More Problems.

1. Show that the sinc function $f:[0,1] \rightarrow \mathbb{R}$ is continuous, where $f(x)=\left\{\begin{array}{cl}\frac{\sin x}{x}, & \text { if } x>0, \\ 1, & \text { if } x=0 .\end{array}\right.$

Figure 1: Sinc Function
Proof. We shall take as our starting point geometric inequalities satisfied by sine. $P=$ $(\cos x, \sin x)$ is the coordinate of a point on the unit circle. The horizontal distance of P to the y-axis is at most one so $|\cos x| \leq 1$. The distance of P to the x-axis is the vertical distance, which is $|\sin x|$. This is less than the distance around the circle from $(1,0)$ which is $|x|$. On the other hand, for $|x|<\frac{\pi}{2}$, the shortest curve from the positive x-axis to the ray $\overrightarrow{O P}$ outside the unit circle is the arc of the circle of length $|x|$, which is less than the vertical path above $(1,0)$ which has length $|\tan x|$. Thus, for $|x|<\frac{\pi}{2}$

$$
|\sin x| \leq|x| \leq|\tan x|=\frac{|\sin x|}{|\cos x|}=\frac{|\sin x|}{\sqrt{1-\sin ^{2} x}}
$$

Multiplying the last inequality

$$
\left(1-\sin ^{2} x\right) x^{2} \leq \sin ^{2} x
$$

so

$$
x^{2} \leq\left(1+x^{2}\right) \sin ^{2} x
$$

Thus for $0<x<\frac{\pi}{2}$,

$$
\begin{align*}
1 \geq \frac{\sin x}{x} & \geq \frac{1}{\sqrt{1+x^{2}}} \\
& =1+\frac{1-\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}} \\
& =1+\frac{\left(1-\sqrt{1+x^{2}}\right)\left(1+\sqrt{1+x^{2}}\right)}{\sqrt{1+x^{2}}\left(1+\sqrt{1+x^{2}}\right)} \\
& =1+\frac{1-\left(1+x^{2}\right)}{\sqrt{1+x^{2}}\left(1+\sqrt{1+x^{2}}\right)} \tag{1}\\
& =1-\frac{x^{2}}{\sqrt{1+x^{2}}\left(1+\sqrt{1+x^{2}}\right)} \\
& \geq 1-\frac{x^{2}}{\sqrt{1+0^{2}}\left(1+\sqrt{1+0^{2}}\right)} \\
& =1-\frac{x^{2}}{2}
\end{align*}
$$

Thus for $0<x<\frac{\pi}{2}$,

$$
\begin{equation*}
\left|\frac{\sin x}{x}-1\right| \leq \frac{x^{2}}{2} \tag{2}
\end{equation*}
$$

The inequality between sines at two numbers will follow later on in the course from knowing that sine has bounded derivative, or that it is the integral of a bounded function. For now we will content ourselves with the inequality above and trig identities. For $x, y \in \mathbb{R}$, using the addition formulae,

$$
\begin{aligned}
\sin x-\sin y= & \sin \left(\frac{x+y}{2}+\frac{x-y}{2}\right)-\sin \left(\frac{x+y}{2}-\frac{x-y}{2}\right) \\
= & \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)+\cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) \\
& \quad-\sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)+\cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) \\
= & 2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)
\end{aligned}
$$

Thus for $x, y \in \mathbb{R}$,

$$
\begin{equation*}
|\sin x-\sin y| \leq 2\left|\cos \left(\frac{x+y}{2}\right)\right|\left|\sin \left(\frac{x-y}{2}\right)\right| \leq 2 \cdot 1 \cdot\left|\frac{x-y}{2}\right|=|x-y| \tag{3}
\end{equation*}
$$

Finally, the inequality between sinc functions at different points follows by sneaking in a cross term. For $0<x, y$, by (3),

$$
\begin{aligned}
\left|\frac{\sin x}{x}-\frac{\sin y}{y}\right| & =\left|\frac{\sin x}{x}-\frac{\sin x}{y}+\frac{\sin x}{y}-\frac{\sin y}{y}\right| \\
& \leq\left|\frac{\sin x}{x}-\frac{\sin x}{y}\right|+\left|\frac{\sin x}{y}-\frac{\sin y}{y}\right| \\
& =|\sin x|\left|\frac{1}{x}-\frac{1}{y}\right|+\frac{1}{|y|}|\sin x-\sin y| \\
& =|\sin x|\left|\frac{y-x}{x y}\right|+\frac{1}{|y|}|\sin x-\sin y| \\
& \leq \frac{|\sin x|}{|x|} \frac{|y-x|}{|y|}+\frac{1}{|y|}|x-y|
\end{aligned}
$$

Hence for $0<x, y$,

$$
\begin{equation*}
\left|\frac{\sin x}{x}-\frac{\sin y}{y}\right| \leq \frac{2}{|y|}|y-x| \tag{4}
\end{equation*}
$$

