
Math 3210 § 1.
Treibergs

Third Midterm Exam Name: Solutions
November 12, 2008

[1] Let {xn} ⊂ R be a sequence. State the definition: {xn} is a Cauchy sequence. Let xn =
n

n + 1
.

Show that {xn} is a Cauchy sequence.
Definition. {xn} is a Cauchy sequence if for every ε > 0 there is an R ∈ R such that

|xn − xm| < ε whenever m,n ∈ N satisfy m,n > R.
Proof. Choose ε > 0. Let R = 1

ε . Suppose m,n ∈ N satisfy m,n > R. One is larger, say,
m ≥ n. Then since 0 ≤ m− n ≤ m + 1,

|xn − xm| =
∣∣∣∣ m

m + 1
− n

n + 1

∣∣∣∣ =
|m(n + 1)− n(m + 1)|

(m + 1)(n + 1)
=

m− n

m + 1
· 1
n + 1

≤ 1
n + 1

<
1
R

= ε.

[2.] Let f, fn : D → R be functions. State the definition: fn converges to f pointwise on D as

n →∞. State the definition: fn converges to f uniformly on D as n →∞. Let gn(x) =
x2

n2 + x2

and g(x) = 0. Show that gn → g pointwise on R. Does gn → g uniformly on R? Prove your
answer.

Definition: fn → f converges pointwise on D means for every x ∈ D we have limn→∞ fn(x) =
f(x). i.e., for every x ∈ D and for every ε > 0 there is R ∈ R such that |fn(x) − f(x)| < ε
whenever n ∈ N satisfies n > R.

Definition: fn → f converges uniformly on D means for every ε > 0 there is R ∈ R such that
|fn(x)− f(x)| < ε whenever x ∈ D and n ∈ N satisfies n > R.

To see that gn → g pointwise, by the workhorse theorem for sequences, for any x ∈ R,

lim
n→∞

x2

n2 + x2
= lim

n→∞

x2

n2

1 + x2

n2

=
0

1 + 0
= 0.

However, the convergence is not uniform. Negating the definition, gn does not converge uniformly
to g means there is an ε0 > 0 such that for every R > 0 there is an n ∈ N such that n > R and
there is an x ∈ R such that |gn(x) − g(g)| ≥ ε0. Take ε0 = 1

2 . Choose R ∈ R. Take n ∈ N to
satisfy n > R (by the Archimedian property) and let x = n. Then

|gn(x)− g(x)| = |gn(n)− 0| =
∣∣∣∣ n2

n2 + n2

∣∣∣∣ =
1
2
≥ ε0.

[3.] Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.
(a.) Statement. Let {yn} be a sequence such that yn > 0 for all n. If yn → y as n → ∞ then
y > 0.

FALSE. Let yn = 1
n . Then yn → 0 as n →∞ but 0 is not positive.

(b.) Statement. Let {zn} be a sequence that has a convergent subsequence. Then {zn} is bounded.

FALSE. Let zn =

{
0, if n is even;
n, if n is odd.

. Then the even subsequence z2n = 0 → 0 but zn is

unbounded since z2n+1 = 2n + 1 →∞ as n →∞.

(c.) Statement. If f : (0, 1) → R is uniformly continuous then lim
n→∞

f

(
1
n

)
exists.

TRUE. A uniformly continuous function on a bounded open interval has a continuous exten-
sion on the closure, F : [0, 1] → R such that F = f on (0, 1). But the sequence { 1

n} ⊂ [0, 1] tends
to zero 1

n → 0 as n →∞, and since F is continuous at zero, F ( 1
n ) → F (0) as n →∞.
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[4.] Let f : R → R be continuous. Suppose that for some x0 ∈ R we have f(x0) > 0. Show that
there are a, b, c ∈ R such that a < b and 0 < c such that f(x) ≥ c whenever a < x < b.

Proof. Since f is continuous at x0, for every ε > 0 there is a δ > 0 such that |f(x)−f(x0)| < ε
whenever |x − x0| < δ. Apply this to the special case ε0 = 1

2f(x0) > 0 and let δ0 > 0 be the
corresponding δ. Then for x ∈ (x0 − δ0, x0 + δ0) we have |f(x)− f(x0)| < 1

2f(x0). This implies
for such x,

f(x) = f(x0) + f(x)− f(x0) ≥ f(x0)− |f(x)− f(x0)| > f(x0)−
1
2
f(x0) =

1
2
f(x0).

Thus we have shown for a = x0 − δ0, b = x0 + δ0 and c = 1
2f(x0) that x ∈ (a, b) implies

f(x) > c.

[5.] Let f : R → R and a, L ∈ R. State the definition: lim
x→a

f(x) = L. Using just the definition

and not the limit theorems, show that lim
x→1

(x + 3)2 = 16.

Definition. lim
x→a

f(x) = L means for every ε > 0 there is δ > 0 such that |f(x) − L| < ε

whenever x ∈ R and 0 < |x− a| < δ.
Proof. Choose ε > 0. Let δ = min{1, ε

9}. For any x ∈ R that satisfies 0 < |x− 1| < δ we have
|x + 7| = |x− 1 + 8| ≤ |x− 1|+ 8 < δ + 8 ≤ 1 + 8 = 9 because δ ≤ 1. Hence, δ ≤ ε

9 implies

|f(x)− 16| = |(x + 3)2 − (1 + 3)2| = |(x + 3 + 1 + 3)(x + 3− 1− 3)| = |x + 7||x− 1| < 9δ ≤ ε.
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