Math 3210 § 3.
Treibergs

Final Exam

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Define: f is differentiable at a. Determine whether the given function is differentiable at 0 . Justify your answer.

$$
f(x)= \begin{cases}\frac{x^{2}}{\sqrt{x^{2}+x^{4}}}, & \text { if } x \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Definition: f is differentiable at a if the following limit exists: $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$.
For the given function, the limit does not exist at 0 . To see this we show for two sequences tending to zero, the difference quotient has different limits. Taking $x_{n}=\frac{1}{n}$,

$$
\frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}=\frac{x_{n}^{2}}{x_{n} \sqrt{x_{n}^{2}+x_{n}^{4}}}=\frac{x_{n}}{\sqrt{x_{n}^{2}\left(1+x_{n}^{2}\right)}}=\frac{x_{n}}{\left|x_{n}\right| \sqrt{1+x_{n}^{2}}}=\frac{\frac{1}{n}}{\left|\frac{1}{n}\right| \sqrt{1+\frac{1}{n}^{2}}}=\frac{1}{\sqrt{1+\frac{1}{n}^{2}}} \rightarrow 1
$$

as $n \rightarrow \infty$. On the other hand, for $y_{n}=-\frac{1}{n}$,

$$
\frac{f\left(y_{n}\right)-f(0)}{y_{n}-0}=\frac{y_{n}^{2}}{y_{n} \sqrt{y_{n}^{2}+y_{n}^{4}}}=\frac{-\frac{1}{n}}{\left|-\frac{1}{n}\right| \sqrt{1+\frac{1}{n}^{2}}}=\frac{-1}{\sqrt{1+\frac{1}{n}^{2}}} \rightarrow-1
$$

as $n \rightarrow \infty$. Since the left and right approaches have inconsistent limits, there is no limit so the function is not differentiable at 0 .
2. Suppose $f:[0,2 \pi] \rightarrow \mathbb{R}$ is a continuous function and that $f(q)=0$ for every rational number $q \in[0,2 \pi] \cap \mathbb{Q}$. Show that $f(x)=0$ for all $x \in[0,2 \pi]$.

Fix an arbitrary $x \in[0,2 \pi]$. We show for every $\varepsilon>0$, we have $|f(x)|<\varepsilon$, thus $f(x)=0$.
Choose $\varepsilon>0$. By continuity of f at x, there is a $\delta>0$ so that

$$
|f(x)-f(y)|<\varepsilon \quad \text { whenever } y \in[0,2 \pi] \text { and }|x-y|<\delta .
$$

By the density of rationals, there is a $q \in \mathbb{Q} \cap[0,2 \pi]$ so that $|x-q|<\delta$. Thus for this q, since $f(q)=0$,

$$
|f(x)|=|f(x)-0|=|f(x)-f(q)|<\varepsilon .
$$

Since ε was arbitrary, $f(x)=0$.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a.) Statement: Let $(\mathcal{F},+,, 0,1)$ be a field. If $x, y \in \mathcal{F}$ such that $x \neq 0$ satisfy $x \cdot y=x$ then $y=1$.

TRUE. Since $x \neq 0$ it has an inverse x^{-1}. Premultiplying the equation, $x^{-1}(x y)=x^{-1} x$, so by associativity $\left(x^{-1} x\right) y=x^{-1} x$, by multiplicative inverse $1 \cdot y=1$ and by multiplicative identity, $y=1$.
(b.) Statement: The sequence $\left\{\frac{n-1}{n}\right\}$ is a Cauchy Sequence.

TRUE. It converges $\frac{n-1}{n} \rightarrow 1$ as $n \rightarrow \infty$, thus is a Cauchy Sequence.
(c.) Statement: If $f_{n}, g: \mathbb{R} \rightarrow \mathbb{R}$ are functions such that $\left|f_{n}(x)-g(x)\right|<\frac{1}{2^{n}}$ for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}$. Then $f_{n} \rightarrow g$ uniformly in \mathbb{R}.

