Math 3210 § 2.	Second Midterm Exam	Name:	Solutions
Treibergs		October 5, 2011	

1. Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence and $L\in\mathbb{R}$. State the definition: $L=\lim_{n\to\infty}a_n$. Guess the limit.

Then use the definition of limit to prove that your guess is correct. $L = \lim_{n \to \infty} \frac{\sqrt{n}}{1 + \sqrt{n}}$

The real sequence $\{a_n\}$ converges to $L \in \mathbb{R}$ if for every $\varepsilon > 0$ there is an $N \in \mathbb{R}$ such that $|a_n - L| < \varepsilon$ whenever n > N.

We guess L = 1. Choose $\varepsilon > 0$. Let $N = \varepsilon^{-2}$. For any n > N we have

$$|a_n - L| = \left|\frac{\sqrt{n}}{1 + \sqrt{n}} - 1\right| = \left|\frac{\sqrt{n} - 1 - \sqrt{n}}{1 + \sqrt{n}}\right| = \frac{1}{1 + \sqrt{n}} < \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} = \frac{1}{\sqrt{1/\varepsilon^2}} = \varepsilon.$$

2. Let $E \subset \mathbb{R}$ be a nonempty subset and $m \in \mathbb{R}$. State the definition: $m = \inf E$. (*m* is also called the greatest lower bound of *E*.) Consider the set $E = \left\{\frac{p}{q} : p \in \mathbb{N} \text{ and } q \in \mathbb{N}\right\}$. Find $\inf E$ and prove that it is the infimum.

m is the greatest lower bound of a nonempty set E if (1) it is a lower bound, namely

 $(\forall x \in E)(m \leq x)$ and (2) it is the greatest of lower bounds, namely $(\forall \varepsilon > 0)(\exists x \in E)(x < m + \varepsilon)$. We show that $0 = \inf E$ where $E = \{p/q : p, q \in \mathbb{N}\}$. To see that 0 is a lower bound choose $x \in E$. Hence x = p/q for some $p, q \in \mathbb{N}$. But p > 0 and q > 0, hence $q^{-1} > 0$ which implies $x = pq^{-1} > 0$. Thus we have shown $0 \leq x$ for all $x \in E$.

To see that 0 is the greatest of lower bounds choose $\varepsilon > 0$. Hence $\varepsilon^{-1} > 0$. By the Archimedean Property, there is an $q \in \mathbb{N}$ so that $q > \varepsilon^{-1}$, hence $1/q < \varepsilon$. Let p = 1. Then there is $x \in E$, namely $x = p/q = 1/q < \varepsilon$. Thus we have shown for any $\varepsilon > 0$ there is $x = p/q \in E$ such that $x < 0 + \varepsilon$ so no number greater than zero is an upper bound.

3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

a. STATEMENT: If
$$x, y \in \mathbb{R}$$
 are such that $x \neq y$ and $y \neq 0$ then $\left| \frac{y+x}{y-x} \right| \le \frac{|y|+|x|}{|y|}$.
FALSE. Let $x = 1, y = 2$ so $\left| \frac{y+x}{y-x} \right| = \left| \frac{2+1}{2-1} \right| = 3$ which exceeds $\frac{|y|+|x|}{|y|} = \frac{|2|+|1|}{|2|} = 1.5$.

b. STATEMENT: Let $\{a_n\}$ be real, convergent sequences such that a_n is irrational for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} a_n$ is irrational.

FALSE. Let $a_n = \frac{\sqrt{2}}{n}$. Then a_n is irrational as it is the product of an irrational $\sqrt{2}$ and a nonzero rational 1/n. However $a_n \to 0$ as $n \to \infty$ but 0 is rational.

c. Statement: If $f : \mathbb{R} \to \mathbb{R}$ be a bounded function, then $\inf_{\mathbb{R}} f \leq \sup_{\mathbb{R}} f$.

