Math 3210 § 2.
Treibergs

From exams given Sept. 20 and Oct. 24, 2004.

(1.) Using only the definition of convergence of a sequence, show $\lim _{k \rightarrow \infty} x_{k}=1$ where $x_{k}=\frac{k^{2}-4 k}{k^{2}-8}$ for all $k \in \mathbf{N}$.

Proof. Choose $\varepsilon>0$. By the Archimedean Principle, there is an $N \in \mathbf{N}$ so that $N>\max \left\{3, \frac{12}{\varepsilon}\right\}$. For any choice of $k \in \mathbf{N}$ such that $k \geq N$ we have $k \geq 4$ so $8 \leq 2 k$ and $8 \leq \frac{1}{2} k^{2}$ so that

$$
\left|x_{k}-1\right|=\left|\frac{k^{2}-4 k}{k^{2}-8}-1\right|=\left|\frac{\left(k^{2}-4 k\right)-\left(k^{2}-8\right)}{k^{2}-8}\right|=\frac{|8-4 k|}{\left|k^{2}-8\right|} \leq \frac{|8|+|4 k|}{\left|k^{2}\right|-|8|} \leq \frac{2 k+4 k}{k^{2}-\frac{1}{2} k^{2}}=\frac{12}{k} \leq \frac{12}{N}<\varepsilon
$$

(2.) Suppose that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ and that the sequence $\left\{y_{n}\right\}_{n \in \mathbf{N}}$ is bounded. Show that $x_{n} \cdot y_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. We show that $x_{n} \cdot y_{n} \rightarrow 0$, which is equivalent to: for every $\varepsilon>0$ there is an $N \in \mathbf{N}$ so that for every $k \in \mathbf{N}$ such that $k \geq N$ we have $\left|x_{k} \cdot y_{k}-0\right|<\varepsilon$.

Since we are given that $\left\{y_{n}\right\}_{n \in \mathbf{N}}$ is bounded, there is a number $C \in \mathbf{R}$ so that for all $k \in \mathbf{N}$ we have $\left|y_{k}\right|<C$.

Choose $\varepsilon>0$. Since we are given that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, there is an $N \in \mathbf{N}$ so that for all $k \in \mathbf{N}$ such that $k \geq N$ we have $\left|x_{k}\right| \leq \frac{\varepsilon}{C}$. For any choice of $k \in \mathbf{N}$ so that $k \geq N$ we have

$$
\left|x_{k} \cdot y_{k}-0\right|=\left|x_{k}-0\right| \cdot\left|y_{k}\right|<\frac{\varepsilon}{C} \cdot C=\varepsilon
$$

(3.) Let $E \subseteq \mathbf{R}$ be given by $E=\left\{2-\frac{1}{n^{3}}: n \in \mathbf{N}\right\}$. Find $s=\sup E$. Prove that s is the supremum (least upper bound) for the set E.
$s=2$. To show $s=\sup E$ we must show that it is an upper bound and that it is the least upper bound.
To show that it is an upper bound, choose $x \in E$. Hence $x=2-\frac{1}{n^{3}}$ for some $n \in \mathbf{N}$. But as $n>0$ we have $n^{-3}>0$ so $x=2-n^{-3}<2$. This is because $n^{-1}>0$ implies $n^{-3}=\left(n^{-1}\right)^{3}>0$ so $-n^{-3}<0$. Adding 2 to both sides, $x=2-n^{-3}<2+0=2$. Thus every $x \in E$ has $x \leq 2$, that is, 2 is an upper bound for E.

To show that it is the least upper bound, we have to show that for all $\varepsilon>0$ there is an $x \in E$ so that $s-\varepsilon<x$. Thus choose $\varepsilon>0$. As $1>0$ and $1 / \varepsilon>0$, by the Archimidean Principle, there is an $n \in \mathbf{N}$ so that $n \cdot 1>1 / \varepsilon$. n^{3} is even larger, as can be seen by multiplying $n \geq 1$ by $n>0$ and $n^{2}>0$ to get $n^{3} \geq n^{2}$ and $n^{2} \geq n$ so that $n^{3} \geq n^{2} \geq n>1 / \varepsilon$. Thus $n^{-3}<\varepsilon$ so $-n^{-3}>-\varepsilon$. Adding 2 to both sides, $2-\varepsilon<2-n^{-3}=x$. As this is the form of numbers in E, we have found an $x \in E$ so that $s-\varepsilon<x$. Thus s is the least upper bound. The argument is complete.
(4.) Assuming only the field axioms for \mathbf{R} (Postulate 1, on pages 2-3 of the text,) deduce that for every $a, b \in \mathbf{R},-(a+b)=(-a)+(-b)$.

