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(1.)Show directly from the definition that {xn}n∈N is a Cauchy sequence, where
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Proof. To show that {xn}n∈N is Cauchy, which means for every ε > 0 there is an N ∈ R so that for every
k, ` ≥ N , there holds |xk − x`| < ε.

Choose ε > 0. Let N = 1/ε. Suppose we choose k, ` ∈ N so that k, ` ≥ N . If k < ` then swap the names
of the numbers. Thus we may assume k ≥ `. If k = ` then |xk − x`| = 0 < ε. If k > ` then
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where we have used jj ≥ 2j for j ≥ `+ 1 (≥ 2), 2` > ` (which is problem 1.2.6a) and the sum of a geometric
series

∑k
j=`+1 r

j = (r`+1 − rk+1)/(1− r).
(2.)For each n ∈ N, suppose that an ∈ R satisfies |an| ≤ n. Show that the sequence {rn}n∈N where
rn = an/n has a convergent subsequence.

Proof. We show that {rn}n∈N is a bounded sequence. Indeed, for all n ∈ N, by the hypothesis |an| ≤ n,

|rn| =
∣∣∣an

n

∣∣∣ =
|an|
n
≤ n

n
= 1.

By the Bolzano-Weierstraß Theorem 2.26, the bounded sequence {rn}n∈N has a convergent subsequence. �
(3.)Suppose that the real sequence {xn}n∈N is bounded and that the real sequence {yn}n∈N tends to infinity
yn →∞ as n→∞. Show

lim
n→∞

(xn + yn) =∞, [i.e. x+∞ =∞.]

Proof. We show that zn = xn + yn → ∞ as n → ∞ which means for all M ∈ R there is an N ∈ N so
that for every k ∈ N such that k ≥ N we have zk > M .

As {xn}n∈N is a bounded sequence, there is a C ∈ R so that |xk| ≤ C for all k ∈ N. Choose M ∈ R.
As {yn}n∈N diverges to infinity as n→∞, there is an N ∈ N so that for every k ∈ N such that k ≥ N we
have yk > M + C. We show that this N proves the claim for {zn}n∈N. Thus if we choose k ∈ N such that
k ≥ N then

zk = yk + xk > (M + C)− |xk| ≥ (M + C)− C = M. �

(4.)Suppose {xn}n∈N is a Cauchy Sequence such that some subsequence xnj
→ L as j → ∞. Then the full

sequence converges xn → L as n→∞.
Proof. We show that xn → L as n → ∞ which means, for all ε > 0 there is an N ∈ N so that for all

k ∈ N such that k ≥ N we have |xk − L| < ε.
Choose ε > 0. As {xn}n∈N is a Cauchy Sequence, there is a K ∈ N so that for all k, ` ∈ N such that

k, ` ≥ K we have |xk − x`| < 1
2ε. As the subsequence xnj

→ L as j → ∞, there is a J ∈ N such that for
every j ∈ N such that j ≥ J we have |xnj

− L| < 1
2ε. Now N = max{K,nJ} is the number that proves the

convergence. Choose any k ∈ N such that k ≥ N . Let ` = nN . We have ` = nN ≥ N ≥ nJ ≥ J . Then, by
the triangle inequality,

|xk − L| = |(xk − x`) + (x` − L)| ≤ |xk − x`|+ |xnN − L| <
1
2ε+ 1

2ε = ε. �
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(5.)Show directly from the definition that {xn}n∈N is a Cauchy Sequence, where

xn =
1
2!

+
1
4!

+
1
6!

+ · · ·+ 1
(2n)!

=
n∑

j=1

1
(2j)!

.

Proof. To show that {xn}n∈N is Cauchy, which means for every ε > 0 there is an N ∈ R so that for every
k, ` ∈ N such that k, ` ≥ N , there holds |xk − x`| < ε.

Choose ε > 0. Let N = 1
ε . Choose k, ` ∈ N so that k, ` ≥ N . If k = ` then |xk − x`| = 0 < ε. If k 6= `, by

swapping roles if needed, we may assume k > `. Then
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From Midterm Given November 17, 2004.
(1.) Let f(x) = (x− 1)2. Using the definition of differentiable directly, show that f is differentiable at a = 4.

A function is differentiable at a if the limit exists and equals the derivative: lim
x→a

f(x)−f(a)
x−a = f ′(a). Let

a = 4 and f(x) = (x− 1)2. For x 6= 4, the difference quotient equals

f(x)− f(a)
x− a

=
(x− 1)2 − (4− 1)2

x− 4
=
x2 − 2x+ 1− 9

x− 4
=

(x− 4)(x+ 2)
x− 4

= x+ 2

which tends to 4 + 2 = 6 as x → 4 by the sum theorem for limits. Since the limit exists and equals 6, we
conclude that f is differentiable at 4 and f ′(4) = 6. �
(2.) Prove that lim

x→∞

(
x3 − 5x− 6

)
=∞.

