Math 3210 § $1 . \quad$ Second Midterm Exam
Treibergs

Name: Solutions
October 8, 2008

1. Let L be a real number and $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a real sequence. State the definition: $L=\lim _{n \rightarrow \infty} a_{n}$. Let $a_{n}=\frac{n}{3 n-8}$. Find $\lim _{n \rightarrow \infty} a_{n}$. Prove your answer is the limit.

Definition of $\lim _{n \rightarrow \infty} a_{n}=L$: for every $\epsilon>0$ there is $R \in \mathbb{R}$ so that $\left|a_{n}-L\right|<\epsilon$ whenever $n>R$.

To show $a_{n} \rightarrow \frac{1}{3}$ as $n \rightarrow \infty$. Choose $\epsilon>0$. Let $R=\frac{4}{3 \epsilon}+8$. If $n>R$ then $n>8,3 n-8>0$ and $\frac{1}{R}<\frac{3 \epsilon}{4}$ so
$\left|a_{n}-L\right|=\left|\frac{n}{3 n-8}-\frac{1}{3}\right|=\left|\frac{3 n-(3 n-8)}{3(3 n-8)}\right|=\frac{8}{3(3 n-8)} \leq \frac{8}{3(3 n-n)}=\frac{4}{3 n}<\frac{4}{3 R}<\epsilon$.
2. Let $(\mathcal{F},+, \cdot, \leq)$ be an ordered field. For $x \in \mathcal{F}$, what does $x>0$ mean? For $x, y \in \mathcal{F}$ show that $x>0$ and $y>0$ implies $x+y>0$.
$x>0$ means $x \geq 0$ and $x \neq 0$. We need to show that $x+y \geq 0$ and $x+y \neq 0$. Since $x>0$ and $y>0$ we have $x \geq 0$ and $y \geq 0$. By $\mathbf{O 4}$ (if $p \leq q$ then $p+r \leq q+r$), adding y to both sides, $x+y \geq 0+y=y \geq 0$ by additive identity and $y \geq 0$. Thus we have shown $x+y \geq 0$. To show that $x+y \neq 0$ assume the contrary, that $x+y=0$. But since the additive inverse is unique in a field, $y=-x$ so $-x=y>0$. But adding $-x$ to $x \geq 0$ yields $0=x-x \geq 0-x=-x$. But $-x>0$ and $-x \leq 0$ implies $-x \neq 0$ and $-x \geq 0$ and $-x \leq 0$ implies $-x \neq 0$ and $-x=0$ by $\mathbf{O 2}($ if $y \leq z$ and $z \leq y$ then $y=z$), which is a contradiction.
3a. Statement: If $a, b \in \mathbb{R}$ then $|a+b| \geq|a|-|b|$.
TRUE. By the triangle inequality $|a|=|-b+(a+b)| \leq|-b|+|a+b|=|b|+|a+b|$. 3b. Statement: Suppose that $A \subset \mathbb{R}$ is a nonempty subset such that $\sup A=\infty$. Then for every $b \in \mathbb{R}$ there are only finitely many $a \in A$ so that $a \leq b$.

FALSE. Let $A=\mathbb{N} \cup\left\{\frac{1}{m}: m \in \mathbb{N}\right\}$. Then $\sup A=\infty$ because A is not bounded above: for every $b \in \mathbb{R}$ there is $n \in \mathbb{N} \subset A$ such that $n>b$ by the Archimedian property. However, for $b=\frac{3}{2}$, every one of the infinitely many numbers $\frac{1}{m} \in A$ for $m \in \mathbb{N}$ satisfy $\frac{1}{m}<b$.
3c. Statement: For every $\epsilon>0$ there is a rational number r such that $|r-\sqrt{2}|<\epsilon$.
TRUE. For every $\epsilon>0$, by the density of rationals, there is a rational number r between the real numbers $\sqrt{2}-\epsilon<r<\sqrt{2}+\epsilon$.
4. Let L be a real number and $A \subset \mathbb{R}$ a nonempty subset. State the definition: $L=\sup A$. Let $A=\left\{\frac{n^{2}}{(n+1)^{2}}: n \in \mathbb{N}\right\}$. Find $\sup A$. Prove your answer is the supremum.

Definition of $L=\sup A$: L is an upper bound for A, i.e., $(\forall a \in A)(a \leq L)$ and L is the least among upper bounds, i.e., $(\forall \epsilon>0)(\exists a \in A)(L-\epsilon<a)$.

To show $L=1$ is the supremum of A we need to show 1 is an upper bound and that 1 is the least among upper bounds. But if $n \in \mathbb{N}$ we have $0<n<n+1$ which implies $0<n^{2}<n(n+1)<(n+1)^{2}$ so that $a=\frac{n^{2}}{(n+1)^{2}}<1$. Since every $a \in A$ has this form, $(\forall a \in A)(a \leq 1)$ so 1 is an upper bound.

To show it is least among upper bounds, we choose $\epsilon>0$ to show that there is $a \in A$ such that $1-\epsilon<a$. By the Archimedian Property, there is $n \in \mathbb{N}$ so that $n>\frac{2}{\epsilon}$. I claim $a=\frac{n^{2}}{(n+1)^{2}}>1-\epsilon$. To see this,

$$
1-a=1-\frac{n^{2}}{(n+1)^{2}}=\frac{(n+1)^{2}-n^{2}}{(n+1)^{2}}=\frac{2 n+1}{(n+1)^{2}}<\frac{2 n+2}{(n+1)^{2}}=\frac{2}{n+1}<\frac{2}{n}<\epsilon
$$

5. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a real sequence and $c, d, L \in \mathbb{R}$ be numbers. Let $b_{n}=c a_{n}+d$. Show that if $a_{n} \rightarrow L$ as $n \rightarrow \infty$ then $b_{n} \rightarrow c L+d$ as $n \rightarrow \infty$.

To show for all $\epsilon>0$ there is $R \in \mathbb{R}$ so that $\left|b_{n}-c L-d\right|<\epsilon$ whenever $n>R$. Choose $\epsilon>0$. By the assumption that $a_{n} \rightarrow L$ as $n \rightarrow \infty$, there is $R \in \mathbb{R}$ so that $n>R$ implies $\left|a_{n}-L\right|<\frac{\epsilon}{1+|c|}$. For the same R, suppose $n>R$. Then

$$
\left|b_{n}-c L-d\right|=\left|c a_{n}+d-c L-d\right|=|c|\left|a_{n}-L\right| \leq \frac{|c| \epsilon}{|c|+1}<\epsilon
$$