TRUE. Choose $\varepsilon>0$. Let $R \in \mathbb{R}$ be such that $\frac{1}{2^{R}}<\varepsilon$. then for any $x \in \mathbb{R}$ and any $n \in \mathbb{N}$ such that $n>R$ we have

$$
\left|f_{n}(x)-g(x)\right|<\frac{1}{2^{n}}<\frac{1}{2^{R}}<\varepsilon
$$

But this is the definition of f_{n} converging uniformly to g on \mathbb{R}.
4. Let $E=\left\{\int_{0}^{x} f(x) \sin x d x \mid f:[0, \pi] \rightarrow \mathbb{R}\right.$ is continuous and $f(x)>0$ for all $\left.x \in[0, \pi]\right\}$. Show that E is nonempty and bounded below. What is the greatest lower bound of E ? Does the set E have a minimum? Justify your answers.

Since $f(x)$ is continuous and $\sin x$ is continuous, both are integrable, hence their product $f(x) \sin x$ is integrable and its integral has a real value in E, showing $E \neq \emptyset$. We show E is bounded below by zero, namely for all $z \in E$ we have $z \geq 0$. Observe that $\sin x \geq 0$ since $0 \leq x \leq \pi$. Also $f(x)>0$ for such x. Hence $f(x) \sin x \geq 0$. Integrating

$$
\int_{0}^{\pi} f(x) \sin x d x \geq 0
$$

Since all numbers in E are of this form, 0 is a lower bound for E.
Second we show that zero is the greatest lower bound. We show for every $\varepsilon>0$ there is a $z \in E$ such that $z<0+\varepsilon$. Hence positive numbers are not lower bounds. Choose $\varepsilon>0$. Then $f(x)=\frac{\varepsilon}{2 \pi}$ is a continuous, positive function. Because $\sin x \leq 1$ for $x \in[0, \pi]$ we have $f(x) \sin x \leq \frac{\varepsilon}{2 \pi}$ for $0 \leq x \leq \pi$. Then the element $z \in E$ given by

$$
z=\int_{0}^{\pi} f(x) \sin x d x \leq \int_{0}^{\pi} \frac{\varepsilon}{2 \pi} d x=\frac{\varepsilon}{2}<\varepsilon
$$

Thus ε is not a lower bound so 0 must be the greatest lower bound.
Third, the set E does not have a minimum since $z>0$ for all $z \in E$. To see this, choose $z \in E$. Thus $z=\int_{0}^{x} f(x) \sin x d x$ for some continuous, positive f. Since f is continuous on $[0, \pi]$ it takes its minimum: there is a $c \in[0, \pi]$ such that $f(c)=\inf _{[0, \pi]} f$. But since f is positive, $f(c)>0$. But $\sin x \geq 0$ implies $f(x) \sin x \geq f(c) \sin x$ for $0 \leq x \leq \pi$, it follows that $z>0$ because

$$
z=\int_{0}^{\pi} f(x) \sin x d x \geq f(c) \int_{0}^{\pi} \sin x d x=2 f(c)>0 .
$$

5. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on \mathbb{R} and $f^{\prime}(x)$ is bounded on \mathbb{R}, then f is uniformly continuous on \mathbb{R}.

