More Problems.

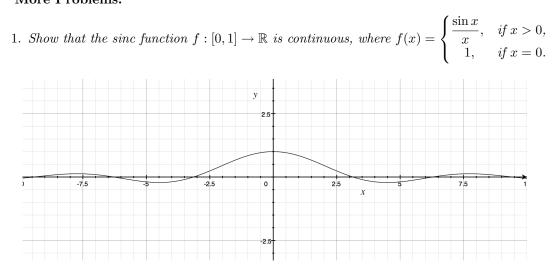


Figure 1: Sinc Function

Proof. We shall take as our starting point geometric inequalities satisfied by sine. $P = (\cos x, \sin x)$ is the coordinate of a point on the unit circle. The horizontal distance of P to the y-axis is at most one so $|\cos x| \leq 1$. The distance of P to the x-axis is the vertical distance, which is $|\sin x|$. This is less than the distance around the circle from (1,0) which is |x|. On the other hand, for $|x| < \frac{\pi}{2}$, the shortest curve from the positive x-axis to the ray \overrightarrow{OP} outside the unit circle is the arc of the circle of length |x|, which is less than the vertical path above (1,0) which has length $|\tan x|$. Thus, for $|x| < \frac{\pi}{2}$

$$|\sin x| \le |x| \le |\tan x| = \frac{|\sin x|}{|\cos x|} = \frac{|\sin x|}{\sqrt{1 - \sin^2 x}}.$$

Multiplying the last inequality

$$(1 - \sin^2 x)x^2 \le \sin^2 x$$

 \mathbf{so}

$$x^2 \le (1+x^2)\sin^2 x.$$

Thus for $0 < x < \frac{\pi}{2}$,

$$1 \ge \frac{\sin x}{x} \ge \frac{1}{\sqrt{1+x^2}} = 1 + \frac{1 - \sqrt{1+x^2}}{\sqrt{1+x^2}} = 1 + \frac{(1 - \sqrt{1+x^2})(1 + \sqrt{1+x^2})}{\sqrt{1+x^2}(1 + \sqrt{1+x^2})} = 1 + \frac{1 - (1 + x^2)}{\sqrt{1+x^2}(1 + \sqrt{1+x^2})} = 1 - \frac{x^2}{\sqrt{1+x^2}(1 + \sqrt{1+x^2})} = 1 - \frac{x^2}{\sqrt{1+x^2}(1 + \sqrt{1+x^2})} = 1 - \frac{x^2}{\sqrt{1+x^2}(1 + \sqrt{1+x^2})} = 1 - \frac{x^2}{2}$$

$$(1)$$

Thus for $0 < x < \frac{\pi}{2}$,

$$\left|\frac{\sin x}{x} - 1\right| \le \frac{x^2}{2}.\tag{2}$$

The inequality between sines at two numbers will follow later on in the course from knowing that sine has bounded derivative, or that it is the integral of a bounded function. For now we will content ourselves with the inequality above and trig identities. For $x, y \in \mathbb{R}$, using the addition formulae,

$$\sin x - \sin y = \sin\left(\frac{x+y}{2} + \frac{x-y}{2}\right) - \sin\left(\frac{x+y}{2} - \frac{x-y}{2}\right)$$
$$= \sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) + \cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$
$$- \sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) + \cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$
$$= 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

Thus for $x, y \in \mathbb{R}$,

$$\left|\sin x - \sin y\right| \le 2\left|\cos\left(\frac{x+y}{2}\right)\right| \left|\sin\left(\frac{x-y}{2}\right)\right| \le 2 \cdot 1 \cdot \left|\frac{x-y}{2}\right| = |x-y|.$$
(3)

Finally, the inequality between sinc functions at different points follows by sneaking in a cross term. For 0 < x, y, by (3),

$$\begin{aligned} \left|\frac{\sin x}{x} - \frac{\sin y}{y}\right| &= \left|\frac{\sin x}{x} - \frac{\sin x}{y} + \frac{\sin x}{y} - \frac{\sin y}{y}\right| \\ &\leq \left|\frac{\sin x}{x} - \frac{\sin x}{y}\right| + \left|\frac{\sin x}{y} - \frac{\sin y}{y}\right| \\ &= \left|\sin x\right| \left|\frac{1}{x} - \frac{1}{y}\right| + \frac{1}{|y|} \left|\sin x - \sin y\right| \\ &= \left|\sin x\right| \left|\frac{y-x}{xy}\right| + \frac{1}{|y|} \left|\sin x - \sin y\right| \\ &\leq \frac{|\sin x|}{|x|} \frac{|y-x|}{|y|} + \frac{1}{|y|} \left|x - y\right| \end{aligned}$$

Hence for 0 < x, y,

$$\left|\frac{\sin x}{x} - \frac{\sin y}{y}\right| \le \frac{2}{|y|} |y - x|.$$

$$\tag{4}$$

Now the main part of the proof may begin. Choose $a \in [0, 1]$. We argue two cases: a = 0 and a > 0 separately.

