(1.) Show directly from the definition that $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence, where

$$x_n = \frac{1}{1} + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4} + \dots + \frac{1}{n^n} = \sum_{j=1}^n \frac{1}{j^j},$$

Proof. To show that $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy, which means for every $\varepsilon > 0$ there is an $N \in \mathbb{R}$ so that for every $k, \ell \ge N$, there holds $|x_k - x_\ell| < \varepsilon$.

Choose $\varepsilon > 0$. Let $N = 1/\varepsilon$. Suppose we choose $k, \ell \in \mathbf{N}$ so that $k, \ell \ge N$. If $k < \ell$ then swap the names of the numbers. Thus we may assume $k \ge \ell$. If $k = \ell$ then $|x_k - x_\ell| = 0 < \varepsilon$. If $k > \ell$ then

$$|x_k - x_\ell| = \left|\sum_{j=1}^k \frac{1}{j^j} - \sum_{j=1}^\ell \frac{1}{j^j}\right| = \sum_{j=\ell+1}^k \frac{1}{j^j} \le \sum_{j=\ell+1}^k \frac{1}{2^j} = \frac{1}{2^\ell} - \frac{1}{2^k} \le \frac{1}{2^\ell} < \frac{1}{\ell} \le \frac{1}{N} < \varepsilon.$$

where we have used $j^j \ge 2^j$ for $j \ge \ell + 1 (\ge 2)$, $2^\ell > \ell$ (which is problem 1.2.6a) and the sum of a geometric series $\sum_{j=\ell+1}^k r^j = (r^{\ell+1} - r^{k+1})/(1-r)$.

(2.) For each $n \in \mathbf{N}$, suppose that $a_n \in \mathbf{R}$ satisfies $|a_n| \leq n$. Show that the sequence $\{r_n\}_{n \in \mathbf{N}}$ where $r_n = a_n/n$ has a convergent subsequence.

Proof. We show that $\{r_n\}_{n\in\mathbb{N}}$ is a bounded sequence. Indeed, for all $n\in\mathbb{N}$, by the hypothesis $|a_n|\leq n$,

$$|r_n| = \left|\frac{a_n}{n}\right| = \frac{|a_n|}{n} \le \frac{n}{n} = 1.$$

By the Bolzano-Weierstraß Theorem 2.26, the bounded sequence $\{r_n\}_{n \in \mathbb{N}}$ has a convergent subsequence. (3.) Suppose that the real sequence $\{x_n\}_{n \in \mathbb{N}}$ is bounded and that the real sequence $\{y_n\}_{n \in \mathbb{N}}$ tends to infinity $y_n \to \infty$ as $n \to \infty$. Show

$$\lim_{n \to \infty} (x_n + y_n) = \infty, \qquad [i.e. \quad x + \infty = \infty.]$$

Proof. We show that $z_n = x_n + y_n \to \infty$ as $n \to \infty$ which means for all $M \in \mathbf{R}$ there is an $N \in \mathbf{N}$ so that for every $k \in \mathbf{N}$ such that $k \ge N$ we have $z_k > M$.

As $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence, there is a $C \in \mathbb{R}$ so that $|x_k| \leq C$ for all $k \in \mathbb{N}$. Choose $M \in \mathbb{R}$. As $\{y_n\}_{n \in \mathbb{N}}$ diverges to infinity as $n \to \infty$, there is an $N \in \mathbb{N}$ so that for every $k \in \mathbb{N}$ such that $k \geq N$ we have $y_k > M + C$. We show that this N proves the claim for $\{z_n\}_{n \in \mathbb{N}}$. Thus if we choose $k \in \mathbb{N}$ such that $k \geq N$ then

$$z_k = y_k + x_k > (M + C) - |x_k| \ge (M + C) - C = M.$$

(4.) Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy Sequence such that some subsequence $x_{n_j} \to L$ as $j \to \infty$. Then the full sequence converges $x_n \to L$ as $n \to \infty$.

