Math 3210 § $2 . \quad$ Second Midterm Exam \quad Same: Solutions
Treibergs

October 5, 2011

1. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a real sequence and $L \in \mathbb{R}$. State the definition: $L=\lim _{n \rightarrow \infty} a_{n}$. Guess the limit. Then use the definition of limit to prove that your guess is correct. $L=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{1+\sqrt{n}}$.

The real sequence $\left\{a_{n}\right\}$ converges to $L \in \mathbb{R}$ if for every $\varepsilon>0$ there is an $N \in \mathbb{R}$ such that $\left|a_{n}-L\right|<\varepsilon$ whenever $n>N$.

We guess $L=1$. Choose $\varepsilon>0$. Let $N=\varepsilon^{-2}$. For any $n>N$ we have

$$
\left|a_{n}-L\right|=\left|\frac{\sqrt{n}}{1+\sqrt{n}}-1\right|=\left|\frac{\sqrt{n}-1-\sqrt{n}}{1+\sqrt{n}}\right|=\frac{1}{1+\sqrt{n}}<\frac{1}{\sqrt{n}}<\frac{1}{\sqrt{N}}=\frac{1}{\sqrt{1 / \varepsilon^{2}}}=\varepsilon
$$

2. Let $E \subset \mathbb{R}$ be a nonempty subset and $m \in \mathbb{R}$. State the definition: $m=\inf E$. (m is also called the greatest lower bound of E.$) Consider the set E=\left\{\frac{p}{q}: p \in \mathbb{N}\right.$ and $\left.q \in \mathbb{N}\right\}$. Find inf E and prove that it is the infimum.
m is the greatest lower bound of a nonempty set E if (1) it is a lower bound, namely $(\forall x \in E)(m \leq x)$ and (2) it is the greatest of lower bounds, namely $(\forall \varepsilon>0)(\exists x \in E)(x<m+\varepsilon)$.

We show that $0=\inf E$ where $E=\{p / q: p, q \in \mathbb{N}\}$. To see that 0 is a lower bound choose $x \in E$. Hence $x=p / q$ for some $p, q \in \mathbb{N}$. But $p>0$ and $q>0$, hence $q^{-1}>0$ which implies $x=p q^{-1}>0$. Thus we have shown $0 \leq x$ for all $x \in E$.

To see that 0 is the greatest of lower bounds choose $\varepsilon>0$. Hence $\varepsilon^{-1}>0$. By the Archimedean Property, there is an $q \in \mathbb{N}$ so that $q>\varepsilon^{-1}$, hence $1 / q<\varepsilon$. Let $p=1$. Then there is $x \in E$, namely $x=p / q=1 / q<\varepsilon$. Thus we have shown for any $\varepsilon>0$ there is $x=p / q \in E$ such that $x<0+\varepsilon$ so no number greater than zero is an upper bound.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
a. Statement: If $x, y \in \mathbb{R}$ are such that $x \neq y$ and $y \neq 0$ then $\left|\frac{y+x}{y-x}\right| \leq \frac{|y|+|x|}{|y|}$.

FALSE. Let $x=1, y=2$ so $\left|\frac{y+x}{y-x}\right|=\left|\frac{2+1}{2-1}\right|=3$ which exceeds $\frac{|y|+|x|}{|y|}=\frac{|2|+|1|}{|2|}=1.5$.
b. Statement: Let $\left\{a_{n}\right\}$ be real, convergent sequences such that a_{n} is irrational for all $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} a_{n}$ is irrational.

FALSE. Let $a_{n}=\frac{\sqrt{2}}{n}$. Then a_{n} is irrational as it is the product of an irrational $\sqrt{2}$ and a nonzero rational $1 / n$. However $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ but 0 is rational.
c. Statement: If $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded function, then $\inf _{\mathbb{R}} f \leq \sup _{\mathbb{R}} f$.

True. Let $E=\{f(x): x \in \mathbb{R}\}$. Then $f(0) \in E$. Since $\inf _{\mathbb{R}} f=\inf E$ is a lower bound for E we have $\inf _{\mathbb{R}} f \leq f(0)$. Since $\sup _{\mathbb{R}} f=\sup E$ is an upper bound for E we have $f(0) \leq \sup _{\mathbb{R}} f$. Thus $\inf _{\mathbb{R}} f \leq f(0) \leq \sup _{\mathbb{R}} f$.

