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Third Midterm Exam Name: SomeSolutions
November 6, 2009

More Problems.

1. Show that the sinc function f : [0, 1]→ R is continuous, where f(x) =


sinx
x

, if x > 0,

1, if x = 0.

Figure 1: Sinc Function

Proof. We shall take as our starting point geometric inequalities satisfied by sine. P =
(cosx, sinx) is the coordinate of a point on the unit circle. The horizontal distance of P
to the y-axis is at most one so | cosx | ≤ 1. The distance of P to the x-axis is the vertical
distance, which is | sinx|. This is less than the distance around the circle from (1, 0) which
is |x|. On the other hand, for |x| < π

2 , the shortest curve from the positive x-axis to the
ray
−−→
OP outside the unit circle is the arc of the circle of length |x|, which is less than the

vertical path above (1, 0) which has length | tanx |. Thus, for |x| < π
2

| sinx| ≤ |x| ≤ | tanx| = | sinx|
| cosx|

=
| sinx|√
1− sin2 x

.

Multiplying the last inequality

(1− sin2 x)x2 ≤ sin2 x

so
x2 ≤ (1 + x2) sin2 x.
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Thus for 0 < x < π
2 ,

1 ≥ sinx
x
≥ 1√

1 + x2

= 1 +
1−
√

1 + x2

√
1 + x2

= 1 +
(1−

√
1 + x2)(1 +

√
1 + x2)√

1 + x2(1 +
√

1 + x2)

= 1 +
1− (1 + x2)√

1 + x2(1 +
√

1 + x2)

= 1− x2

√
1 + x2(1 +

√
1 + x2)

≥ 1− x2

√
1 + 02(1 +

√
1 + 02)

= 1− x2

2

(1)

Thus for 0 < x < π
2 , ∣∣∣∣ sinxx − 1

∣∣∣∣ ≤ x2

2
. (2)

The inequality between sines at two numbers will follow later on in the course from knowing
that sine has bounded derivative, or that it is the integral of a bounded function. For now
we will content ourselves with the inequality above and trig identities. For x, y ∈ R, using
the addition formulae,

sinx− sin y = sin
(
x+y

2 + x−y
2

)
− sin

(
x+y

2 −
x−y

2

)
= sin

(
x+y

2

)
cos
(
x−y

2

)
+ cos

(
x+y

2

)
sin
(
x−y

2

)
− sin

(
x+y

2

)
cos
(
x−y

2

)
+ cos

(
x+y

2

)
sin
(
x−y

2

)
= 2 cos

(
x+y

2

)
sin
(
x−y

2

)
Thus for x, y ∈ R,

|sinx− sin y| ≤ 2
∣∣cos

(
x+y

2

)∣∣ ∣∣sin (x−y2

)∣∣ ≤ 2 · 1 ·
∣∣x−y

2

∣∣ = |x− y|. (3)

Finally, the inequality between sinc functions at different points follows by sneaking in a
cross term. For 0 < x, y, by (3),∣∣∣ sin xx − sin y

y

∣∣∣ =
∣∣∣ sin xx − sin x

y + sin x
y −

sin y
y

∣∣∣
≤
∣∣∣ sin xx − sin x

y

∣∣∣+
∣∣∣ sin xy − sin y

y

∣∣∣
= | sinx |

∣∣∣ 1x − 1
y

∣∣∣+ 1
|y| |sinx− sin y|

= | sinx |
∣∣∣y−xxy ∣∣∣+ 1

|y| |sinx− sin y|

≤ | sin x ||x|
|y−x|
|y| + 1

|y| |x− y|

Hence for 0 < x, y, ∣∣∣ sin xx − sin y
y

∣∣∣ ≤ 2
|y| |y − x|. (4)
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Now the main part of the proof may begin. Choose a ∈ [0, 1]. We argue two cases: a = 0
and a > 0 seperately.

In case a = 0, choose ε > 0. Let δ =
√

2ε. If x ∈ [0, 1] such that |a− x| < δ, then if 0 < x,
by (2),

|f(x)− f(a)| =
∣∣ sin x
x − 1

∣∣ ≤ x2

2 < (
√

2ε)2

2 = ε.

If x = 0 then |f(x)− f(a)| = |1− 1| = 0 < ε. Thus for every x ∈ [0, 1] with |a− x| < δ we
have |f(x)− f(a)| < ε, completing the proof that f is continuous at a = 0.

In case a > 0, choose ε > 0. Let δ = min{a, aε2 }. Then choose x ∈ [0, 1] so that |x− a| < δ.
But this implies x = a+ x− a ≥ x− |a− x| > a− a = 0 so x > 0 also. By (4),

|f(x)− f(a)| =
∣∣ sin x
x −

sin a
a

∣∣ ≤ 2
|a| |x− a| <

2
|a|

aε
2 = ε,

completing the proof that f is continuous at a > 0.

2. Show that the sinc function g(x) =
sinx
x

is uniformly continuous on (0, 1).

We observe that the function f : [0, 1] → R from Problem (1) is an extension of g, i.e.,
f(x) = g(x) for all x ∈ (0, 1). We showed there that f is continuous on [0, 1]. By the
theorem that say that any function f : I → R that is continuous on a closed and bounded
interval is also uniformly continuous, we have that f is uniformly continuous on I = [0, 1].
But if a function is uniformly continuous on a set, it is automatically uniformly continuous
on a subset. Thus f is uniformly continuous on (0, 1). But g = f when restricted to (0, 1),
so g is uniformly continuous on (0, 1).

3. Using only the definition of uniform continuity, show that the sinc function g(x) =
sinx
x

is

uniformly continuous on (0, 1).

The continuity proof from problem (1) cannot be used because the δ there depends on a
and tends to zero as a → 0. If δ had a positive minimum on [0, 1] then that would prove
the uniform continuity. In fact, by using our inequalities more carefully, we can recover a
uniform δ rather like the proof that

√
x is uniformly continuous on [0,∞).

To begin the proof, choose ε > 0. Let δ = min{
√
ε

2 ,
ε3/2

4 }. Now choose x, y ∈ (0, 1) such
that |x − y| < δ. One of the two numbers is smaller, so after swapping if necessary, we
may suppose that x ≤ y. The argument will done in two parts: in case x <

√
ε

2 or in case
x ≥

√
ε

2 .

In case x <
√
ε

2 , we have y = x + y − x ≤ x + |y − x| < x + δ ≤
√
ε

2 +
√
ε

2 =
√
ε. The

inequalities (1) say

1− ε

8
< 1− x2

2
≤ sinx

x
< 1,

−1 < − sin y
y
≤ −1 +

y2

2
< −1 +

ε

2
.

Adding

−ε
8
<

sinx
x
− sin y

y
<
ε

2

which implies ∣∣∣∣ sinxx − sin y
y

∣∣∣∣ < ε.
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In case x ≥
√
ε

2 so also y ≥ x ≥
√
ε

2 we use (4) instead.∣∣∣∣ sinxx − sin y
y

∣∣∣∣ ≤ 2
|y|
|y − x| < 4δ√

ε
≤ 4√

ε
· ε

3/2

4
= ε.

Thus we have shown in both cases that if x, y ∈ (0, 1) such that |x− y| < δ then

|g(x)− g(y)| =
∣∣∣∣ sinxx − sin y

y

∣∣∣∣ < ε.

hence g(x) is uniformly continuous on (0, 1).
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