Proof. We show that $x_n \to L$ as $n \to \infty$ which means, for all $\varepsilon > 0$ there is an $N \in \mathbf{N}$ so that for all $k \in \mathbf{N}$ such that $k \ge N$ we have $|x_k - L| < \varepsilon$.

Choose $\varepsilon > 0$. As $\{x_n\}_{n \in \mathbf{N}}$ is a Cauchy Sequence, there is a $K \in \mathbf{N}$ so that for all $k, \ell \in \mathbf{N}$ such that $k, \ell \geq K$ we have $|x_k - x_\ell| < \frac{1}{2}\varepsilon$. As the subsequence $x_{n_j} \to L$ as $j \to \infty$, there is a $J \in \mathbf{N}$ such that for every $j \in \mathbf{N}$ such that $j \geq J$ we have $|x_{n_j} - L| < \frac{1}{2}\varepsilon$. Now $N = \max\{K, n_J\}$ is the number that proves the convergence. Choose any $k \in \mathbf{N}$ such that $k \geq N$. Let $\ell = n_N$. We have $\ell = n_N \geq N \geq n_J \geq J$. Then, by the triangle inequality,

$$|x_k - L| = |(x_k - x_\ell) + (x_\ell - L)| \le |x_k - x_\ell| + |x_{n_N} - L| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon. \quad \Box$$

(5.) Show directly from the definition that $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy Sequence, where

. .

$$x_n = \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots + \frac{1}{(2n)!} = \sum_{j=1}^n \frac{1}{(2j)!}.$$

Proof. To show that $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy, which means for every $\varepsilon > 0$ there is an $N \in \mathbb{R}$ so that for every $k, \ell \in \mathbb{N}$ such that $k, \ell \geq N$, there holds $|x_k - x_\ell| < \varepsilon$.

Choose $\varepsilon > 0$. Let $N = \frac{1}{\varepsilon}$. Choose $k, \ell \in \mathbf{N}$ so that $k, \ell \ge N$. If $k = \ell$ then $|x_k - x_\ell| = 0 < \varepsilon$. If $k \ne \ell$, by swapping roles if needed, we may assume $k > \ell$. Then

$$\begin{aligned} |x_k - x_\ell| &= \left| \sum_{j=1}^k \frac{1}{(2j)!} - \sum_{j=1}^\ell \frac{1}{(2j)!} \right| = \left| \sum_{j=\ell+1}^k \frac{1}{(2j)!} \right| = \frac{1}{(2\ell+2)!} + \frac{1}{(2\ell+4)!} + \dots + \frac{1}{(2k)!} \\ &= \frac{1}{(2\ell)!} \left(\frac{1}{(2\ell+1)(2\ell+2)} + \frac{1}{(2\ell+1)(2\ell+2)(2\ell+3)(2\ell+4)} + \dots + \frac{1}{(2\ell+1)(2\ell+2)\dots(2k-1)(2k)} \right) \\ &\leq \frac{1}{(2\ell)!} \left(\frac{1}{(2\ell+1)(2\ell+2)} + \frac{1}{(2\ell+2)(2\ell+3)} + \dots + \frac{1}{(\ell+k)(\ell+k+1)} \right) \\ &= \frac{1}{(2\ell)!} \left(\left[\frac{1}{2\ell+1} - \frac{1}{2\ell+2} \right] + \left[\frac{1}{2\ell+2} - \frac{1}{2\ell+3} \right] + \dots + \left[\frac{1}{\ell+k} - \frac{1}{\ell+k+1} \right] \right) \\ &= \frac{1}{(2\ell)!} \left(\frac{1}{2\ell+1} - \frac{1}{\ell+k+1} \right) \leq \frac{1}{2\ell} \leq \frac{1}{N} < \varepsilon. \quad \Box \end{aligned}$$

From Midterm Given November 17, 2004.