We show that f is uniformly continuous, namely, for all $\varepsilon>0$ there is a $\delta>0$ so that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in \mathbb{R}$ and $|x-y|<\delta$. Choose $\varepsilon>0$. Because f^{\prime} is bounded, there is an $M \in \mathbb{R}$ so that $\left|f^{\prime}(c)\right| \leq M$ for all $x \in \mathbb{R}$. Let $\delta=\frac{\varepsilon}{1+M}$. Suppose that $x, y \in \mathbb{R}$ such that $|x-y|<\delta$. If $x=y$ then $|f(x)-f(y)|=0<\varepsilon$ and we are done. If $x \neq y$, for convenience we may assume that $x<y$ by swapping roles if necessary. Now, as it is differentiable, f is continuous on \mathbb{R}. Hence it is continuous on $[x, y]$ and differentiable on (x, y) because these are subintervals of \mathbb{R}. Hence we may apply the Mean Value Theorem: there is a $c \in(x, y)$ so that $f(y)-f(x)=f^{\prime}(c)(y-x)$. It follows that

$$
|f(y)-f(x)|=\left|f^{\prime}(c) \| y-x\right| \leq M|y-x|<M \cdot \frac{\varepsilon}{1+M}<\varepsilon
$$

5. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a.) Statement: If $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous, positive and $f(x) \rightarrow 0$ as $x \rightarrow \infty$ then the improper integral $\int_{0}^{\infty} f(x) d x$ converges.

FALSE. The function $f(x)=\frac{1}{1+x}$ is continuous on $[0, \infty)$ and tends to zero as $x \rightarrow \infty$. But its improper integral does not converge:

$$
\int_{0}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{0}^{R} f(x) d x=\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{d x}{1+x}=\lim _{0 \rightarrow R} \ln (1+R)=\infty
$$

(b.) Statement: If $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ are convergent series then $\sum_{k=1}^{\infty}\left[a_{k}+b_{k}\right]$ is a convergent series.

TRUE. Because the finite sum is additive, we may deduce the result from the sum theorem for limits:

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left[a_{k}+b_{k}\right] & =\lim _{n \rightarrow \infty} \sum_{k=1}^{N}\left[a_{k}+b_{k}\right] \\
& =\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{N} a_{k}+\sum_{k=1}^{N} b_{k}\right) \\
& =\left(\lim _{n \rightarrow \infty} \sum_{k=1}^{N} a_{k}\right)+\left(\lim _{n \rightarrow \infty} \sum_{k=1}^{N} b_{k}\right) \\
& =\left(\sum_{k=1}^{\infty} a_{k}\right)+\left(\sum_{k=1}^{\infty} b_{k}\right) .
\end{aligned}
$$

(c.) Statement: If $f:[0,1] \rightarrow \mathbb{R}$ is nonnegative and bounded, then it is integrable on $[0,1]$.

FALSE. The Dirichlet Function

$$
f(x)= \begin{cases}1, & \text { if } x \in \mathbb{Q} \\ 0, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

satisfies $0 \leq f(x) \leq 1$ so is nonnegative and bounded. It is also not integrable. Any lower sum is dead zero so $\int_{0}^{1} f d x=0$ and any upper sum is one so $\int_{0}^{1} f d x=1$ which are not equal.
7. Let $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$. Show that if for all $\varepsilon>0$ there are integrable functions $g, h:[a, b] \rightarrow \mathbb{R}$ such that $g(x) \leq f(x) \leq h(x)$ for all $x \in[a, b]$ and $\int_{a}^{b} h(x)-g(x) d x<\varepsilon$ then f is integrable on $[a, b]$.

We use the theorem characterizing integrability: the bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$ if and only if for every $\varepsilon>0$ there is a partition \mathcal{P} of $[a, b]$ such that the upper and lower sums satisfy $U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon$.

If \mathcal{P} is a partition and I_{k} is one of the subintervals of the partition, denote by $M_{k}(f)=$ $\sup \left\{f(x): x \in I_{k}\right\}$ and by $m_{k}(f)=\inf \left\{f(x): x \in I_{k}\right\}$.