We shall show that $u=(-a)+(-b)$ satisfies $(a+b)+u=0$. By the Existence of Additive Inverse Axiom for $a+b$, there is some $-(a+b)$ such that $(a+b)+(-(a+b))=0$. By the uniqueness asserted in the same axiom, as u is also an additive inverse of $(a+b)$ we must have $u=-(a+b)$ proving the assertion. We have

$$
\begin{aligned}
(a+b)+((-a)+(-b)) & =(b+a)+((-a)+(-b)) \\
& =((b+a)+(-a))+(-b) \\
& =(b+(a+(-a)))+(-b) \\
& =(b+0)+(-b) \\
& =b+(-b) \\
& \text { Associativity of Addition } \\
& =0 .
\end{aligned}
$$

(5.) Determine whether the statement is true or false and prove your answer. Statement: For all real functions $f: \mathbf{R} \rightarrow \mathbf{R}$ and for all pairs of subsets $A, B \subseteq \mathbf{R}$, if $f(A) \subseteq f(B)$ then $A \subseteq B$.

The statement is false. We establish the negation: There is a function $f: \mathbf{R} \rightarrow \mathbf{R}$ and there are sets $A, B \subseteq \mathbf{R}$ such that $f(A) \subseteq f(B)$ but not $A \subseteq B$.

Let $f(x)=x^{2}$. (Any function that is not one-to-one will do!) Let $A=\{1,-1\}$ and $B=\{1\}$. We have $f(A)=f(\{1,-1\})=\{1\}$ and $f(B)=f(\{1\})=\{1\}$ so that $f(A) \subseteq f(B)$ since they are equal, but A is not contained in B since A has two elements whereas B has one.
(6.) Determine whether the statements are true or false. If the statement is true, give the reason. If the statement is false, provide a counterexample.
(a.) If $x_{n} \rightarrow$ a as $n \rightarrow \infty$ then $\left(x_{n+1}-x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

TRUE. By the difference theorem for limits, $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=\left(\lim _{n \rightarrow \infty} x_{n+1}\right)-\left(\lim _{n \rightarrow \infty} x_{n}\right)=a-a=0$. (b.) If $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ is a bounded sequence then it converges.

FALSE. $x_{n}=(-1)^{n}$ is bounded $\left(\left|x_{n}\right| \leq 1\right.$ for all $\left.n \in \mathbf{N}\right)$ but it does not converge.
(c.) If $\left\{x_{n}\right\}_{n} \in \mathbf{N}$ has a subsequence $\left\{x_{n_{j}}\right\}_{j \in \mathbf{N}}$ that diverges to infinity, $\lim _{j \rightarrow \infty} x_{n_{j}}=\infty$, then the sequence itself diverges to inifty: $\lim _{n \rightarrow \infty} x_{n}=\infty$.

FALSE. $y_{n}=(-1)^{n} n$ has a subsequence $x_{2 j}=(-1)^{2 j}(2 j)=2 j \rightarrow \infty$ as $j \rightarrow \infty$. But it also has a subsequence $x_{2 j+1}=(-1)^{2 j+1}(2 j+1)=-2 j-1 \rightarrow-\infty$ as $j \rightarrow \infty$, so that y_{n} does not diverge to positive infinity. (If it did, every subsequence would have to diverge to positive infinity also.)

More Practice Problems.

(E1.) Using only the definition of convergence, prove that the sequence $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ converges, where $x_{n}=$ $\frac{n+(-1)^{n}}{n+4}$. [Hint: find the limit first.]

Proof. To show $x_{n} \rightarrow 1$ as $n \rightarrow \infty$, or equivalently, for all $\varepsilon>0$ there is an $N \in \mathbf{N}$ so that for all $k \in \mathbf{N}$ such that $k \geq N$ we have $\left|x_{k}-1\right|<\varepsilon$.

