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First Midterm Exam Name: Solutions
September 7, 2011

1. Assume a 6= 0. Prove that for every n ∈ N,

n∑
k=1

a− 1
ak

= 1− 1
an
. (1)

We prove the formula by induction.

Base Case. For n = 1, the left side of formula (1) is the first term
1∑
k=1

a− 1
ak

=
a− 1
a

. The right

side is 1− 1
a1

=
a− 1
a

. They are equal so the base case is verified.

Induction Case. Assume that the formula (1) holds for some n ∈ N. For n+ 1

n+1∑
k=1

a− 1
ak

=
a− 1
an+1

+
n∑
k=1

a− 1
ak

=
a− 1
an+1

+ 1− 1
an

Using the induction hypothesis (1)

= 1 +
a− 1
an+1

− a

an+1

= 1− 1
an+1

.

We conclude that the formula holds for n+ 1 as well.
Since we have established both the base case and induction case, by mathematical induc-

tion, (1) holds for all n ∈ N.

2. Recall the definition given in class.

Suppose that we have two nonempty sets A and B and a function f : A→ B.
A function g : B → A is called an inverse function of f iff

(1.) f(g(y)) = y for all y ∈ B;

(2.) g(f(x)) = x for all x ∈ A;

Let f : A → B be a function and E ⊂ B a set. Define f−1(E). Suppose that f : A → B has an
inverse function called g : B → A. Let E ⊂ B. Show that f−1(E) = g(E).

The preimage set is defined to be

f−1(E) = {x ∈ A : f(x) ∈ E}.

To show f−1(E) = g(E), we first show f−1(E) ⊂ g(E) and then we show f−1(E) ⊃ g(e).
To show f−1(E) ⊂ g(E), we choose an x ∈ f−1(E) to show that it is in g(E). But by definition

of preimage, this means that f(x) ∈ E. Call it y = f(x) ∈ E. Applying g, we have g(y) ∈ g(E)
by the definition of image of g. But by property (2.) of inverse functions, x = g(f(x)) = g(y).
Hence x ∈ g(E) as to be shown.

To show f−1(E) ⊃ g(E), we choose an x ∈ g(E) to show that it is in f−1(E). But by
definition of image set, this means that there is a y ∈ E so that x = g(y). Applying f , this means
by property (1.) that y = f(g(y)) = f(x). But since f(x) = y ∈ E, this implies by the definition
of preimage, that x ∈ f−1(E), as to be shown.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.
Statement 1. If f : A→ B and E ⊂ F ⊂ A are subsets then f(E) ⊂ f(F ).

TRUE: Choose y ∈ f(E) to show y ∈ f(F ). Hence there is x ∈ E so that f(x) = y. But
E ⊂ F implies x ∈ F . Thus y = f(x) ∈ f(F ), as to be shown.
Statement 2. For E,F ⊂ X any two subsets, E\F = ∅ implies E = F .

FALSE. Take real subsets E = [0, 1] and F = [0, 2]. Then E\F = ∅ but E 6= F .
Statement 3. Suppose f : A → B is a function. Suppose for every x1, x2 ∈ A, f(x1) 6= f(x2)
implies x1 6= x2. Then f is one-to-one.

FALSE. Let f : R→ R be given by f(x) = x2. The condition is equivalent to its contrapositive
“if x1 = x2 then f(x1) = f(x2)” which holds for any function, e.g., for f , but f is not one-to-one
because f(−2) = 4 = f(4).

4. Let A,B,C be nonempty sets and g : A→ B and f : B → C be functions. Write the definition:
f : B → C is onto. Show that if the composite function f ◦ g : A → C is onto then f is onto.
Give an example that shows that even if f ◦ g is onto, then g does not need to be onto.

f : B → C is onto means that for every z ∈ C there is a y ∈ B so that f(y) = z.
To show that f : B → C is onto, we choose z ∈ C. Since we assume that f ◦g : A→ C is onto,

there is an x ∈ A so that f ◦ g(x) = z. Let y = g(x) ∈ B. Then f(y) = f(g(x)) = f ◦ g(x) = z.
Hence we have found a y ∈ B so that f(y) = z. Thus we have shown that f is onto.

Take A = {0}, B = {1, 2} and C = {3}. Define g : A → B by g(0) = 1. Define f : B → C
by f(1) = f(2) = 3. Then g is not onto because g(A) = {1} 6= B. However f ◦ g is onto because
f ◦ g(A) = f ◦ g({0}) = {f ◦ g(0)} = {f(g(0))} = {f(1)} = {3} = C.

5. Let E ⊂ R be a set of real numbers. Suppose that the set is given by

E =
{
x ∈ R : (∀σ < 1) (∃τ > 0) σ ≤ x < σ + τ

}
.

Write the set E in terms of unions and intersections. Find the complement Ec by negating the
expression for E and writing it so that the negators come after the quantifiers. Express Ec in
terms of intervals and prove your result.

In terms of intersections and unions,

E =
⋂
σ<1

⋃
τ>0

[
σ, σ + τ

) (
which equals

⋂
σ<1

[
σ,∞

)
=
[
1,∞

)
.

)

By negating the quantifiers we see that the complement is

Ec =
{
x ∈ R : ∼ (∀σ < 1) (∃τ > 0) σ ≤ x < σ + τ

}
=
{
x ∈ R : (∃σ < 1) (∀τ > 0) (x < σ or σ + τ ≤ x.)

}
. (2)

We expect that Ec = (−∞, 1). We can check this in several ways, but let us argue with Ec

given by formula (2). We first show “⊂” and then show “⊃.”
To show that Ec ⊂ (−∞, 1) we choose x ∈ Ec. Then there is σ0 < 1 such that

(∀τ > 0)(x < σ0 or σ0 + τ ≤ x). It follows that x < σ0. If this were not the case and x ≥ σ0,
by taking τ0 > 0 so large that τ0 > x − σ0, neither x < σ0 nor σ0 + τ0 ≤ x is true so that
(∀τ > 0)(x < σ0 or σ0 + τ ≤ x) is false. Thus x < σ0 < 1 so x ∈ (−∞, 1) as to be shown.

To show that Ec ⊃ (−∞, 1) we choose x ∈ (−∞, 1) or x < 1, and show that x ∈ Ec. If we
pick σ0 = (1 + x)/2 between x and 1, then x < σ0 is true and so (∀τ > 0)(x < σ0 or σ0 + τ ≤ x)
is also true for this σ0. Thus x ∈ Ec.
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