Choose $\varepsilon>0$. Let g and h be the given integrable functions such that $g(x) \leq f(x) \leq h(x)$ and $\int_{a}^{b} h(x)-g(x) d x<\frac{\varepsilon}{3}$. Choose a partition \mathcal{P}^{\prime} such that $U\left(g, \mathcal{P}^{\prime}\right)-L\left(g, \mathcal{P}^{\prime}\right)<\frac{\varepsilon}{3}$. Choose a partition $\mathcal{P}^{\prime \prime}$ such that $U\left(h, \mathcal{P}^{\prime \prime}\right)-L\left(h, \mathcal{P}^{\prime \prime}\right)<\frac{\varepsilon}{3}$. Let $\mathcal{P}=\mathcal{P}^{\prime} \cup \mathcal{P}^{\prime \prime}$ be the common refinement. Since refining increases lower sums and degreases upper sums, we have $U(g, \mathcal{P})-L(g, \mathcal{P})<\frac{\varepsilon}{3}$ and $U(h, \mathcal{P})-L(h, \mathcal{P})<\frac{\varepsilon}{3}$. Also, the integral falls between the lower sum and upper sum, so we have

$$
\left|L(g, \mathcal{P})-\int_{a}^{b} g d x\right|<\frac{\varepsilon}{3}, \quad \text { and } \quad\left|U(h, \mathcal{P})-\int_{a}^{b} h d x\right|<\frac{\varepsilon}{3}
$$

Now let's estimate the lower and upper sum for f. Because $g \leq f$ we have $m_{k}(g) \leq m_{k}(f)$, so by summing,

$$
L(g, \mathcal{P})=\sum_{k=1}^{n} m_{k}(g)\left(x_{k}-x_{k-1}\right) \leq \sum_{k=1}^{n} m_{k}(f)\left(x_{k}-x_{k-1}\right)=L(f, \mathcal{P})
$$

Similarly, because $f \leq h$ we have $M_{k}(f) \leq M_{k}(h)$, so by summing, $U(f, \mathcal{P}) \leq U(h, \mathcal{P})$. Now, assemble the inequalities. For the partition \mathcal{P} we have

$$
\begin{aligned}
U(f, \mathcal{P})-L(f, \mathcal{P}) & \leq U(h, \mathcal{P})-L(g, \mathcal{P}) \\
& =\int_{a}^{b} h+\left(U(h, \mathcal{P})-\int_{a}^{b} h\right)-\int_{a}^{b} g-\left(L(g, \mathcal{P})-\int_{a}^{b} g\right) \\
& \leq \int_{a}^{b}(h-g)+\left|U(h, \mathcal{P})-\int_{a}^{b} h\right|+\left|L(g, \mathcal{P})-\int_{a}^{b} g\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

8. Determine whether the following series are absolutely convergent, conditionally convergent or divergent. In each case you must justify your answer.
(a.) $S=\sum_{k=1}^{\infty}(-1)^{k} \frac{\log k}{k}$.

CONVERGENT. Recall the definitions. If $\sum_{k=1}^{\infty} a_{k}$ is a series then the series is absolutely convergent if the series of absolute values converges, namely the sequence of absolute partial sums has a finite limit: $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|a_{k}\right|$ converges. The series is convergent if the sequence of partial sums itself has a finite limit: $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}$ converges. Absolute convergence implies convergence, proved e.g., using the Cauchy Criterion. The series is divergent if it is not convergent.

The $(-1)^{k}$ make the terms alternate signs. The magnitude of the summand $\frac{\log k}{k}$ decreases and tends to zero. To see it, let $f(x)=\frac{\log x}{x}$. Then $f^{\prime}(x)=\frac{1-\log x}{x^{2}}<0$ if $x>e$. Hence $f(k)$ is strictly decreasing and positive for $k \geq 3$. By l'Hopital's Rule, $\lim _{x \rightarrow \infty} \frac{\log x}{x}=\lim _{x \rightarrow \infty} \frac{1}{x}=0$ so $f(k) \rightarrow 0$ as $k \rightarrow \infty$. Thus the conditions for the alternating series test hold and S converges.