Choose $\varepsilon>0$. By the Archimidean Principle, there is an $N \in \mathbf{N}$ so that $N>5 / \varepsilon$. Choose $k \geq N$. Then

$$
\begin{gathered}
\left|x_{k}-1\right|=\left|\frac{k+(-1)^{k}}{k+4}-1\right|=\left|\frac{k+(-1)^{k}-(k+4)}{k+4}\right|=\left|\frac{(-1)^{k}+(-4)}{k+4}\right| \\
=\frac{\left|(-1)^{k}+(-4)\right|}{|k+4|} \leq \frac{\left|(-1)^{k}\right|+|-4|}{|k|}=\frac{5}{k} \leq \frac{5}{N}<\varepsilon
\end{gathered}
$$

(E2.)Suppose $\left\{x_{n}\right\}_{\in \mathbf{N}}$ is a real sequence such that $x_{n} \rightarrow a$ as $n \rightarrow \infty$. Using only the definition of convergence, show that the sequence of squares converges and $\lim _{n \rightarrow \infty}\left(x_{n}{ }^{2}\right)=a^{2}$.

Proof. To show for all $\varepsilon>0$ there is an $N \in \mathbf{N}$ so that for all $k \in \mathbf{N}$ such that $k \geq N,\left|x_{k}^{2}-a^{2}\right|<\varepsilon$.
We are assuming $x_{n} \rightarrow a$ as $n \rightarrow \infty$, which means, for all $\varepsilon_{1}>0$ there is an $N_{1} \in \mathbf{N}$ so that for all $k \in \mathbf{N}$ such that $j \geq N_{1},\left|x_{j}-a\right|<\varepsilon$. For $\varepsilon_{1}=1$, there is $N_{2} \in \mathbf{N}$ so that for all $j \geq N_{2},\left|x_{j}-1\right|<1$. Hence, for all $j \geq N_{1},\left|x_{j}+a\right|=\left|x_{j}-a+2 a\right| \leq\left|x_{j}-a\right|+|2 a|<1+2|a|$. Now choose $\varepsilon>0$. As $x_{n} \rightarrow a$, there is an $N_{3} \in \mathbf{N}$ so that for all $\ell \geq N_{3},\left|x_{j}-a\right|<\varepsilon /(1+2|a|)$. Let $N=\max \left\{N_{2}, N_{3}\right\}$. For any choice of $k \geq N$, we have

$$
\left|x_{k}^{2}-a^{2}\right|=\left|\left(x_{k}-a\right)\left(x_{k}+a\right)\right|=\left|x_{k}-a\right| \cdot\left|x_{k}+a\right|<\frac{\varepsilon}{1+2|a|} \cdot(1+2|a|)=\varepsilon .
$$

(E3.) Assume that x_{n}, y_{n}, z_{n} are real sequences such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty,\left\{y_{n}\right\}_{n \in \mathbf{N}}$ is bounded and $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$. For each part, determine whether the statement is TRUE or FALSE. If the statement is true, give a justification. If the statement is false, give a counterexample. You may use theorems about sequences. (a.) $\left\{x_{n}+y_{n}\right\}_{n \in \mathbf{N}}$ has a convergent subsequence.

TRUE: As $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ converges, it must be bounded by Theorem 2.8. This means that there is an $M_{1} \in \mathbf{R}$ so that for all $k \in \mathbf{N},\left|x_{k}\right| \leq M_{1}$. We are given by hypothesis that $\left\{y_{n}\right\}_{n \in \mathbf{N}}$ is bounded. This means that there is an $M_{2} \in \mathbf{R}$ so that for all $k \in \mathbf{N},\left|y_{k}\right| \leq M_{2}$. Adding, we find for all $k \in \mathbf{N},\left|x_{k}+y_{k}\right| \leq\left|x_{k}\right|+\left|y_{k}\right| \leq M_{1}+M_{2}$,
thus the sequence $\left\{\left(x_{n}+y_{n}\right)\right\}_{n \in \mathbf{N}}$ is bounded. Thus by the Bolzano-Weierstraß Theorem, the sum sequence has a convergent subsequence.
(b.) $\left\{x_{n} z_{n}\right\}_{n \in \mathbf{N}}$ is bounded.