lim
x→∞

f(x) =∞ means for every M ∈ R there is a X0 ∈ R so that for every x ∈ R such that x > X0, we

have f(x) > M .
Choose M ∈ R. Let X0 = max{4, (3|M |)1/3}. Choose x ∈ R such that x > X0. Since x > 4 it follows

that x3 > 18 which implies 1
3x

3 > 6. Since x > 4 it also follows that x2 > 15 which implies 1
3x

2 > 5. Finally,
since x > (3|M |)1/3 ≥ 0 we get

f(x) = x3 − 5x− 6 = 1
3x

3 +
(

1
3x

2 − 5
)
x+ 1

3x
3 − 6

> 1
3

(
(3|M |)1/3

)3

+ 1
3 (5− 5)x+ (6− 6) = |M |+ 0 + 0 ≥M. �

Alternately, for x > 0, use the function version of Theorem 2.15(iii) (see p. 69): If there are numbers
X1, y0 > 0 such that b(x) ≥ y0 for all x > X0 and u(x) → ∞ as x → ∞ then b(x) · u(x) → ∞ as x → ∞.
Hence, as x→∞,

x3 − 6x− 6 =
(
x3 − 5x− 6

x3

)
· x3 =

(
1− 5

x2
x− 6

x3

)
· x3 = b(x) · u(x)→∞.
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The conditions on b(x) and u(x) can be seen as follows: By choosing X1 = 10, we see that x > X1 implies
b(x) = 1 − 5

x2 − 6
x3 > 1 − 0.05 − 0.006 > 0.9 so y0 = 0.9. Similarly for x > X1 = 10 we see that

u(x) = x3 = x2 · x > 100x > x which tends to infinity by assumption, so u(x)→∞ (see Prob. 71[7a].) �
(3.) Show that the set E is infinite, where E = {x ∈ R : x cosx = 7 sinx}.

The function h(x) = x cosx − 7 sinx is continuous on R since it is the difference of products of the
continuous functions x, sinx and cosx. Let xk = 2πk and yk = 2πk + π. Observe that for k ∈ N,
xk < yk < xk+1 for all k. Now h(xk) = (2πk) cos(2πk) − 7 sin(2πk) = 2πk > 0 and h(yk) = (2πk +
π) cos(2πk + π) − 7 sin(2πk + π) = −(2πk + π) < 0. Thus for each k, h is a continuous function on the
closed bounded interval [xk, yk] such that h(xk) > 0 > h(yk). By the Intermediate Value Theorem, there
is a zk ∈ (xk, yk) such that h(zk) = 0 so zk ∈ E. Now, as the zk’s are all distinct, E is infinite because it
contains the countably infinite set {zk : k ∈ N}. To see the distinctness, suppose k, ` ∈ N such that k 6= `.
We may assume k < `. Then zk < yk < xk+1 < yk+1 < · · · < x`−1 < y`−1 < x` < z` so zk 6= z`. (Of course
there are more zeros, such as the ones from the increasing parts of h.) �

(4.) Let f(x) =
x2

1 + |x|
. Show that f is uniformly continuous on R.

f is uniformly continuous on R iff for every ε > 0 there is a δ > 0 so that for every x, y ∈ R such that
|x− y| < δ we have |f(x)− f(y)| < ε.

Choose ε > 0. Let δ = ε. Choose x, y ∈ R such that |x− y| < δ. Then since

|x+ y|+ |x| |y| ≤ |x|+ |y|+ |x| |y| ≤ 1 + |x|+ |y|+ |x| |y| = (1 + |x|)(1 + |y|)

we get |f(x)− f(y)| =

=
∣∣∣∣ x2

1 + |x|
− y2

1 + |y|

∣∣∣∣ =
∣∣∣∣x2(1 + |y|)− y2(1 + |x|)

(1 + |x|)(1 + |y|)

∣∣∣∣ =
∣∣∣∣ (x2 − y2) + (x2|y| − y2|x|)

(1 + |x|)(1 + |y|)

∣∣∣∣
=
∣∣∣∣ (x− y)(x+ y) + (|x|2|y| − |y|2|x|)

(1 + |x|)(1 + |y|)

∣∣∣∣ ≤ |x− y| |x+ y|+ |x||y|
∣∣|x| − |y|∣∣

(1 + |x|)(1 + |y|)

≤ |x− y| |x+ y|+ |x||y| |x− y|
(1 + |x|)(1 + |y|)

≤ |x+ y|+ |x||y|
(1 + |x|)(1 + |y|)

|x− y| ≤ |x− y| < δ = ε. �

(5.) Determine whether the statements are true or false. If the statement is true, give the reason. If the
statement is false, provide a counterexample.
(a.) Statement. Let f : R→ R be a bounded function. Then there is at least one point a ∈ R such that f
is continuous at a.

FALSE. Let f(x) =
{

1, if x ∈ Q,
0, if x ∈ R\Q.

Then |f(x)| ≤ 1 for all x so f is bounded, but f is not continuous

anywhere.
(b.) Statement. Let f : R→ R be continuous at 0. Then g(x) = f(x2) is differentiable at x = 0.

FALSE. Let f(x) =
√
|x|. Then f(x) is (uniformly) continuous on R (so continuous at 0,) but f(x2) =√

|x2| = |x| which is not differentiable at 0.
(c.) Statement. Suppose that f : R→ R is differentiable at x = 0. Let ak = f

(
1
k

)
.

Then lim
k→∞

ak exists.

TRUE. f differentiable at 0 implies that f is continuous at 0. In other words, the limit exists and
lim
x→0

f(x) = f(0). But by the sequential characterization of continuity at zero, there is an L ∈ R such that

any sequence xk 6= 0 such that xk → 0 as k → ∞, then lim
k→∞

f(xk) = L where L = f(0). In particular,

xk = 1
k is such a sequence, so lim

k→∞
f
(

1
k

)
exists and equals f(0).


