Math 3210 § 2. Third Midterm Exam Sample Name: Gample
Treibergs November 6, 2009

(1.)Show directly from the definition that {x,},cn i a Cauchy sequence, where
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Proof. To show that {z,},en is Cauchy, which means for every € > 0 there is an N € R so that for every
k,¢ > N, there holds |z — z¢| < e.

Choose € > 0. Let N = 1/e. Suppose we choose k,¢ € N so that k,£ > N. If k < ¢ then swap the names
of the numbers. Thus we may assume k > ¢. If k = £ then |z, — 20| =0 < e. If & > £ then
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where we have used j7 > 27 for j > /41 (>2), 26> ¢ (which is problem 1.2.6a) and the sum of a geometric
series Y7, 19 = (rfH — kL) /(1 — 7).
(2.)For each n € N, suppose that a, € R satisfies |a,| < n. Show that the sequence {ry}nen where
Tn = an/n has a convergent subsequence.

Proof. We show that {r,},en is a bounded sequence. Indeed, for all n € N, by the hypothesis |a,| < n,
|an|
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By the Bolzano-Weierstral Theorem 2.26, the bounded sequence {r, },en has a convergent subsequence. [
(3.)Suppose that the real sequence {x,}nen is bounded and that the real sequence {y,}nen tends to infinity
Yn — 00 as N — 00. Show

nlilr;o(a:n—i—yn):oo, [i.,e. x4+ 00=00.]

Proof. We show that z, = z,, + y, — 00 as n — oo which means for all M € R there is an N € N so
that for every k € N such that £ > N we have z; > M.

As {x, }nen is a bounded sequence, there is a C' € R so that |xi| < C for all k € N. Choose M € R.
As {yn}nen diverges to infinity as n — oo, there is an N € N so that for every k € N such that £k > N we
have y > M + C. We show that this N proves the claim for {z, }nen. Thus if we choose k € N such that
k > N then

Zk:yk+$k>(M+C)—|(Ek| Z(M-FC)—C:M O

(4.)Suppose {Tn}nen is a Cauchy Sequence such that some subsequence x,,, — L as j — oo. Then the full
sequence converges T, — L as n — oo.

Proof. We show that z,, — L as n — oo which means, for all ¢ > 0 there is an N € N so that for all
k € N such that k > N we have |z, — L| < e.

Choose ¢ > 0. As {2, }nen is a Cauchy Sequence, there is a K € N so that for all k,¢ € N such that
k, ¢ > K we have |z — x| < %5. As the subsequence x,,; — L as j — oo, there is a J € N such that for
every j € N such that j > J we have |z, — L| < %5. Now N = max{K,n;} is the number that proves the
convergence. Choose any k& € N such that k > N. Let £ =ny. We have f =ny > N > njy > J. Then, by
the triangle inequality,

|k — L] = |(z — ) + (x¢ — L)| < |z — 2o + lany —L| < 3e+3e=¢c. O
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(5.)Show directly from the definition that {x,}, N i a Cauchy Sequence, where
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Proof. To show that {z, }nen is Cauchy, which means for every ¢ > 0 there is an N € R so that for every
k,¢ € N such that k,¢ > N, there holds |x — x| < €.

Choose € > 0. Let N = % Choose k,¢ € N so that k,£ > N. If k = £ then |z —x¢| =0<e. If k# ¢, by
swapping roles if needed, we may assume k > ¢. Then
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From Midterm Given November 17, 2004.
(1.) Let f(x) = (x—1)2. Using the definition of differentiable directly, show that f is differentiable at a = 4.

A function is differentiable at a if the limit exists and equals the derivative: lim W = f'(a). Let
r—a

a=4and f(z) = (v — 1)2. For x # 4, the difference quotient equals

f(x) — f(a) _ (x—1)2—-(4-1) :x2—2x—|—1—9: (x—4)(z+2) 242
T—a rz—4 z—4 z—4

which tends to 4 +2 = 6 as + — 4 by the sum theorem for limits. Since the limit exists and equals 6, we
conclude that f is differentiable at 4 and f/(4) =6. O
(2.) Prove that lim (2° — 5z — 6) = oo.

lim f(x) = oo means for every M € R there is a Xy € R so that for every z € R such that = > Xy, we
have f(z) > M.