FALSE: Take $x_{n}=n^{-1}$. Then $x_{m} \rightarrow 0$ as $n \rightarrow \infty$. Take $z_{n}=n^{2}$. Then $z_{n} \rightarrow \infty$ and $\left\{z_{n}\right\}_{n \in \mathbf{N}}$ diverges to infinity. Finally $x_{n} z_{n}=n \rightarrow \infty$ as $n \rightarrow \infty$ so it is not bounded.
(c.) $y_{n} z_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

FALSE: Take $y_{n}=n^{-1}$. Thus $y_{n} \rightarrow 0$ as $n \rightarrow \infty$ so it is bounded by Theorem 2.8. Take $z_{n}=n$ so $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$ so z_{n} is not bounded. However $y_{n} z_{n}=1$ for all $n \in \mathbf{N}$, so $\left|y_{n} z_{n}\right| \leq 1$ for all n so $\left\{y_{n} z_{n}\right\}_{n \in \mathbf{N}}$ is bounded so does not diverge to infinity.
(E4.) Suppose $0 \leq x_{1} \leq 2$ and define $x_{n+1}=\sqrt{2+x_{n}}$ for $n \in \mathbf{N}$.
(a.) Using induction, show that x_{n} is monotone increasing and bounded above.

Proof. We claim that whenever $0<a<2$ then $0<a<\sqrt{2+a}<2$. The first inequality is given by the hypothesis that $0<a$. The third inequality follows from the hypothesis $0<a<2$ because it implies $0<a+2<2+2$ so that $\sqrt{2+a}<\sqrt{2+2}=2$. We have used $0 \leq a<b$ implies $\sqrt{a}<\sqrt{b}$. The middle inequality follows from $0<a<2$ becase this implies $a-2<0$ and $a+1>0$. Thus $a^{2}-a-2=(a-2)(a+1)<0$. Using also that $a^{2} \geq 0$ we get $0 \leq a^{2}<a+2$. Finally we conclude from taking square roots that $a<\sqrt{a+2}$. The claim is verified.

Now for arbitrary $0<x_{1}<2$ we define inductively $x_{n+1}=\sqrt{2+x_{n}}$. Finally we prove $0<n_{n}<x_{n+1}<2$ for all $n \in \mathbf{N}$. We argue by induction. For the base case $n=1$, we apply the first claim with $a=x_{1}$ which satisfies $0<x_{1}<2$ to conclude $0<x_{1}<x_{2}=\sqrt{x_{1}+2}<2$. For the induction step, we assume that $0<x_{n}<x_{n+1}<2$. This implies $0<x_{n+1}<2$, so that if we apply the first claim with $a=x_{n+1}$ we conclude $0<x_{n+1}<x_{n+2}=\sqrt{x_{n+1}+2}<2$. The induction proof is complete.
(E5.) Using only the definition of convergence, show that the sequence $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ converges where $x_{n}=\frac{n}{3 n-1}$.
Proof. We show that $x_{n} \rightarrow \frac{1}{3}$ wnen $n \rightarrow \infty$, or equivalently, for all $\varepsilon>0$ there is an $N \in \mathbf{N}$ so that for all $k \in \mathbf{N}$ such that $k \geq N,\left|x_{k}-\frac{1}{3}\right|<\varepsilon$.

Choose $\varepsilon>0$. By the Archimidean Axiom, there is an $N \in \mathbf{N}$ so that $N>\frac{1}{9 \varepsilon}+\frac{1}{3}$. Now for any choice of $k \geq N$, we have $3 k-1 \geq 3 N-1>\frac{1}{3 \varepsilon}$ so that

$$
\left|x_{k}-\frac{1}{3}\right|=\left|\frac{k}{3 k-1}-\frac{1}{3}\right|=\left|\frac{3 k-(3 k-1)}{3(3 k-1)}\right|=\frac{1}{3(3 k-1)}<\frac{3 \varepsilon}{3}=\varepsilon .
$$

(E6.) Using only the definition of convergence, show that the sequence $\left\{y_{n}\right\}_{n \in \mathbf{N}}$ does not converge, where $y_{n}=\frac{1}{n}+(-1)^{n}$.

Proof. We show that $\left\{y_{n}\right\}_{n \in \mathbf{N}}$ does not converge to any L, or equivalently, for all $L \in \mathbf{R}$ there is an $\varepsilon>0$ so that for all $N \in \mathbf{N}$ there is a $k \in \mathbf{N}$ such that $k \geq N$ and $\left|y_{k}-L\right| \geq \varepsilon$.