(1.) Let $f(x) = (x-1)^2$. Using the definition of differentiable directly, show that f is differentiable at a = 4. A function is differentiable at a if the limit exists and equals the derivative: $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$. Let a = 4 and $f(x) = (x-1)^2$. For $x \neq 4$, the difference quotient equals

$$\frac{f(x) - f(a)}{x - a} = \frac{(x - 1)^2 - (4 - 1)^2}{x - 4} = \frac{x^2 - 2x + 1 - 9}{x - 4} = \frac{(x - 4)(x + 2)}{x - 4} = x + 2$$

which tends to 4 + 2 = 6 as $x \to 4$ by the sum theorem for limits. Since the limit exists and equals 6, we conclude that f is differentiable at 4 and f'(4) = 6. \Box (2.) Prove that $\lim_{x \to \infty} (x^3 - 5x - 6) = \infty$.

 $\lim_{x\to\infty} f(x) = \infty \text{ means for every } M \in \mathbf{R} \text{ there is a } X_0 \in \mathbf{R} \text{ so that for every } x \in \mathbf{R} \text{ such that } x > X_0, \text{ we have } f(x) > M.$

Choose $M \in \mathbf{R}$. Let $X_0 = \max\{4, (3|M|)^{1/3}\}$. Choose $x \in \mathbf{R}$ such that $x > X_0$. Since x > 4 it follows that $x^3 > 18$ which implies $\frac{1}{3}x^3 > 6$. Since x > 4 it also follows that $x^2 > 15$ which implies $\frac{1}{3}x^2 > 5$. Finally, since $x > (3|M|)^{1/3} \ge 0$ we get

$$f(x) = x^3 - 5x - 6 = \frac{1}{3}x^3 + \left(\frac{1}{3}x^2 - 5\right)x + \frac{1}{3}x^3 - 6$$

> $\frac{1}{3}\left((3|M|)^{1/3}\right)^3 + \frac{1}{3}\left(5 - 5\right)x + (6 - 6) = |M| + 0 + 0 \ge M.$

Alternately, for x > 0, use the function version of Theorem 2.15(iii) (see p. 69): If there are numbers $X_1, y_0 > 0$ such that $b(x) \ge y_0$ for all $x > X_0$ and $u(x) \to \infty$ as $x \to \infty$ then $b(x) \cdot u(x) \to \infty$ as $x \to \infty$. Hence, as $x \to \infty$,

$$x^{3} - 6x - 6 = \left(\frac{x^{3} - 5x - 6}{x^{3}}\right) \cdot x^{3} = \left(1 - \frac{5}{x^{2}}x - \frac{6}{x^{3}}\right) \cdot x^{3} = b(x) \cdot u(x) \to \infty.$$

The conditions on b(x) and u(x) can be seen as follows: By choosing $X_1 = 10$, we see that $x > X_1$ implies $b(x) = 1 - \frac{5}{x^2} - \frac{6}{x^3} > 1 - 0.05 - 0.006 > 0.9$ so $y_0 = 0.9$. Similarly for $x > X_1 = 10$ we see that $u(x) = x^3 = x^2 \cdot x > 100x > x$ which tends to infinity by assumption, so $u(x) \to \infty$ (see Prob. 71[7a].) \square (3.) Show that the set E is infinite, where $E = \{x \in \mathbf{R} : x \cos x = 7 \sin x\}$.

The function $h(x) = x \cos x - 7 \sin x$ is continuous on **R** since it is the difference of products of the continuous functions x, $\sin x$ and $\cos x$. Let $x_k = 2\pi k$ and $y_k = 2\pi k + \pi$. Observe that for $k \in \mathbf{N}$, $x_k < y_k < x_{k+1}$ for all k. Now $h(x_k) = (2\pi k) \cos(2\pi k) - 7\sin(2\pi k) = 2\pi k > 0$ and $h(y_k) = (2\pi k + \pi) \cos(2\pi k + \pi) - 7\sin(2\pi k + \pi) = -(2\pi k + \pi) < 0$. Thus for each k, h is a continuous function on the closed bounded interval $[x_k, y_k]$ such that $h(x_k) > 0 > h(y_k)$. By the Intermediate Value Theorem, there is a $z_k \in (x_k, y_k)$ such that $h(z_k) = 0$ so $z_k \in E$. Now, as the z_k 's are all distinct, E is infinite because it contains the countably infinite set $\{z_k : k \in \mathbf{N}\}$. To see the distinctness, suppose $k, \ell \in \mathbf{N}$ such that $k \neq \ell$. We may assume $k < \ell$. Then $z_k < y_k < x_{k+1} < y_{k+1} < \cdots < x_{\ell-1} < y_{\ell-1} < x_\ell < z_\ell$ so $z_k \neq z_\ell$. (Of course there are more zeros, such as the ones from the increasing parts of h.) \Box