However, $f(k) \geq \frac{1}{k}$ for $k \geq 3$ so that $\sum_{k=3}^{n} f(k) \geq \sum_{k=3}^{n} \frac{1}{k} \rightarrow \infty$ as $n \rightarrow \infty$ because the harmonic series diverges to infinity.
(b.) $S=\sum_{k=1}^{\infty} \frac{(-1)^{k} \log k}{\log \left(k^{2}+k+1\right)}$.

DIVERGENT. A necessary condition for the convergence of an infinite sum is that the terms tend to zero. However, letting $f(x)=\frac{\log x}{\log \left(x^{2}+x+1\right)}$, by l'Hopital's Rule,

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{2 x+1}{x^{2}+x+1}}=\lim _{x \rightarrow \infty} \frac{x^{2}+x+1}{(2 x+1) x}=\frac{1}{2}
$$

Thus the terms $(-1)^{k} f(k)$ do not tend to zero and the series is divergent.
(c.) $S=\sum_{k=1}^{\infty}(-1)^{k} \frac{\log k}{k^{2}}$.

ABSOLUTELY CONVERVENT. Let $f(x)=\frac{\log x}{x^{2}}$. The absloute sum is convergent by the integral test. Since $f^{\prime}(x)=\frac{1-2 \log x}{x^{3}}<0$ for $x \geq 2$, we can compare the partial sum with the integral. By substituting $u=\log x$,

$$
\sum_{k=3}^{n} f(k) \leq \int_{1}^{n} \frac{\log x d x}{x^{2}}=\int_{0}^{\log n} u e^{-u} d u=1-\frac{1+\log n}{n} \leq 1
$$

for all $n \geq 3$. Since the absolute partial sums form a nondecreasing sequence, it is convergent because it is bounded above.
9. Prove that if $\sum_{k=1}^{\infty} a_{k}$ is an absolutly convergent series and if $\left\{b_{k}\right\}$ is a bounded then $\sum_{k=1}^{\infty} a_{k} b_{k}$ is an absolutly convergent series.
$\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent if the series of absolute values converges, namely $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|a_{k}\right|$ converges to a finite limit.

Let's prove the Cauchy Criterion for convergence. Put $S_{n}=\sum_{j=1}^{n}\left|a_{j} b_{j}\right|, T_{n}=\sum_{j=1}^{n}\left|a_{j}\right|$. Because $\left\{b_{j}\right\}$ is bounded, there is an $M \in \mathbb{R}$ so that $\left|b_{j}\right| \leq M$ for all $j \in \mathbb{N}$. Since the series is absolutely convergent, it is a Cauchy Sequence: for every $\varepsilon>0$, there is an $R \in \mathbb{R}$ so that

$$
\left|T_{k}-T_{\ell}\right|<\frac{\varepsilon}{1+M} \quad \text { whenever } k, \ell \in \mathbb{N} \text { such that } k, \ell>R
$$

Now suppose that $k, \ell \in \mathbb{N}$ such that $k, \ell>R$. If $k=\ell$ then $\left|S_{k}-S_{\ell}\right|=0<\varepsilon$ so we are done. If
$k \neq \ell$, we may swap roles if necessary to arrange that $k<\ell$. Thus

$$
\begin{aligned}
\left|S_{\ell}-S_{k}\right| & =\left|\sum_{j=1}^{\ell}\right| a_{j} b_{j}\left|-\sum_{k=1}^{k}\right| a_{j} b_{j}| | \\
& =\sum_{j=k+1}^{\ell}\left|a_{j}\right|\left|b_{j}\right| \\
& \leq M \sum_{j=k+1}^{\ell}\left|a_{j}\right| \\
& =M\left|\sum_{j=1}^{\ell}\right| a_{j}\left|-\sum_{k=1}^{k}\right| a_{j}| | \\
& =M\left|T_{\ell}-T_{k}\right|<M \frac{\varepsilon}{1+M}<\varepsilon
\end{aligned}
$$