Choose $L \in \mathbf{R}$. Let $\varepsilon=0.1$. For any choice of $N \in \mathbf{N}$, by the Archimidean Principle, there is a $m \in \mathbf{N}$ so that $2 m>N$. If $L \leq 0.5$ then let $k=2 m>N$. Then since $\frac{1}{2 m}+1-L>0$,

$$
\left|y_{k}-L\right|=\left|\frac{1}{k}+(-1)^{k}-L\right|=\left|\frac{1}{2 m}+(-1)^{2 m}-L\right|=\left|\frac{1}{2 m}+1-L\right|=\frac{1}{2 m}+1-L \geq 0+1-0.5>0.1
$$

If $L>0.5$ then let $k=2 m+1>N$. Then since $\frac{1}{2 m+1}-1-L<\frac{1}{3}-1-0.5<0$,

$$
\begin{aligned}
\left|y_{k}-L\right|= & \left|\frac{1}{k}+(-1)^{k}-L\right|=\left|\frac{1}{2 m+1}+(-1)^{2 m+1}-L\right| \\
& =\left|\frac{1}{2 m+1}-1-L\right|=-\frac{1}{2 m+1}+1+L \geq-\frac{1}{3}+1+0.5>0.1
\end{aligned}
$$

(E7.) Show using only the definiton of convergence that if $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ as $n \rightarrow \infty$ and $b \neq 0$ and $b_{n} \neq 0$ for all $n \in \mathbf{N}$ then the quotients converge and the limit of the quotients is the quotient of the limits.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b}
$$

Proof. We show that $a_{n} / b_{n} \rightarrow a / b$ when $n \rightarrow \infty$, or equivalently, for all $\varepsilon>0$ there is an $N \in \mathbf{N}$ so that for all $k \in \mathbf{N}$ such that $k \geq N,\left|a_{k} / b_{k}-a / b\right|<\varepsilon$.

Since $b_{n} \rightarrow b$ as $n \rightarrow \infty$, there is an $N_{1} \in \mathbf{N}$ so that for all $k \in \mathbf{N}$ such that $k \geq N_{1}$ we have $\left|b_{k}-b\right|<\frac{1}{2}|b|$. Thus, using the reverse triangle inequality, $\left|b_{k}\right|=\left|b-\left(b-b_{k}\right)\right| \geq|b|-\left|b-b_{k}\right|>|b|-\frac{1}{2}|b|=\frac{1}{2}|b|>0$ for all $k \geq N_{1}$.

Choose $\varepsilon>0$. Since $a_{n} \rightarrow a$ as $n \rightarrow \infty$, there is an $N_{2} \in \mathbf{N}$ so that for all $k \geq N_{2},\left|a_{k}-a\right|<\frac{1}{4}|b| \varepsilon$. Since $b_{n} \rightarrow b$ as $n \rightarrow \infty$, there is an $N_{3} \in \mathbf{N}$ so that for all $k \geq N_{3},\left|b_{k}-b\right|<\frac{|b|^{2} \varepsilon}{4|a|+1}$.

Now let $N=\max \left\{N_{1}, N_{2}, N_{3}\right\}$. For any choice of $k \in \mathbf{N}$ such that $k \geq N$, we have by the triangle inequlaity and the lower bound on $\left|b_{k}\right|$,

$$
\begin{aligned}
\left|\frac{a_{k}}{b_{k}}-\frac{a}{b}\right|= & \left|\frac{b a_{k}-a b_{k}}{b b_{k}}\right|=\frac{\left|b\left(a_{k}-a\right)-a\left(b_{k}-b\right)\right|}{|b|\left|b_{k}\right|} \leq \frac{|b|\left|a_{k}-a\right|+|a|\left|b_{k}-b\right|}{\frac{1}{2}|b|^{2}} \\
& =\frac{2}{|b|} \cdot\left|a_{k}-a\right|+\frac{2|a|}{|b|^{2}} \cdot\left|b_{k}-b\right|<\frac{2}{|b|} \cdot \frac{|b| \varepsilon}{4}+\frac{2|a|}{|b|^{2}} \cdot \frac{|b|^{2} \varepsilon}{4|a|+1} \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

(E8.) Show that if $x \in \mathbf{R}$ then there is a monotone decreasing sequence of rationals $q_{n} \in \mathbf{Q}$ so that $q_{n} \rightarrow x$ as $n \rightarrow \infty$.