In case a = 0, choose $\varepsilon > 0$. Let $\delta = \sqrt{2\varepsilon}$. If $x \in [0, 1]$ such that $|a - x| < \delta$, then if 0 < x, by (2),

$$|f(x) - f(a)| = \left|\frac{\sin x}{x} - 1\right| \le \frac{x^2}{2} < \frac{(\sqrt{2\varepsilon})^2}{2} = \varepsilon.$$

If x = 0 then $|f(x) - f(a)| = |1 - 1| = 0 < \varepsilon$. Thus for every $x \in [0, 1]$ with $|a - x| < \delta$ we have $|f(x) - f(a)| < \varepsilon$, completing the proof that f is continuous at a = 0.

In case a > 0, choose $\varepsilon > 0$. Let $\delta = \min\{a, \frac{a\varepsilon}{2}\}$. Then choose $x \in [0, 1]$ so that $|x - a| < \delta$. But this implies $x = a + x - a \ge x - |a - x| > a - a = 0$ so x > 0 also. By (4),

$$|f(x) - f(a)| = \left|\frac{\sin x}{x} - \frac{\sin a}{a}\right| \le \frac{2}{|a|} |x - a| < \frac{2}{|a|} \frac{a\varepsilon}{2} = \varepsilon,$$

completing the proof that f is continuous at a > 0.

2. Show that the sinc function $g(x) = \frac{\sin x}{x}$ is uniformly continuous on (0, 1).

We observe that the function $f : [0,1] \to \mathbb{R}$ from Problem (1) is an extension of g, *i.e.*, f(x) = g(x) for all $x \in (0,1)$. We showed there that f is continuous on [0,1]. By the theorem that say that any function $f : I \to \mathbb{R}$ that is continuous on a closed and bounded interval is also uniformly continuous, we have that f is uniformly continuous on I = [0,1]. But if a function is uniformly continuous on a set, it is automatically uniformly continuous on a subset. Thus f is uniformly continuous on (0,1). But g = f when restricted to (0,1), so g is uniformly continuous on (0,1).

3. Using only the definition of uniform continuity, show that the sinc function $g(x) = \frac{\sin x}{x}$ is uniformly continuous on (0, 1).

The continuity proof from problem (1) cannot be used because the δ there depends on a and tends to zero as $a \to 0$. If δ had a positive minimum on [0, 1] then that would prove the uniform continuity. In fact, by using our inequalities more carefully, we can recover a uniform δ rather like the proof that \sqrt{x} is uniformly continuous on $[0, \infty)$.

To begin the proof, choose $\varepsilon > 0$. Let $\delta = \min\{\frac{\sqrt{\varepsilon}}{2}, \frac{\varepsilon^{3/2}}{4}\}$. Now choose $x, y \in (0, 1)$ such that $|x - y| < \delta$. One of the two numbers is smaller, so after swapping if necessary, we may suppose that $x \leq y$. The argument will done in two parts: in case $x < \frac{\sqrt{\varepsilon}}{2}$ or in case $x \geq \frac{\sqrt{\varepsilon}}{2}$.

In case $x < \frac{\sqrt{\varepsilon}}{2}$, we have $y = x + y - x \le x + |y - x| < x + \delta \le \frac{\sqrt{\varepsilon}}{2} + \frac{\sqrt{\varepsilon}}{2} = \sqrt{\varepsilon}$. The inequalities (1) say

$$1 - \frac{\varepsilon}{8} < 1 - \frac{x^2}{2} \le \frac{\sin x}{x} < 1,$$

$$-1 < -\frac{\sin y}{y} \le -1 + \frac{y^2}{2} < -1 + \frac{\varepsilon}{2}.$$

Adding

$$-\frac{\varepsilon}{8} < \frac{\sin x}{x} - \frac{\sin y}{y} < \frac{\varepsilon}{2}$$

which implies

$$\left|\frac{\sin x}{x} - \frac{\sin y}{y}\right| < \varepsilon.$$

In case $x \ge \frac{\sqrt{\varepsilon}}{2}$ so also $y \ge x \ge \frac{\sqrt{\varepsilon}}{2}$ we use (4) instead.

$$\left|\frac{\sin x}{x} - \frac{\sin y}{y}\right| \le \frac{2}{|y|} |y - x| < \frac{4\delta}{\sqrt{\varepsilon}} \le \frac{4}{\sqrt{\varepsilon}} \cdot \frac{\varepsilon^{3/2}}{4} = \varepsilon.$$

Thus we have shown in both cases that if $x,y\in(0,1)$ such that $|x-y|<\delta$ then

$$|g(x) - g(y)| = \left|\frac{\sin x}{x} - \frac{\sin y}{y}\right| < \varepsilon.$$

hence g(x) is uniformly continuous on (0, 1).