(4.) Let $f(x) = \frac{x^2}{1+|x|}$. Show that f is uniformly continuous on \mathbf{R} .

f is uniformly continuous on **R** iff for every $\varepsilon > 0$ there is a $\delta > 0$ so that for every $x, y \in \mathbf{R}$ such that $|x - y| < \delta$ we have $|f(x) - f(y)| < \varepsilon$.

Choose $\varepsilon > 0$. Let $\delta = \varepsilon$. Choose $x, y \in \mathbf{R}$ such that $|x - y| < \delta$. Then since

$$|x+y| + |x| |y| \le |x| + |y| + |x| |y| \le 1 + |x| + |y| + |x| |y| = (1+|x|)(1+|y|)$$

we get |f(x) - f(y)| =

$$= \left| \frac{x^2}{1+|x|} - \frac{y^2}{1+|y|} \right| = \left| \frac{x^2(1+|y|) - y^2(1+|x|)}{(1+|x|)(1+|y|)} \right| = \left| \frac{(x^2 - y^2) + (x^2|y| - y^2|x|)}{(1+|x|)(1+|y|)} \right|$$

$$= \left| \frac{(x-y)(x+y) + (|x|^2|y| - |y|^2|x|)}{(1+|x|)(1+|y|)} \right| \le \frac{|x-y||x+y| + |x||y| \left| |x| - |y| \right|}{(1+|x|)(1+|y|)}$$

$$\le \frac{|x-y||x+y| + |x||y||x-y|}{(1+|x|)(1+|y|)} \le \frac{|x+y| + |x||y|}{(1+|x|)(1+|y|)} |x-y| \le |x-y| < \delta = \varepsilon. \quad \Box$$

(5.) Determine whether the statements are true or false. If the statement is true, give the reason. If the statement is false, provide a counterexample.

(a.) **Statement.** Let $f : \mathbf{R} \to \mathbf{R}$ be a bounded function. Then there is at least one point $a \in \mathbf{R}$ such that f is continuous at a.

FALSE. Let $f(x) = \begin{cases} 1, & \text{if } x \in \mathbf{Q}, \\ 0, & \text{if } x \in \mathbf{R} \setminus \mathbf{Q}. \end{cases}$ Then $|f(x)| \le 1$ for all x so f is bounded, but f is not continuous anywhere.

nywnere.

(b.) Statement. Let $f : \mathbf{R} \to \mathbf{R}$ be continuous at 0. Then $g(x) = f(x^2)$ is differentiable at x = 0.

FALSE. Let $f(x) = \sqrt{|x|}$. Then f(x) is (uniformly) continuous on **R** (so continuous at 0,) but $f(x^2) = \sqrt{|x^2|} = |x|$ which is not differentiable at 0.

(c.) Statement. Suppose that $f : \mathbf{R} \to \mathbf{R}$ is differentiable at x = 0. Let $a_k = f\left(\frac{1}{k}\right)$.

Then $\lim_{k \to \infty} a_k$ exists.

TRUE. f differentiable at 0 implies that f is continuous at 0. In other words, the limit exists and $\lim_{x\to 0} f(x) = f(0)$. But by the sequential characterization of continuity at zero, there is an $L \in \mathbf{R}$ such that any sequence $x_k \neq 0$ such that $x_k \to 0$ as $k \to \infty$, then $\lim_{k\to\infty} f(x_k) = L$ where L = f(0). In particular, $x_k = \frac{1}{k}$ is such a sequence, so $\lim_{k\to\infty} f(\frac{1}{k})$ exists and equals f(0).