Proof. Use the Density of Rationals and the Squeeze Theorem. For each $n \in \mathbf{N}$, let $x_{n}=x+\frac{1}{n}$. Note that $x_{n+1}=x+\frac{1}{n+1}<x+\frac{1}{n}=x_{n}$ for all n so that $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ is a decreasing, though not necessarily a rational sequence. By the Density of Rationals Theorem 1.24, there is a rational number $r_{n} \in \mathbf{Q}$ so that $x_{n+1}<r_{n}<x_{n}$ for each $n \in \mathbf{N}$. As both the upper and lower sequences converge to the same limit, $\lim _{n \rightarrow \infty} x_{n+1}=x=\lim _{n \rightarrow \infty} x_{n}$, and the sequence $\left\{r_{n}\right\}_{n \in \mathbf{N}}$ is sqeezed in between, by the Squeeze Theorem 2.9, the middle sequence converges also to the same limit $x=\lim _{n \rightarrow \infty} r_{n}$. Finally, as the r_{n} 's are chosen to lie between consecutive terms of a decreasing sequence, the r_{n} 's strictly decrease also: $r_{n+1}<$ $x+\frac{1}{n+1}=x_{n+1}<r_{n}$ for all $n \in \mathbf{N}$.
(E9.) Determine if true or false. If true, give the proof. If false, give a counterexample. Suppose $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbf{N}}$ are real sequences such that $x_{n} \rightarrow \infty$ and $y_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then x_{n} / y_{n} converges as $n \rightarrow \infty$.

The statement is FALSE. Let $x_{n}=n^{2}$ and $y_{n}=n$ for all $n \in \mathbf{N}$. Then both $x_{n} \rightarrow \infty$ and $y_{n} \rightarrow \infty$ as $n \rightarrow \infty$. However, $x_{n} / y_{n}=n^{2} / n=n$ which tends to ∞ as $n \rightarrow \infty$ so does not converge.
(E10.) Determine whether the following sequence converges. Justify your answer.

$$
\frac{1}{2}, \frac{1 \cdot 3}{2 \cdot 4}, \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}, \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8}, \ldots
$$

The sequence CONVERGES because it is monotone decreasing and bounded below. The sequence may be defined by the recursion $x_{1}=\frac{1}{2}$ and $x_{n+1}=\frac{2 n+1}{2 n+2} x_{n}$ for all $n \in \mathbf{N}$. An induction argument will show that $x_{n}>0$ (because each successive term is a positive multiple of the previous which was positive) and $x_{n+1}<x_{n}$ (because each successive term is a fraction of the previous positive term) for all $n \in \mathbf{N}$. Thus $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ is bounded below (by 0) and decreasing. Be the Monotone Sequence Theorem 2.19, this implies that $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ converges.
(E11.)Suppose $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ is a real sequence that has one subsequence $\left\{x_{n_{j}}\right\}_{j \in \mathbf{N}}$ which converges $x_{n_{j}} \rightarrow a$ as $j \rightarrow \infty$ and another subsequence $\left\{x_{m_{\ell}}\right\}_{\ell \in \mathbf{N}}$ which converges $x_{m_{\ell}} \rightarrow b$ as $\ell \rightarrow \infty$ where a, b are finite real numbers. Show that if $a \neq b$ then the original sequence $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ does not converge, but if $a=b$ then the sequence may or may not be convergent. Give illustrative examples.

Proof. Assume that $a>b$ and that the subsequences are $x_{n_{j}} \rightarrow a$ as $j \rightarrow \infty$ and $x_{m_{\ell}} \rightarrow b$ as $\ell \rightarrow \infty$. We show that $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ does not converge to any L, or equivalently, for all $L \in \mathbf{R}$ there is an $\varepsilon>0$ so that for all $N \in \mathbf{N}$ there is a $k \in \mathbf{N}$ such that $k \geq N$ and $\left|x_{k}-L\right| \geq \varepsilon$.