Now the main part of the proof may begin. Choose $a \in[0,1]$. We argue two cases: $a=0$ and $a>0$ seperately.
In case $a=0$, choose $\varepsilon>0$. Let $\delta=\sqrt{2 \varepsilon}$. If $x \in[0,1]$ such that $|a-x|<\delta$, then if $0<x$, by (2),

$$
|f(x)-f(a)|=\left|\frac{\sin x}{x}-1\right| \leq \frac{x^{2}}{2}<\frac{(\sqrt{2 \varepsilon})^{2}}{2}=\varepsilon
$$

If $x=0$ then $|f(x)-f(a)|=|1-1|=0<\varepsilon$. Thus for every $x \in[0,1]$ with $|a-x|<\delta$ we have $|f(x)-f(a)|<\varepsilon$, completing the proof that f is continuous at $a=0$.
In case $a>0$, choose $\varepsilon>0$. Let $\delta=\min \left\{a, \frac{a \varepsilon}{2}\right\}$. Then choose $x \in[0,1]$ so that $|x-a|<\delta$. But this implies $x=a+x-a \geq x-|a-x|>a-a=0$ so $x>0$ also. By (4),

$$
|f(x)-f(a)|=\left|\frac{\sin x}{x}-\frac{\sin a}{a}\right| \leq \frac{2}{|a|}|x-a|<\frac{2}{|a|} \frac{a \varepsilon}{2}=\varepsilon
$$

completing the proof that f is continuous at $a>0$.
2. Show that the sinc function $g(x)=\frac{\sin x}{x}$ is uniformly continuous on $(0,1)$.

We observe that the function $f:[0,1] \rightarrow \mathbb{R}$ from Problem (1) is an extension of g, i.e., $f(x)=g(x)$ for all $x \in(0,1)$. We showed there that f is continuous on $[0,1]$. By the theorem that say that any function $f: I \rightarrow \mathbb{R}$ that is continuous on a closed and bounded interval is also uniformly continuous, we have that f is uniformly continuous on $I=[0,1]$. But if a function is uniformly continuous on a set, it is automatically uniformly continuous on a subset. Thus f is uniformly continuous on $(0,1)$. But $g=f$ when restricted to $(0,1)$, so g is uniformly continuous on $(0,1)$.
3. Using only the definition of uniform continuity, show that the sinc function $g(x)=\frac{\sin x}{x}$ is uniformly continuous on $(0,1)$.
The continuity proof from problem (1) cannot be used because the δ there depends on a and tends to zero as $a \rightarrow 0$. If δ had a positive minimum on $[0,1]$ then that would prove the uniform continuity. In fact, by using our inequalities more carefully, we can recover a uniform δ rather like the proof that \sqrt{x} is uniformly continuous on $[0, \infty)$.
To begin the proof, choose $\varepsilon>0$. Let $\delta=\min \left\{\frac{\sqrt{\varepsilon}}{2}, \frac{\varepsilon^{3 / 2}}{4}\right\}$. Now choose $x, y \in(0,1)$ such that $|x-y|<\delta$. One of the two numbers is smaller, so after swapping if necessary, we may suppose that $x \leq y$. The argument will done in two parts: in case $x<\frac{\sqrt{\varepsilon}}{2}$ or in case $x \geq \frac{\sqrt{\varepsilon}}{2}$.
In case $x<\frac{\sqrt{\varepsilon}}{2}$, we have $y=x+y-x \leq x+|y-x|<x+\delta \leq \frac{\sqrt{\varepsilon}}{2}+\frac{\sqrt{\varepsilon}}{2}=\sqrt{\varepsilon}$. The inequalities (1) say

$$
\begin{gathered}
1-\frac{\varepsilon}{8}<1-\frac{x^{2}}{2} \leq \frac{\sin x}{x}<1 \\
-1<-\frac{\sin y}{y} \leq-1+\frac{y^{2}}{2}<-1+\frac{\varepsilon}{2}
\end{gathered}
$$

Adding

$$
-\frac{\varepsilon}{8}<\frac{\sin x}{x}-\frac{\sin y}{y}<\frac{\varepsilon}{2}
$$

which implies

$$
\left|\frac{\sin x}{x}-\frac{\sin y}{y}\right|<\varepsilon
$$

In case $x \geq \frac{\sqrt{\varepsilon}}{2}$ so also $y \geq x \geq \frac{\sqrt{\varepsilon}}{2}$ we use (4) instead.

$$
\left|\frac{\sin x}{x}-\frac{\sin y}{y}\right| \leq \frac{2}{|y|}|y-x|<\frac{4 \delta}{\sqrt{\varepsilon}} \leq \frac{4}{\sqrt{\varepsilon}} \cdot \frac{\varepsilon^{3 / 2}}{4}=\varepsilon
$$

Thus we have shown in both cases that if $x, y \in(0,1)$ such that $|x-y|<\delta$ then

$$
|g(x)-g(y)|=\left|\frac{\sin x}{x}-\frac{\sin y}{y}\right|<\varepsilon
$$

hence $g(x)$ is uniformly continuous on $(0,1)$.