TRUE. Let $E = \{f(x) : x \in \mathbb{R}\}$. Then $f(0) \in E$. Since $\inf_{\mathbb{R}} f = \inf E$ is a lower bound for E we have $\inf_{\mathbb{R}} f \leq f(0)$. Since $\sup_{\mathbb{R}} f = \sup E$ is an upper bound for E we have $f(0) \leq \sup_{\mathbb{R}} f$. Thus $\inf_{\mathbb{R}} f \leq f(0) \leq \sup_{\mathbb{R}} f$.

The Axioms for a Field F with binary operations + and \cdot .

- A1. x + y = y + x for all $x, y \in F$.;
- A2. x + (y + z) = (x + y) + z for all $x, y, z \in F$;
- A3. There is an element $0 \in F$ such that 0 + x = x for all $x \in F$;
- A4. For every $x \in F$ there is an element -x such that x + (-x) = 0;
- M1. xy = yx for all $x, y \in F$.;
- M2. x(yz) = (xy)z for all $x, y, z \in F$;
- M3. There is an element $1 \in F$ such that $1 \neq 0$ and 1x = x for all $x \in F$;
- M4. For each non-zero $x \in F$ there is an element x^{-1} such that $x^{-1}x = 1$;
- D. x(y+z) = xy + xz for all $x, y, z \in F$.

4. Let $x, y \neq 0$ be elements of the field F. Hence also $xy \neq 0$. Using just the axioms of a field, show that $(xy)^{-1} = x^{-1}y^{-1}$.

$x^{-1}y^{-1} = 1(x^{-1}y^{-1})$	M3. Multiplicative Identity
$= [(xy)^{-1}(xy)](x^{-1}y^{-1})$	M4. Multiplicative Inverse
$= (xy)^{-1}[(xy)(x^{-1}y^{-1})]$	M2. Associativity of Multiplication
$= (xy)^{-1}[(yx)(x^{-1}y^{-1})]$	M1. Commutativity of Multiplication
$= (xy)^{-1}[((yx)x^{-1})y^{-1}]$	M2. Associativity of Multiplication
$= (xy)^{-1}[(y(xx^{-1}))y^{-1}]$	M2. Associativity of Multiplication
$= (xy)^{-1}[(y(x^{-1}x))y^{-1}]$	M1. Commutativity of Multiplication
$= (xy)^{-1}[(y1)y^{-1}]$	M4. Multiplicative Inverse
$= (xy)^{-1}[(1y)y^{-1}]$	M1. Commutativity of Multiplication
$= (xy)^{-1}[yy^{-1}]$	M3. Multiplicative Identity
$= (xy)^{-1}[y^{-1}y]$	M1. Commutativity of Multiplication
$= (xy)^{-1}1$	M4. Multiplicative Inverse
$= 1(xy)^{-1}$	M1. Commutativity of Multiplication
$=(xy)^{-1}$	M3. Multiplicative Identity

5. Let $E \subset \mathbb{R}$ be a nonempty subset. State the definition: E is not bounded above. Consider the set $E = \left\{ \frac{n^3}{n^2 + 2} : n \in \mathbb{N} \right\}$. Show that E is not bounded above.

The nonempty real set E is not bounded above if for every $M \in \mathbb{R}$ there is an $x \in E$ such that M < x, *i.e.*, $(\forall M \in \mathbb{R})(\exists x \in E)(M < x)$.

To show that $E = \left\{ \frac{n^3}{n^2 + 2} : n \in \mathbb{N} \right\}$ is not bounded above, choose $M \in \mathbb{R}$. By the Archimedean Property, there is an $n \in \mathbb{N}$ such that n > M + 2. For this n, because $n \ge 1$ we have $n^2 \ge n$ so

$$\frac{n^3}{n^2+2} = \frac{n^3+2n-2n}{n^2+2} = n - \frac{2n}{n^2+2} \ge n - \frac{2n^2}{n^2+2} \ge n - \frac{2n^2}{n^2} = n - 2 > (M+2) - 2 = M.$$

Thus we have shown for any $M \in \mathbb{R}$ there is $x \in E$, namely $x = \frac{n^3}{n^2 + 2}$ for this n such that M < x.