Choose $L \in \mathbf{R}$. Let $\varepsilon=\frac{1}{8}(a-b)$. As $x_{n_{j}} \rightarrow a$, there is an $N_{1} \in \mathbf{N}$ so that for all $j \geq N_{1}$ we have $\left|x_{n_{j}}-a\right|<\frac{1}{8}(a-b)$. As $x_{m_{\ell}} \rightarrow b$, there is an $N_{2} \in \mathbf{N}$ so that for all $\ell \geq N_{2}$ we have $\left|x_{m_{\ell}}-b\right|<\frac{1}{8}(a-b)$. For any choice of $N \in \mathbf{N}$, by the Archimidean Principle, there is a $j \in \mathbf{N}$ so that $j>\max \left\{N, N_{1}, N_{2}\right\}$ thus $n_{j}>\max \left\{N, N_{1}, N_{2}\right\}$ and $m_{j}>\max \left\{N, N_{1}, N_{2}\right\}$. If $L \leq \frac{1}{2}(a+b)$ then let $k=n_{j}$. Then using the reverse triangle inequality and since $a-L>0$,

$$
\left|x_{k}-L\right|=\left|x_{n_{j}}-L\right|=\left|(a-L)+\left(x_{n_{j}}-a\right)\right| \geq|a-L|-\left|x_{n_{j}}-a\right|>a-\frac{a+b}{2}-\frac{1}{8}(a-b)=\frac{3}{8}(a-b)>\varepsilon .
$$

If $L>\frac{1}{2}(a+b)$ then let $k=m_{j}$. Then using the reverse triangle inequality and since $b-L<0$,

$$
\left|x_{k}-L\right|=\left|x_{m_{j}}-L\right|=\left|(b-L)+\left(x_{n_{j}}-b\right)\right| \geq|b-L|-\left|x_{n_{j}}-b\right|>\frac{a+b}{2}-b-\frac{1}{8}(a-b)=\frac{3}{8}(a-b)>\varepsilon .
$$

Thus no matter what L or N may be, there is an element $k \geq N$ so that $\left|x_{k}-L\right|>\varepsilon$, so the sequence does not converge.

Consider the sequence $x_{n}=(-1)^{n}$ for all n. If $n_{j}=4 j$ then $x_{n_{j}}=(-1)^{4 j}=1 \rightarrow 1$ as $j \rightarrow \infty$. Another subsequence is given by $m_{\ell}=4 \ell+2$. Then $x_{m_{\ell}}=(-1)^{4 \ell+2}=1 \rightarrow 1$ as $\ell \rightarrow \infty$. This example does not converge, but contains two subsequences that converge to the same limits ($a=b=1$.) Or we could have taken $m_{\ell}=4 \ell+3$. Then $x_{m_{\ell}}=(-1)^{4 \ell+3}=-1 \rightarrow-1$ as $\ell \rightarrow \infty$. The same non-convergent sequence has another subsequence that converges to a different number, $b=-1$.

On the other hand, if we choose any convergent sequence (e.g. $\xi_{n}=\frac{1}{n}$), then by Rremark 2.6, any of its subsequences converges to the same limit as the sequence. Using the same indices as before,

$$
\xi_{n_{j}}=\frac{1}{n_{j}}=\frac{1}{4 j} \rightarrow 0 \quad \text { as } j \rightarrow 0
$$

and

$$
\xi_{m_{\ell}}=\frac{1}{m_{\ell}}=\frac{1}{4 j+3} \rightarrow 0 \quad \text { as } j \rightarrow 0 .
$$

(E12.) Suppose that the real sequence $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ is bounded and that the real sequence $\left\{y_{n}\right\}_{n \in \mathbf{N}}$ tends to infinity $y_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Show

$$
\left.\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\infty, \quad \text { [i.e. } \quad x+\infty=\infty .\right]
$$

Proof. We show that $z_{n}=x_{n}+y_{n} \rightarrow \infty$ as $n \rightarrow \infty$ which means for all $M \in \mathbf{R}$ there is an $N \in \mathbf{N}$ so that for every $k \in \mathbf{N}$ such that $k \geq N$ we have $z_{k}>M$.

As $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ is a bounded sequence, there is a $C \in \mathbf{R}$ so that $\left|x_{k}\right| \leq C$ for all $k \in \mathbf{N}$. Choose $M \in \mathbf{R}$. As $\left\{y_{n}\right\}_{n \in \mathbf{N}}$ diverges to infinity as $n \rightarrow \infty$, there is an $N \in \mathbf{N}$ so that for every $k \in \mathbf{N}$ such that $k \geq N$ we have $y_{k}>M+C$. We show that this N proves the claim for $\left\{z_{n}\right\}_{n \in \mathbf{N}}$. Thus if we choose $k \in \mathbf{N}$ such that $k \geq N$ then

$$
z_{k}=y_{k}+x_{k}>(M+C)-\left|x_{k}\right| \geq(M+C)-C=M .
$$

