Math 3210 § 3.
Treibergs

First Midterm Exam

1. Assume $a \neq 0$. Prove that for every $n \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{a-1}{a^{k}}=1-\frac{1}{a^{n}} . \tag{1}
\end{equation*}
$$

We prove the formula by induction.
BASE CASE. For $n=1$, the left side of formula (1) is the first term $\sum_{k=1}^{1} \frac{a-1}{a^{k}}=\frac{a-1}{a}$. The right side is $1-\frac{1}{a^{1}}=\frac{a-1}{a}$. They are equal so the base case is verified.
Induction Case. Assume that the formula (1) holds for some $n \in \mathbb{N}$. For $n+1$

$$
\begin{aligned}
\sum_{k=1}^{n+1} \frac{a-1}{a^{k}} & =\frac{a-1}{a^{n+1}}+\sum_{k=1}^{n} \frac{a-1}{a^{k}} \\
& =\frac{a-1}{a^{n+1}}+1-\frac{1}{a^{n}} \quad \text { Using the induction hypothesis (1) } \\
& =1+\frac{a-1}{a^{n+1}}-\frac{a}{a^{n+1}} \\
& =1-\frac{1}{a^{n+1}}
\end{aligned}
$$

We conclude that the formula holds for $n+1$ as well.
Since we have established both the base case and induction case, by mathematical induction, (1) holds for all $n \in \mathbb{N}$.
2. Recall the definition given in class.

Suppose that we have two nonempty sets A and B and a function $f: A \rightarrow B$.
A function $g: B \rightarrow A$ is called an inverse function of f iff
(1.) $f(g(y))=y$ for all $y \in B$;
(2.) $g(f(x))=x$ for all $x \in A$;

Let $f: A \rightarrow B$ be a function and $E \subset B$ a set. Define $f^{-1}(E)$. Suppose that $f: A \rightarrow B$ has an inverse function called $g: B \rightarrow A$. Let $E \subset B$. Show that $f^{-1}(E)=g(E)$.

The preimage set is defined to be

$$
f^{-1}(E)=\{x \in A: f(x) \in E\} .
$$

To show $f^{-1}(E)=g(E)$, we first show $f^{-1}(E) \subset g(E)$ and then we show $f^{-1}(E) \supset g(e)$.
To show $f^{-1}(E) \subset g(E)$, we choose an $x \in f^{-1}(E)$ to show that it is in $g(E)$. But by definition of preimage, this means that $f(x) \in E$. Call it $y=f(x) \in E$. Applying g, we have $g(y) \in g(E)$ by the definition of image of g. But by property (2.) of inverse functions, $x=g(f(x))=g(y)$. Hence $x \in g(E)$ as to be shown.

To show $f^{-1}(E) \supset g(E)$, we choose an $x \in g(E)$ to show that it is in $f^{-1}(E)$. But by definition of image set, this means that there is a $y \in E$ so that $x=g(y)$. Applying f, this means by property (1.) that $y=f(g(y))=f(x)$. But since $f(x)=y \in E$, this implies by the definition of preimage, that $x \in f^{-1}(E)$, as to be shown.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
Statement 1. If $f: A \rightarrow B$ and $E \subset F \subset A$ are subsets then $f(E) \subset f(F)$.
TRUE: Choose $y \in f(E)$ to show $y \in f(F)$. Hence there is $x \in E$ so that $f(x)=y$. But $E \subset F$ implies $x \in F$. Thus $y=f(x) \in f(F)$, as to be shown.
Statement 2. For $E, F \subset X$ any two subsets, $E \backslash F=\emptyset$ implies $E=F$.
FALSE. Take real subsets $E=[0,1]$ and $F=[0,2]$. Then $E \backslash F=\emptyset$ but $E \neq F$.
Statement 3. Suppose $f: A \rightarrow B$ is a function. Suppose for every $x_{1}, x_{2} \in A, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ implies $x_{1} \neq x_{2}$. Then f is one-to-one.

