Math 3210 § 3.	First Midterm Exam	Name:	Solutions
Treibergs		September	r 7, 2011

1. Assume $a \neq 0$. Prove that for every $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} \frac{a-1}{a^k} = 1 - \frac{1}{a^n}.$$
(1)

We prove the formula by induction.

BASE CASE. For n = 1, the left side of formula (1) is the first term $\sum_{k=1}^{1} \frac{a-1}{a^k} = \frac{a-1}{a}$. The right side is $1 - \frac{1}{a^1} = \frac{a-1}{a}$. They are equal so the base case is verified.

INDUCTION CASE. Assume that the formula (1) holds for some $n \in \mathbb{N}$. For n+1

$$\sum_{k=1}^{n+1} \frac{a-1}{a^k} = \frac{a-1}{a^{n+1}} + \sum_{k=1}^n \frac{a-1}{a^k}$$

= $\frac{a-1}{a^{n+1}} + 1 - \frac{1}{a^n}$ Using the induction hypothesis (1)
= $1 + \frac{a-1}{a^{n+1}} - \frac{a}{a^{n+1}}$
= $1 - \frac{1}{a^{n+1}}$.

We conclude that the formula holds for n + 1 as well.

Since we have established both the base case and induction case, by mathematical induction, (1) holds for all $n \in \mathbb{N}$.

2. Recall the definition given in class.

Suppose that we have two nonempty sets A and B and a function $f : A \to B$. A function $g : B \to A$ is called an inverse function of f iff

- (1.) f(g(y)) = y for all $y \in B$;
- (2.) g(f(x)) = x for all $x \in A$;

Let $f : A \to B$ be a function and $E \subset B$ a set. Define $f^{-1}(E)$. Suppose that $f : A \to B$ has an inverse function called $g : B \to A$. Let $E \subset B$. Show that $f^{-1}(E) = g(E)$.

The preimage set is defined to be

$$f^{-1}(E) = \{ x \in A : f(x) \in E \}.$$

To show $f^{-1}(E) = g(E)$, we first show $f^{-1}(E) \subset g(E)$ and then we show $f^{-1}(E) \supset g(e)$.

To show $f^{-1}(E) \subset g(E)$, we choose an $x \in f^{-1}(E)$ to show that it is in g(E). But by definition of preimage, this means that $f(x) \in E$. Call it $y = f(x) \in E$. Applying g, we have $g(y) \in g(E)$ by the definition of image of g. But by property (2.) of inverse functions, x = g(f(x)) = g(y). Hence $x \in g(E)$ as to be shown.

To show $f^{-1}(E) \supset g(E)$, we choose an $x \in g(E)$ to show that it is in $f^{-1}(E)$. But by definition of image set, this means that there is a $y \in E$ so that x = g(y). Applying f, this means by property (1.) that y = f(g(y)) = f(x). But since $f(x) = y \in E$, this implies by the definition of preimage, that $x \in f^{-1}(E)$, as to be shown.

3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

STATEMENT 1. If $f : A \to B$ and $E \subset F \subset A$ are subsets then $f(E) \subset f(F)$.

TRUE: Choose $y \in f(E)$ to show $y \in f(F)$. Hence there is $x \in E$ so that f(x) = y. But $E \subset F$ implies $x \in F$. Thus $y = f(x) \in f(F)$, as to be shown.

STATEMENT 2. For $E, F \subset X$ any two subsets, $E \setminus F = \emptyset$ implies E = F.

FALSE. Take real subsets E = [0, 1] and F = [0, 2]. Then $E \setminus F = \emptyset$ but $E \neq F$.

STATEMENT 3. Suppose $f : A \to B$ is a function. Suppose for every $x_1, x_2 \in A$, $f(x_1) \neq f(x_2)$ implies $x_1 \neq x_2$. Then f is one-to-one.

FALSE. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. The condition is equivalent to its contrapositive "if $x_1 = x_2$ then $f(x_1) = f(x_2)$ " which holds for any function, e.g., for f, but f is not one-to-one because f(-2) = 4 = f(4).