The Axioms for a Field F with binary operations + and \cdot.

A1. $x+y=y+x$ for all $x, y \in F$.;
A2. $x+(y+z)=(x+y)+z$ for all $x, y, z \in F$;
A3. There is an element $0 \in F$ such that $0+x=x$ for all $x \in F$;
A4. For every $x \in F$ there is an element $-x$ such that $x+(-x)=0$;
M1. $x y=y x$ for all $x, y \in F$.;
M2. $x(y z)=(x y) z$ for all $x, y, z \in F$;
M3. There is an element $1 \in F$ such that $1 \neq 0$ and $1 x=x$ for all $x \in F$;
M4. For each non-zero $x \in F$ there is an element x^{-1} such that $x^{-1} x=1$;
D. $x(y+z)=x y+x z$ for all $x, y, z \in F$.
4. Let $x, y \neq 0$ be elements of the field F. Hence also $x y \neq 0$. Using just the axioms of a field, show that $(x y)^{-1}=x^{-1} y^{-1}$.

$$
\begin{aligned}
x^{-1} y^{-1} & =1\left(x^{-1} y^{-1}\right) & & \text { M3. Multiplicative Identity } \\
& =\left[(x y)^{-1}(x y)\right]\left(x^{-1} y^{-1}\right) & & \text { M4. Multiplicative Inverse } \\
& =(x y)^{-1}\left[(x y)\left(x^{-1} y^{-1}\right)\right] & & \text { M2. Associativity of Multiplication } \\
& =(x y)^{-1}\left[(y x)\left(x^{-1} y^{-1}\right)\right] & & \text { M1. Commutativity of Multiplication } \\
& =(x y)^{-1}\left[\left((y x) x^{-1}\right) y^{-1}\right] & & \text { M2. Associativity of Multiplication } \\
& =(x y)^{-1}\left[\left(y\left(x x^{-1}\right)\right) y^{-1}\right] & & \text { M2. Associativity of Multiplication } \\
& =(x y)^{-1}\left[\left(y\left(x^{-1} x\right)\right) y^{-1}\right] & & \text { M1. Commutativity of Multiplication } \\
& =(x y)^{-1}\left[(y 1) y^{-1}\right] & & \text { M4. Multiplicative Inverse } \\
& =(x y)^{-1}\left[(1 y) y^{-1}\right] & & \text { M1. Commutativity of Multiplication } \\
& =(x y)^{-1}\left[y y y^{-1}\right] & & \text { M3. Multiplicative Identity } \\
& =(x y)^{-1}\left[y^{-1} y\right] & & \text { M1. Commutativity of Multiplication } \\
& =(x y)^{-1} 1 & & \text { M1. Multiplicative Inverse Commutativity of Multiplication } \\
& =1(x y)^{-1} & & \text { M3. Multiplicative Identity } \\
& =(x y)^{-1} & &
\end{aligned}
$$

5. Let $E \subset \mathbb{R}$ be a nonempty subset. State the definition: E is not bounded above. Consider the set $E=\left\{\frac{n^{3}}{n^{2}+2}: n \in \mathbb{N}\right\}$. Show that E is not bounded above.

The nonempty real set E is not bounded above if for every $M \in \mathbb{R}$ there is an $x \in E$ such that $M<x$, i.e., $(\forall M \in \mathbb{R})(\exists x \in E)(M<x)$.

To show that $E=\left\{\frac{n^{3}}{n^{2}+2}: n \in \mathbb{N}\right\}$ is not bounded above, choose $M \in \mathbb{R}$. By the Archimedean Property, there is an $n \in \mathbb{N}$ such that $n>M+2$. For this n, because $n \geq 1$ we have $n^{2} \geq n$ so

$$
\frac{n^{3}}{n^{2}+2}=\frac{n^{3}+2 n-2 n}{n^{2}+2}=n-\frac{2 n}{n^{2}+2} \geq n-\frac{2 n^{2}}{n^{2}+2} \geq n-\frac{2 n^{2}}{n^{2}}=n-2>(M+2)-2=M
$$

Thus we have shown for any $M \in \mathbb{R}$ there is $x \in E$, namely $x=\frac{n^{3}}{n^{2}+2}$ for this n such that $M<x$.