FALSE. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$. The condition is equivalent to its contrapositive "if $x_{1}=x_{2}$ then $f\left(x_{1}\right)=f\left(x_{2}\right)$ " which holds for any function, e.g., for f, but f is not one-to-one because $f(-2)=4=f(4)$.
4. Let A, B, C be nonempty sets and $g: A \rightarrow B$ and $f: B \rightarrow C$ be functions. Write the definition: $f: B \rightarrow C$ is onto. Show that if the composite function $f \circ g: A \rightarrow C$ is onto then f is onto. Give an example that shows that even if $f \circ g$ is onto, then g does not need to be onto.
$f: B \rightarrow C$ is onto means that for every $z \in C$ there is a $y \in B$ so that $f(y)=z$.
To show that $f: B \rightarrow C$ is onto, we choose $z \in C$. Since we assume that $f \circ g: A \rightarrow C$ is onto, there is an $x \in A$ so that $f \circ g(x)=z$. Let $y=g(x) \in B$. Then $f(y)=f(g(x))=f \circ g(x)=z$. Hence we have found a $y \in B$ so that $f(y)=z$. Thus we have shown that f is onto.

Take $A=\{0\}, B=\{1,2\}$ and $C=\{3\}$. Define $g: A \rightarrow B$ by $g(0)=1$. Define $f: B \rightarrow C$ by $f(1)=f(2)=3$. Then g is not onto because $g(A)=\{1\} \neq B$. However $f \circ g$ is onto because $f \circ g(A)=f \circ g(\{0\})=\{f \circ g(0)\}=\{f(g(0))\}=\{f(1)\}=\{3\}=C$.
5. Let $E \subset \mathbb{R}$ be a set of real numbers. Suppose that the set is given by

$$
E=\{x \in \mathbb{R}:(\forall \sigma<1)(\exists \tau>0) \quad \sigma \leq x<\sigma+\tau\}
$$

Write the set E in terms of unions and intersections. Find the complement E^{c} by negating the expression for E and writing it so that the negators come after the quantifiers. Express E^{c} in terms of intervals and prove your result.

In terms of intersections and unions,

$$
E=\bigcap_{\sigma<1} \bigcup_{\tau>0}[\sigma, \sigma+\tau) \quad\left(\text { which equals } \bigcap_{\sigma<1}[\sigma, \infty)=[1, \infty) .\right)
$$

By negating the quantifiers we see that the complement is

$$
\begin{align*}
E^{c} & =\{x \in \mathbb{R}: \quad \sim(\forall \sigma<1)(\exists \tau>0) \quad \sigma \leq x<\sigma+\tau\} \\
& =\{x \in \mathbb{R}: \quad(\exists \sigma<1)(\forall \tau>0) \quad(x<\sigma \text { or } \sigma+\tau \leq x .)\} \tag{2}
\end{align*}
$$

We expect that $E^{c}=(-\infty, 1)$. We can check this in several ways, but let us argue with E^{c} given by formula (2). We first show " \subset " and then show " \supset."

To show that $E^{c} \subset(-\infty, 1)$ we choose $x \in E^{c}$. Then there is $\sigma_{0}<1$ such that $(\forall \tau>0)\left(x<\sigma_{0}\right.$ or $\left.\sigma_{0}+\tau \leq x\right)$. It follows that $x<\sigma_{0}$. If this were not the case and $x \geq \sigma_{0}$, by taking $\tau_{0}>0$ so large that $\tau_{0}>x-\sigma_{0}$, neither $x<\sigma_{0}$ nor $\sigma_{0}+\tau_{0} \leq x$ is true so that $(\forall \tau>0)\left(x<\sigma_{0}\right.$ or $\left.\sigma_{0}+\tau \leq x\right)$ is false. Thus $x<\sigma_{0}<1$ so $x \in(-\infty, 1)$ as to be shown.

To show that $E^{c} \supset(-\infty, 1)$ we choose $x \in(-\infty, 1)$ or $x<1$, and show that $x \in E^{c}$. If we pick $\sigma_{0}=(1+x) / 2$ between x and 1 , then $x<\sigma_{0}$ is true and so $(\forall \tau>0)\left(x<\sigma_{0}\right.$ or $\left.\sigma_{0}+\tau \leq x\right)$ is also true for this σ_{0}. Thus $x \in E^{c}$.

