}}-|x|\right) \frac{\sqrt{x^{2}+\frac{1}{n}}+|x|}{\sqrt{x^{2}+\frac{1}{n}}+|x|}\right|=\left|\frac{x^{2}+\frac{1}{n}-|x|^{2}}{\sqrt{x^{2}+\frac{1}{n}}+|x|}\right| \\
& =\left|\frac{\frac{1}{n}}{\sqrt{x^{2}+\frac{1}{n}}+|x|}\right| \leq\left|\frac{\frac{1}{n}}{\sqrt{0+\frac{1}{n}}+0}\right|=\frac{1}{\sqrt{n}}<\frac{1}{\sqrt{N}}=\frac{1}{\sqrt{1 / \varepsilon^{2}}}=\varepsilon .
\end{aligned}
$$