4. Let A, B, C be nonempty sets and $g: A \to B$ and $f: B \to C$ be functions. Write the definition: $f: B \to C$ is onto. Show that if the composite function $f \circ g: A \to C$ is onto then f is onto. Give an example that shows that even if $f \circ g$ is onto, then g does not need to be onto.

 $f: B \to C$ is onto means that for every $z \in C$ there is a $y \in B$ so that f(y) = z.

To show that $f: B \to C$ is onto, we choose $z \in C$. Since we assume that $f \circ g: A \to C$ is onto, there is an $x \in A$ so that $f \circ g(x) = z$. Let $y = g(x) \in B$. Then $f(y) = f(g(x)) = f \circ g(x) = z$. Hence we have found a $y \in B$ so that f(y) = z. Thus we have shown that f is onto.

Take $A = \{0\}, B = \{1, 2\}$ and $C = \{3\}$. Define $g : A \to B$ by g(0) = 1. Define $f : B \to C$ by f(1) = f(2) = 3. Then g is not onto because $g(A) = \{1\} \neq B$. However $f \circ g$ is onto because $f \circ g(A) = f \circ g(\{0\}) = \{f \circ g(0)\} = \{f(g(0))\} = \{f(1)\} = \{3\} = C$.

5. Let $E \subset \mathbb{R}$ be a set of real numbers. Suppose that the set is given by

$$E = \left\{ x \in \mathbb{R} : (\forall \sigma < 1) \ (\exists \tau > 0) \quad \sigma \le x < \sigma + \tau \right\}.$$

Write the set E in terms of unions and intersections. Find the complement E^c by negating the expression for E and writing it so that the negators come after the quantifiers. Express E^c in terms of intervals and prove your result.

In terms of intersections and unions,

$$E = \bigcap_{\sigma < 1} \bigcup_{\tau > 0} \left[\sigma, \sigma + \tau \right) \qquad \left(\text{which equals } \bigcap_{\sigma < 1} \left[\sigma, \infty \right) = \left[1, \infty \right) \right)$$

By negating the quantifiers we see that the complement is

$$E^{c} = \left\{ x \in \mathbb{R} : \sim (\forall \sigma < 1) \ (\exists \tau > 0) \quad \sigma \le x < \sigma + \tau \right\}$$
$$= \left\{ x \in \mathbb{R} : \quad (\exists \sigma < 1) \ (\forall \tau > 0) \quad (x < \sigma \text{ or } \sigma + \tau \le x.) \right\}.$$
(2)

We expect that $E^c = (-\infty, 1)$. We can check this in several ways, but let us argue with E^c given by formula (2). We first show " \subset " and then show " \supset ."

To show that $E^c \subset (-\infty, 1)$ we choose $x \in E^c$. Then there is $\sigma_0 < 1$ such that $(\forall \tau > 0)(x < \sigma_0 \text{ or } \sigma_0 + \tau \le x)$. It follows that $x < \sigma_0$. If this were not the case and $x \ge \sigma_0$, by taking $\tau_0 > 0$ so large that $\tau_0 > x - \sigma_0$, neither $x < \sigma_0$ nor $\sigma_0 + \tau_0 \le x$ is true so that $(\forall \tau > 0)(x < \sigma_0 \text{ or } \sigma_0 + \tau \le x)$ is false. Thus $x < \sigma_0 < 1$ so $x \in (-\infty, 1)$ as to be shown.

To show that $E^c \supset (-\infty, 1)$ we choose $x \in (-\infty, 1)$ or x < 1, and show that $x \in E^c$. If we pick $\sigma_0 = (1+x)/2$ between x and 1, then $x < \sigma_0$ is true and so $(\forall \tau > 0)(x < \sigma_0 \text{ or } \sigma_0 + \tau \le x)$ is also true for this σ_0 . Thus $x \in E^c$.