Choose M € R. Let Xy = max{4, (3|M|)'/3}. Choose z € R such that 2 > Xj. Since z > 4 it follows
that #3 > 18 which implies £2® > 6. Since = > 4 it also follows that % > 15 which implies 2% > 5. Finally,

since z > (3|M|)'/? > 0 we get
fla)=2® -5z —6=12°+ (32> —5)z+ 12° -6
3
> 1 ((3|M|)1/3) +1 (-5 a+(6-6)=|M+0+0>M O
Alternately, for z > 0, use the function version of Theorem 2.15(iii) (see p. 69): If there are numbers

X1,y0 > 0 such that b(z) > yo for all z > Xy and u(z) — oo as x — oo then b(z) - u(z) — oo as x — oo.
Hence, as © — oo,

3 _ —
3 —6x—6= (m)-x3=(1—5x—;>~$3= (@) - u(xr) — oo.
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The conditions on b(z) and u(x) can be seen as follows: By choosing X; = 10, we see that z > X3 implies
bz) =1—- 3% — % > 1-0.05-0.006 > 0.9 so yo = 0.9. Similarly for z > X; = 10 we see that
u(x) = 23 = 22 - x > 1002 > x which tends to infinity by assumption, so u(z) — oo (see Prob. 71[7a].) O
(3.) Show that the set E is infinite, where E = {z € R: zcosz = Tsinz}.

The function h(z) = zcosx — Tsinzx is continuous on R since it is the difference of products of the

continuous functions z, sinz and cosz. Let zp = 27k and yx = 27wk + w. Observe that for £ € N,
xp < yp < Ty for all k. Now h(xg) = (27k)cos(2wk) — Tsin(2wk) = 2wk > 0 and h(yg) = 27k +
m) cos(2mk + m) — Tsin(2nk + 7) = —(27k + m) < 0. Thus for each k, h is a continuous function on the

closed bounded interval [z, yx] such that h(zy) > 0 > h(yx). By the Intermediate Value Theorem, there
is a 2z € (xk,yx) such that h(zi) = 0 so 2 € E. Now, as the z;’s are all distinct, F is infinite because it
contains the countably infinite set {zj : k € N}. To see the distinctness, suppose k, ¢ € N such that k # £.
We may assume k < . Then zp < yp < Tp41 < Ypt1 < -+ < Tp—1 < Yo—1 < g < 2¢ 0 2z, # zp. (Of course
there are more zeros, such as the ones from the increasing parts of h.) O

T
4.) Let f(z) = ———.
(1) Let f(x) = T

f is uniformly continuous on R iff for every € > 0 there is a § > 0 so that for every z,y € R such that

|z —y| < 0 we have |f(z) — f(y)| <e.
Choose € > 0. Let § = e. Choose x,y € R such that |z — y| < d. Then since

Show that f is uniformly continuous on R.

[z +yl+ [l [yl <o+ |yl + el [yl <1+ Je|+ |yl + |2 [yl = T+ |2]) (1 +[y])

we get |f(z) = f(y)| =

’ x? Y 2?1y -y Az | _ [(@® —y?) + @yl — y?l2])

1+ [z| 1+|y|‘ (14 [2)) (1 + [y]) (1 +[2)(1 +[y])

(@ = y)(@+y) + (ellyl = lylPleD | _ le—yllz +yl + [allyl[l=] = ]|
(14 J2)) (1 + [y]) (1 + [ (1 +[y])

<l =yllz+yl +l2llyl e —yl _ |z +yl + [2]ly]
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lz—y| <|lzr—y|<d=e. O

(5.) Determine whether the statements are true or false. If the statement is true, give the reason. If the
statement is false, provide a counterexample.
(a.) Statement. Let f : R — R be a bounded function. Then there is at least one point a € R such that f
18 continuous at a.

1, ifxeq,

FALSE. Let f(x) = { 0, ifzeR\Q
anywhere. |

(b.) Statement. Let f: R — R be continuous at 0. Then g(x) = f(x?) is differentiable at x = 0.
FALSE. Let f(z) = \/]z|. Then f(x) is (uniformly) continuous on R. (so continuous at 0,) but f(x?) =
V|22 = |x| which is not differentiable at 0.
(c.) Statement. Suppose that f : R — R is differentiable at x = 0. Let a, = f (%)
Then klim aj exists.

— 00
TRUE. f differentiable at 0 tmplies that f is continuous at 0. In other words, the limit exists and
lirrb f(z) = f(0). But by the sequential characterization of continuity at zero, there is an L € R such that
xr—

Then |f(z)] <1 for all x so f is bounded, but f is not continuous

any sequence xy # 0 such that z;, — 0 as k — oo, then klim f(zr) = L where L = f(0). In particular,

T = % is such a sequence, So klir{)lo f (%) exists and equals f(0).



