Math 3210 § 1.
Treibergs

Third Midterm Exam
[1] Let $\left\{x_{n}\right\} \subset \mathbb{R}$ be a sequence. State the definition: $\left\{x_{n}\right\}$ is a Cauchy sequence. Let $x_{n}=\frac{n}{n+1}$. Show that $\left\{x_{n}\right\}$ is a Cauchy sequence.

Definition. $\left\{x_{n}\right\}$ is a Cauchy sequence if for every $\epsilon>0$ there is an $R \in \mathbb{R}$ such that $\left|x_{n}-x_{m}\right|<\epsilon$ whenever $m, n \in \mathbb{N}$ satisfy $m, n>R$.

Proof. Choose $\epsilon>0$. Let $R=\frac{1}{\epsilon}$. Suppose $m, n \in \mathbb{N}$ satisfy $m, n>R$. One is larger, say, $m \geq n$. Then since $0 \leq m-n \leq m+1$,

$$
\left|x_{n}-x_{m}\right|=\left|\frac{m}{m+1}-\frac{n}{n+1}\right|=\frac{|m(n+1)-n(m+1)|}{(m+1)(n+1)}=\frac{m-n}{m+1} \cdot \frac{1}{n+1} \leq \frac{1}{n+1}<\frac{1}{R}=\epsilon
$$

[2.] Let $f, f_{n}: D \rightarrow \mathbb{R}$ be functions. State the definition: f_{n} converges to f pointwise on D as $n \rightarrow \infty$. State the definition: f_{n} converges to f uniformly on D as $n \rightarrow \infty$. Let $g_{n}(x)=\frac{x^{2}}{n^{2}+x^{2}}$ and $g(x)=0$. Show that $g_{n} \rightarrow g$ pointwise on \mathbb{R}. Does $g_{n} \rightarrow g$ uniformly on \mathbb{R} ? Prove your answer.

Definition: $f_{n} \rightarrow f$ converges pointwise on D means for every $x \in D$ we have $\lim _{n \rightarrow \infty} f_{n}(x)=$ $f(x)$. i.e., for every $x \in D$ and for every $\epsilon>0$ there is $R \in \mathbb{R}$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ whenever $n \in \mathbb{N}$ satisfies $n>R$.

Definition: $f_{n} \rightarrow f$ converges uniformly on D means for every $\epsilon>0$ there is $R \in \mathbb{R}$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ whenever $x \in D$ and $n \in \mathbb{N}$ satisfies $n>R$.

To see that $g_{n} \rightarrow g$ pointwise, by the workhorse theorem for sequences, for any $x \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{x^{2}}{n^{2}+x^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{x^{2}}{n^{2}}}{1+\frac{x^{2}}{n^{2}}}=\frac{0}{1+0}=0
$$

However, the convergence is not uniform. Negating the definition, g_{n} does not converge uniformly to g means there is an $\epsilon_{0}>0$ such that for every $R>0$ there is an $n \in \mathbb{N}$ such that $n>R$ and there is an $x \in \mathbb{R}$ such that $\left|g_{n}(x)-g(g)\right| \geq \epsilon_{0}$. Take $\epsilon_{0}=\frac{1}{2}$. Choose $R \in \mathbb{R}$. Take $n \in \mathbb{N}$ to satisfy $n>R$ (by the Archimedian property) and let $x=n$. Then

$$
\left|g_{n}(x)-g(x)\right|=\left|g_{n}(n)-0\right|=\left|\frac{n^{2}}{n^{2}+n^{2}}\right|=\frac{1}{2} \geq \epsilon_{0}
$$

[3.] Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a.) Statement. Let $\left\{y_{n}\right\}$ be a sequence such that $y_{n}>0$ for all n. If $y_{n} \rightarrow y$ as $n \rightarrow \infty$ then $y>0$.

FALSE. Let $y_{n}=\frac{1}{n}$. Then $y_{n} \rightarrow 0$ as $n \rightarrow \infty$ but 0 is not positive.
(b.) Statement. Let $\left\{z_{n}\right\}$ be a sequence that has a convergent subsequence. Then $\left\{z_{n}\right\}$ is bounded. FALSE. Let $z_{n}=\left\{\begin{array}{ll}0, & \text { if } n \text { is even; } \\ n, & \text { if } n \text { is odd. }\end{array}\right.$. Then the even subsequence $z_{2 n}=0 \rightarrow 0$ but z_{n} is unbounded since $z_{2 n+1}=2 n+1 \rightarrow \infty$ as $n \rightarrow \infty$.
(c.) Statement. If $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous then $\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)$ exists.

TRUE. A uniformly continuous function on a bounded open interval has a continuous extension on the closure, $F:[0,1] \rightarrow \mathbb{R}$ such that $F=f$ on $(0,1)$. But the sequence $\left\{\frac{1}{n}\right\} \subset[0,1]$ tends to zero $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, and since F is continuous at zero, $F\left(\frac{1}{n}\right) \rightarrow F(0)$ as $n \rightarrow \infty$.
[4.] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Suppose that for some $x_{0} \in \mathbb{R}$ we have $f\left(x_{0}\right)>0$. Show that there are $a, b, c \in \mathbb{R}$ such that $a<b$ and $0<c$ such that $f(x) \geq c$ whenever $a<x<b$.

Proof. Since f is continuous at x_{0}, for every $\epsilon>0$ there is a $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ whenever $\left|x-x_{0}\right|<\delta$. Apply this to the special case $\epsilon_{0}=\frac{1}{2} f\left(x_{0}\right)>0$ and let $\delta_{0}>0$ be the corresponding δ. Then for $x \in\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$ we have $\left|f(x)-f\left(x_{0}\right)\right|<\frac{1}{2} f\left(x_{0}\right)$. This implies for such x,

$$
f(x)=f\left(x_{0}\right)+f(x)-f\left(x_{0}\right) \geq f\left(x_{0}\right)-\left|f(x)-f\left(x_{0}\right)\right|>f\left(x_{0}\right)-\frac{1}{2} f\left(x_{0}\right)=\frac{1}{2} f\left(x_{0}\right)
$$

Thus we have shown for $a=x_{0}-\delta_{0}, b=x_{0}+\delta_{0}$ and $c=\frac{1}{2} f\left(x_{0}\right)$ that $x \in(a, b)$ implies $f(x)>c$.
[5.] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $a, L \in \mathbb{R}$. State the definition: $\lim _{x \rightarrow a} f(x)=L$. Using just the definition and not the limit theorems, show that $\lim _{x \rightarrow 1}(x+3)^{2}=16$.

Definition. $\lim _{x \rightarrow a} f(x)=L$ means for every $\epsilon>0$ there is $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $x \in \mathbb{R}$ and $0<|x-a|<\delta$.

Proof. Choose $\epsilon>0$. Let $\delta=\min \left\{1, \frac{\epsilon}{9}\right\}$. For any $x \in \mathbb{R}$ that satisfies $0<|x-1|<\delta$ we have $|x+7|=|x-1+8| \leq|x-1|+8<\delta+8 \leq 1+8=9$ because $\delta \leq 1$. Hence, $\delta \leq \frac{\epsilon}{9}$ implies
$|f(x)-16|=\left|(x+3)^{2}-(1+3)^{2}\right|=|(x+3+1+3)(x+3-1-3)|=|x+7||x-1|<9 \delta \leq \epsilon$.

